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ABSTRACT: We report a novel anhydride derivative, 3-acetoxy-2-methylbenzoic anhydride (AMA), obtained from the interaction
of 3-acetoxy-2-methylbenzoyl chloride with 3-acetoxy-2-methylbenzoic acid. The synthesized compound was characterized by
elemental analysis, IR, 1H NMR, and 13C NMR spectroscopic studies and single-crystal X-ray crystallography which revealed the
crystallization of AMA as monoclinic with space group P21/c. A Hirshfeld surface analysis was performed to record various
intermolecular interactions, indicating the stabilization of the AMA structure by the intermolecular weak C−H···O hydrogen bonds
and π···π interactions. The title compound was screened for antibacterial and antifungal activities using a serial dilution technique
under aseptic conditions. The results indicate that the title compound has significant antibacterial properties but showed no
antifungal behavior.

■ INTRODUCTION

The carboxylic anhydride series is a very diverse class of
organic compounds that serve both as a precursor for the
synthesis of esters, amides, drugs, and peptides and as a
versatile reagent for numerous reactions including free
carboxylic acids with alcohols, silyl esters, chemoselective
esterification, lactonization, and conversion of silyl esters to
lactones.1−10 A functional group in an organic acid anhydride
is highly reactive, making it rare in nature. Cantharidin, a
terpene found in many species of blister beetles, is a naturally
occurring anhydride of carboxylic acids.11 Shellfish naturally
contains maleic anhydride, which is produced by the bacteria
Streptomyces spiroverticillatus in the form of the natural
compound tautomycin.12,13

Anhydrides are compounds with two carbonyl groups
attached to the same oxygen. There are many methods for
synthesizing various symmetrical and unsymmetrical anhy-
drides in the literature.14−16 The most common anhydrides in
organic chemistry are those derived from carboxylic acids and
the dehydration of carboxylic acids in the presence of
dehydrating reagents like carbodiimides,17 thionyl chlorides,18

and isocyanates.19 In addition, the synthesis of anhydrides has
been reported by the acylation of acyl halides and anhydrides
with carboxylates.20

Carboxylic anhydrides have been used as plasticizers for
PVC and other plastics, particularly where temperature
stability is required, such as in wire and cable coatings. In
addition, these compounds possess a broad spectrum of
antimicrobial activity.21 Benzoic anhydride, which is added to
low-density polyethylene (LDPE) during film manufacture,
can control mold growth on the surface of foods such as cheese
and thus have antifungal activity.22,23 The naphthalene
tetracarboxylic dianhydrides produced as precursors for the
manufacture of naphthalenediimides (NDIs) have been
reported to have important applications in materials science
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and artificial photosynthesis.24 In the present study, we used a
known and common method to synthesize the title anhydride
compound. The structure of the compound was characterized
using elemental analyses, IR, 1H and 13C NMR spectroscopy,
single-crystal X-ray diffraction, and Hirshfeld surface analysis.
The in vitro antimicrobial activity of the title anhydride was
determined against six bacterial and two fungal species.

■ EXPERIMENTAL SECTION

Materials and Methods. The chemicals used in the
experiment were procured from commercial sources and were
not further purified. The solvents were of analytical grade. A
Stuart SMP 30 Advanced Digital Melting Point apparatus was
used to determine the melting point of the title compound. A
Bruker Vertex 80 V spectrometer was used to record FT-IR
spectra. Bruker/Ultraschilt spectrometers were used to record
1H and 13C NMR spectra. The 1H spectrum was recorded at
300 MHz and the 13C spectrum at 75 MHz. Elemental analyses
were carried out at ODUMARAL at Ordu University using an
Elementar Vario Micro Cube (Germany) elemental analyzer.
Synthesis of 3-Acetoxy-2-methylbenzoic Anhydride

(AMA). Triethylamine (2.1 mL, 15 mmol) was gradually
added to a solution of 3-acetoxy-2-methylbenzoic acid
dissolved (15 mmol) in THF (7.5 mL), followed by the
addition of 3-acetoxy-2 methylbenzoyl chloride (2.55 g, 12
mmol) dissolved in the same solvent (7.5 mL). The resultant
reaction mixture was stirred at room temperature for 12 h,
resulting in a white precipitate which was removed by
filtration. An amount of 150 mL of deionized water was
added to the resulting solution, yielding a product that was
washed with deionized water to eliminate triethylamine
hydrochloride. The product gives beautiful crystals when
crystallized in ethanol. Scheme 1 shows a pictorial
representation of the synthesis of the title compound. They
were prepared with minor modifications according to a
reported procedure.25 Yield: 3.33 g, 75%; mp 118−120 °C.
Anal. calcd for C20H18O7: C, 64.86; H, 4.90. Found C, 64.90;
H, 4.84.
Crystal Structure Determination. An appropriate crystal

of size 0.10 × 0.06 × 0.05 mm3 was selected to collect X-ray
intensity data at 296 K (λ = 0.71073 Å) with a Bruker
diffractometer equipped with Mo Kα radiation. Bruker SAINT
software was used to collect rotational mode (f and ω scanning
mode) reflectance measurements to compute cell parame-
ters.26 The integration method was used to correct for
absorption (μ = 0.08 mm−1). The crystal structure of the
compound was solved directly using SHELXT.27 The non-
hydrogen atom positional and anisotropic temperature
parameters were refined with SHELXL, using a full-matrix
least-squares method, yielding 317 crystallographic parame-
ters.28 Anisotropic refinement of the non-hydrogen atom
parameters was conducted, and a difference Fourier map was

used to determine hydrogen atom positions. Various freely
refined coordinates and Uiso(H) values were applied. Using a
threshold of I > 2σ(I) to refine the structure, Rint = 0.0647 with
2041 reflections was observed. WinGX (version 2018.3)29 and
Mercury30 software was used to plot numbers and obtain data
in tables. Table 1 lists all the refinement details for the title
compound.

Antimicrobial Activity. The antimicrobial activity of the
title compound was evaluated in in 96-well microplates using
the broth microdilution technique. The minimum inhibitory
concentration (MIC) method was employed to measure the
antimicrobial activity.31−33 The pathogenic microorganisms
tested are the Gram-positive strain (Bacillus subtilis ATCC
6633; Staphylococcus aureus ATCC 25923; Enterococcus faecalis
ATCC 29212) and Gram-negative strain (Escherichia coli
ATCC 25922; Klebsiella pneumoniae ATCC 70060; Pseudomo-

Scheme 1. Synthesis of the Title Compound

Table 1. Structure Refinement Details for AMA

CCDC 2058057
chemical formula C20H18O7

temperature (K) 296
space group P21/c
crystal system monoclinic
Mr 370.34
a, b, c (Å) 6.1033 (10), 40.920 (7), 7.8767 (14)
α, β, γ (deg) 90, 111.350 (5), 90
volume, V (Å3) 1832.2 (6)
crystal size (mm) 0.10 × 0.06 × 0.05
calculated density (Mg/m3) 1.343
F000 776
μ (mm−1) 0.10
Z 4
diffractometer Bruker APEX3 CCD
θ range (deg) 2.8 ≤ θ ≤ 25.8
wavelength (Å) 0.71073
measurement method ω scan
absorption correction multiscan
hmin, hmax −8, 8
kmin, kmax −54, 54
lmin, lmax −10, 10
Rint 0.046
reflections collected 51787
independent reflections 4571
observed reflections [I > 2σ(I)] 2041
refinement method SHELXL18/3
parameters 317
R[F2 > 2σ(F2)] 0.065
wR(F2) 0.234
GooF = S 1.07
Δρmin, Δρmax (e/Å

3) −0.31, 0.31
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nas aeruginosa ATCC 27853; Aspergillus niger ATCC 16404;
Candida albicans ATCC 1023). Dimethyl sulfoxide was used to
dilute and dissolve the compound. The stock concentration
was prepared as 2000 g/mL. All bacterial strains were cultured
in broth following a 24 h incubation period at 37 °C. The fungi
were incubated for 24 h at 28 °C and then kept in nutrient
solution. Homogenization of bacterial and fungi cells was
carried out in nutritional solution. A turbidity of approximately
106 cells/mL was achieved for bacterial and fungal suspensions.
The only controls used were inoculated broths. The wells were
filled with 100 μL each of the microorganism suspensions and
100 μL of the compound suspension to be tested. The MIC,
expressed in μg/mL, was determined by recording the growth

rate of microorganisms on the microtiter plate. Amoxicillin and
tetracycline were used as antibacterial reference standards, with
ketoconazole serving as an antifungal reference standard.

■ RESULTS AND DISCUSSION

Vibrational Frequencies. The CO stretching vibrations
were identified as distinguishing absorption bands at 1790 and
1759 cm−1 in the IR spectra. These two bands were observed
as the symmetric stretching mode at the higher frequency and
the asymmetric stretching mode at the lower frequency. For
the −CO−O−CO− system, the symmetric stretching band is
relatively weaker with the lower asymmetric stretching. The
CO stretching mode of the acetoxy groups appeared at 1721

Figure 1. IR spectrum of the title compound.

Figure 2. 1H spectrum of the compound, AMA.
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cm−1. The aromatic and aliphatic CH vibrations were observed
at 3060−2974 and 2926−2835 cm−1, respectively. The
aromatic strong ν(−C−O) stretch was detected at 1210 cm−1,
as shown in Figure 1. The stretch of the aliphatic ν(−C−O) was
noticed at 1004 cm−1. These findings are similar to those
reported previously for comparable compounds.14,34−37

1H NMR Spectrum. The 1H NMR spectrum of the title
compound was measured in deuterated chloroform. A singlet
of the methyl proton was observed at 2.52 ppm (s, 3H,
−OCOCH3) and linked to the ester carbonyl ring due to
oxygen and carbonyl groups contained in the ester carbonyl
group, whereas the methyl proton at the 2-position on the
phenyl ring was observed at 2.39 ppm (s, 3H, Ar−CH3). The
protons (H1−H3) of the phenyl rings were found at 7.95−
7.31 ppm in the title compound, as illustrated in Figure 2. The
H1 and H2 protons, which were coupled to the H3 proton and
each other, resonated as quintet peaks at 7.38−7.31 ppm (q, J
= 8.0 Hz, 2H). In addition, the H1 proton is identical to the
H1′ proton, and H2 and H3 protons are identical to H2′ and
H3′ protons. These values appear to be consistent with values
previously reported for similar compounds.14,34,35

13C NMR Spectrum. The 13C NMR spectra of the title
compound, measured in CDCl3, showed 10 distinct resonances

that are consistent with the target compound. The carbonyl
(CO) peak of the anhydride was detected at 169.06 ppm,
while the measured carbon signal due to the ester group
appeared at 162.14 ppm. The C3 aromatic carbon signal
occurred at 150.19 ppm. The existence of the carbonyl group
on the phenyl ring causes the C1 carbon signal to move
downfield and appear at 134.52 ppm. The other aromatic ring
carbons ranged from 129.67 to 126.53 ppm. The C2, C4, C5,
and C6 carbons were observed at 129.67, 127.69, 129.07, and
126.53 ppm, respectively. The signal at 20.77 ppm is attributed
to the methyl carbon linked to the ester carbonyl group
(−OCOCH3), whereas the signal at 13.58 ppm is assigned to
the methyl group bound phenyl ring, as illustrated in Figure 3.
These values agree with previously reported values for similar
compounds.14,34,35

Crystal Structure of AMA, C20H18O7. The molecular
structure of AMA with atom numbering is shown in Figure 4.
A hydrogen atom is shown as a small sphere of arbitrary radius,
and the other atoms are ellipsoids with displacement
probabilities of 30%. AMA is crystallized in a monoclinic
space group P21/c with Z = 4 (Table 1). There is an
independent molecule in the asymmetric unit. The title
compound has nearly planar molecular geometry with a

Figure 3. 13C NMR spectrum of the compound.

Figure 4. ORTEP diagram of the compound with atomic numbers.
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dihedral angle of 5.26° between the planes of the C1/C6 and
C7/C12 six-membered aromatic rings. Noncovalent inter-
actions such as hydrogen bonding, van der Waals interactions,
and π···π influence the molecular conformation. Two
intermolecular C−H···O bonds and two π···π contacts stabilize
the crystalline packing of the compound in a three-dimensional
network. Table 2 summarizes various contact lengths, angles,
and noncovalent interactions. As illustrated in Figure 5, the
intermolecular C4−H4···O2i hydrogen bonds in crystal
packing form a one-dimensional structure along the [101]
direction, whereas the C14−H14···O4ii hydrogen bond forms a
chain along the [001] direction. In addition, the π···π
interactions shown in Figure 6 also generate a chain motif
along [100]. These weak π···π interactions are Cg1···Cg2 (x +
1, y, z) = 3.8453 (7) Å and Cg2···Cg1 (x−1, y, z) = 3.8453 (7)
Å; Cg1 and Cg2 are the centroids of the C1−C6 and C7−C12
rings, respectively. The arrangements of O3 = C10−O7 and
O4 = C11−O7 groups are not planar with respect to their
carrier benzene rings (C1/C6 and C7/C12), with dihedral
angles of 15.8(4)° and 19.3(30)°, respectively. The central
anhydride moieties C1−C10−O3−O7 and C12−C11−O4−
O7 are twisted with a dihedral angle of 34.8(2)°. The torsion
angles of O3−C10−O7−C11, O4−C11−O7−C10, C2−C1−
C10−O3, and C17−C12−C11−O4 are 19.7(5)°, 23.1(5)°,
−17.2(5)°, and −20.1(5)°, respectively. It is clearly seen that
the central anhydride group is not planar with these angle
values. C−O double bond lengths are in the range of 1.184−

1.199 Å. Some selected bong lengths and angles are given in
Table 3. When compared with the recently reported phthalic
anhydride containing studies, C−O double bond lengths
appear to be in agreement with the values in this study.38,39

Hirshfeld Surface Analyses. The Hirshfeld surface was
analyzed with CrystalExplorer21 to identify various intermo-
lecular contacts in the crystal structure.40−46 The analysis of
the 3D Hirshfeld surface (HS) and 2D fingerprint plots (FPs)
were performed in order to describe the molecular structure of
AMA. The surfaces mapped over dnorm, shape index, and
curvedness were shown in Figure 7. Complementary pairs of
triangles are seen on both surfaces of the molecule, for the
shape index surface, indicating that the respective π-stacking
interactions are present in the crystal packing for the title
compound. In Figure 7, the π···π interactions for the
compound correspond to the relatively large green flat regions
on the curvedness surfaces and are evident on both sides of the
rotated molecule. Like the title compound, in the 1-acyl-
thiourea derivative recently reported, namely, 1-(2-oxo-2H-
chromene-3-carbonyl)-3-(2-methoxyphenyl)thiourea, the mol-
ecule is linked by the π···π interactions.47 Similarly, the shape
index surface has a connecting complementary pair of triangles,
and the curvedness surface has large green flat regions. This
means that the corresponding π-stacking interactions are
present in the crystal packing for the given structure. The 3D
dnorm surface is mapped to a fixed color scale from −0.1183 to
1.3829 Å, showing that the largest contribution to crystal

Table 2. Noncovalent Interactions for AMA (Å, deg)

D−H···A D−H H···A D···A D−H···A symmetry code

C4−H4···O2i 0.93 2.59 (4) 3.424 (6) 149 (3) (i) x, −y + 1/2, z − 1/2
C14−H14···O4ii 0.93 2.58 (4) 3.253 (6) 130 (3) (ii) x − 1, y, z − 1

Figure 5. A view crystal packing of AMA, showing C4−H4···O2i and C14−H14···O4ii hydrogen bonds.
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packing comes from interactions between H atoms, covering a
significant region of the entire HS (45.5%). Figure 8 shows the
fingerprint plots with two symmetrical peaks associated with
O···H interactions (29.5%), correlating with intermolecular
hydrogen bonds between C4−H4···O2i and C14−H14···O4ii.
The asymmetric contact wings of C···H with a relative
contribution of 12.4% can be seen on both sides of the
relevant plots. C···O (6.2%), C···C (4.4%), and O···O (2%) are
the less important interactions.
Energy framework analysis was performed by CrystalExplor-

er21 to obtain the intermolecular interaction energies, allowing
analysis and visualization of the three-dimensional crystal
packing to analyze and visualize the three-dimensional crystal
topology. The interaction energy is calculated using the
formula Etot = Eele + Epol + Edis + Erep (where Eele is the
electrostatic component, Epol the polarization energy, Edis the
dispersion energy, and Erep the exchange repulsion energy).
The energy framework is depicted in Figure 8. Clusters of 3.8

Figure 6. Π···π interactions in AMA shown along the [100] axis.

Table 3. Selected Geometric Parameters of AMA (Å, deg)

geometric parameters geometric parameters

bond lengths (Å) X-ray bond angles (deg) X-ray

C8−O1 1.349 (5) O1−C8−O2 121.7 (4)
C3−O1 1.411 (4) O7−C10−O3 121.6 (3)
C8−O2 1.184 (5) O7−C11−O4 121.4 (3)
C10−O3 1.199 (4) O5−C19−O6 122.0 (3)
C11−O4 1.195 (3) C3−O1−C8 118.3 (3)
C16−O5 1.409 (3) C16−O5−C19 118.1 (2)
C19−O5 1.357 (4) C1−C10−O7 111.1 (3)
C19−O6 1.196 (4) C12−C11−O7 111.2 (3)
C10−O7 1.381 (4) torsion angles (deg)
C11−O7 1.393 (4) C1−C2−C3−O1 176.4 (3)
C2−C7 1.509 (5) C14−C15−C16−O5 −176.3 (3)
C8−C9 1.499 (6) C2−C1−C10−O7 165.9 (3)
C19−C20 1.485 (5) C17−C12−C11−O7 164.3 (3)
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Å were formed around each molecule. The tube size used was
100 with a cutoff value of 5 kJ/mol. The thickness of the tube
in Figure 9 is proportional to the values of the interaction
energies. The total interaction energies are repulsion (Erep =
42.1 kJ/mol), dispersion (Edis = −160.1 kJ/mol), polarization
(Epol = −21.6 kJ/mol), electrostatics (Eele = −70 kJ/mol), and
total interaction energy (Etot = −209.6 kJ/mol). The dispersion
component contributed 63% and the electrostatic component
28% to lattice stabilization. The 9% contribution belongs to the
polarization and repulsion energies. For the compound, the
sum of dispersion energies (−160 kJ/mol) is greater than that
of electrostatic energies (−70 kJ/mol). According to the result
obtained from these calculated values, the superiority of the
dispersion energy framework over the electrostatic energy
framework is clearly seen. In this study, the dispersion energies
have a significant contribution in agreement with reported
values.48,49

Antimicrobial Activity. The in vitro antimicrobial activity
of the anhydride compound was evaluated against Gram-strain
positive and negative bacterial strains, as well as two fungal

strains. The MIC values were evaluated against Gram-positive
and Gram-negative bacteria at doses of 500−1000 μg/mL. The
tested compound exhibited excellent antibacterial activity
against S. aureus and E. faecalis in comparison to standard
amoxicillin, and it was also equally effective against K.
pneumoniae and P. aeruginosa. In addition, the title anhydride
showed less activity against B. subtilis and E. coli than standards
and showed no activity against fungi. The antimicrobial activity
of the title anhydride is given in Table 4.

■ CONCLUSIONS
A novel 3-acetoxy-2-methylbenzoic anhydride compound was
investigated by elemental analysis, FT-IR, 1H and 13C NMR
spectroscopy, and single-crystal X-ray crystallography. The X-
ray findings show that a molecule has a nearly planar shape
with an angle of 5.26° between the planes of the six-membered
aromatic rings. There are different types of noncovalent
interactions involved in creating the 3D network of the
compound. The Hirshfeld surface analysis findings suggest that
the H···H (45.5%), O···H (29.5%), and C···H (12.4%)

Figure 7. Hirshfeld surfaces dnorm, shape index, and curvedness for AMA. Molecule is shown in two orientations.

Figure 8. Two-dimensional fingerprint plots and HS for AMA.
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interactions contribute the most to crystal packing. Although
the topologies of Edis and Eele are similar in the title compound,
the dispersion energy framework makes a larger contribution
to the total energy framework. When compared to the
amoxicillin standard, AMA demonstrated remarkable anti-
bacterial activity against the Gram-positive strains S. aureus and
E. faecalis, as well as being equally efficient against the Gram-
negative strains K. pneumoniae and P. aeruginosa. However, it
showed less antimicrobial activity than standard antibiotics in
the Gram-positive B. subtilis strain and in the Gram-negative E.
coli strain but not in fungi.
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Figure 9. Energy framework diagram for (a) electrostatic (red), (b) dispersion (green), and (c) total interaction energy (blue) of AMA.

Table 4. Minimum Inhibitory Concentrations (MICs) of the AMA Compounda

minimum inhibition concentration (μg/mL)

Gram-straining-positive Gram-straining-negative Fungi

sample B. subtilis S. aureus E. faecalis E. coli K. pneumoniae P. aeruginosa A. niger C. albicans

3-acetoxy-2-methylbenzoic anhydride 1000 500 500 1000 1000 1000 - -
amoxicillin <2 >1000 >1000 32 >1000 >1000 NT NT
tetracycline <2 8 8 <2 8 4 NT NT
ketoconazole NT NT NT NT NT NT 1 2

aNT: not tested.
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