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The recent improvements in efficacy and survival of pre-clinical 
renal,1,2 islet,3,4 and cardiac5 xenotransplantation have reinvigo-
rated interest in clinical xenotransplantation. This renewed interest 
makes it essential for clinicians, regulators, and the general pub-
lic and potential patients to have a clear understanding of the risk 
represented by porcine endogenous retrovirus (PERV). PERV is a 
unique infectious risk for xenotransplantation because it is carried 
as part of the porcine genome. Unlike exogenous viruses, micro-
organisms, and parasites, PERV cannot be excluded by cesarean 
birth or the high health, intensive husbandry methods which do ex-
clude these other pathogens from designated pathogen-free (DPF) 
barrier-derived pigs. The potential risk of PERV infection for hu-
mans was first identified in 1997 when porcine PK15 cells6 and later 
NIH minipig cells7 were shown to infect human HEK293 cells in cul-
ture. Shortly after this discovery, calls were made by some8 but not 
others9 to place a moratorium on ongoing clinical xenotransplan-
tation trials. This led to a revision of FDA guidelines for xenotrans-
plantation which effectively banned the use of non-human primate 
tissues, reflecting the more serious infectious concerns that non-
human primate material presents. The renewed guidelines also re-
quired establishing procedures and assays to monitor the potential 
for PERV infection when implanting porcine tissue. Since that time, 
extensive investigation into the basic virology of PERV has occurred 
and numerous assays developed,10 much of which are discussed in 
this issue of xenotransplantation. What is clear with respect to PERV 

is that all pigs are not created equal and the circumstances of puta-
tive PERV infectivity must be considered in any discussion.

The critical concern for clinical xenotransplantation is whether the 
donor organ will be infectious to the recipient human patient, their fam-
ily or caregivers, or the general population. If transplanted cell tissues 
or organs contained cells with the retroviral properties of PK15 or were 
derived from most, but not all, minipigs,11-14 the frequency of PERV in-
fection in vitro for primary human cells is demonstrable,7,15,16 suggest-
ing at least the potential for clinical infection. Post-operative infection, 
however, may not occur even with these tissue sources as in vitro testing 
excludes the significant impact of innate and adaptive immunity at least 
some of which, such as preformed antibody and complement, will be ac-
tive even in immune-suppressed patients. If however the donor tissue is 
from a known analyzed agricultural pig strain, such as the Large White, 
Landrace, or Duroc pigs,17-20 then PERV infection of human cells, even 
under the most permissive in vitro conditions, has not resulted in produc-
tive infection. A high genetic deficiency of PERV provirus loci, estimated 
to range from 10 to 100 copies, exists between individual pigs and pig 
strains.16 Indeed, the porcine reference genome, derived from a Duroc 
pig, encodes 20 PERV sites without large deletions, but all of them are 
defective and incapable of producing a functional virus.21 The number of 
clinical xenotransplantation studies is necessarily limited, but both retro-
spective and prospective studies of patients exposed to pig tissues have 
failed to find evidence of PERV infection.22-30 It is important to recog-
nize that some PERV literature which describes both pig-to-human and 
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human-to-human PERV infection is in reference to in vitro studies, using 
known infectious cell lines, and does not represent clinical infection of 
patients. Thus, from a clinical perspective, there has never been a docu-
mented case of pig-to-human or human-to-human PERV infection.

Pigs which are not able to infect HEK293 cells or primary human 
cell in vitro appear to share certain characteristics, a reduced fre-
quency of human-tropic PERV-A and PERV-B sites, PERV sites with 
lower levels of RNA synthesis and a high frequency of sequence 
degeneracy. Pigs lacking the porcine-tropic PERV-C virus are also 
advantageous as they are incapable of producing PERV-A/C re-
combinants which exhibit a higher human tropism and replication 
rate in human cells. Animals with these characteristics can be read-
ily identified within the agricultural strain background and using 
current PCR screening and next-generation sequencing methods 
thoroughly characterized and monitored. Recently, the CRISPR/
Cas9 gene-targeting method has been applied to PERV to engineer 
deletion/insertion mutations within the viral polymerase gene.31 
This new technology further reduces the potential of PERV infec-
tion and recombination, but the frequency of karyotype anomalies 
raises new concerns of unforeseen genomic changes.32 The live 
birth of CRISP/Cas9 PERV polymerase-engineered pigs, derived 
from PERV-C-negative fibroblast with no known PERV infectivity, 
is encouraging, but further analysis of these animals is necessary 
to exclude such unanticipated genetic effects.32

A degenerate constellation of PERV sites, naturally occurring or 
engineered, does not mean that the chance of infection from these tis-
sues is zero, as recombination between different PERV sites, between 
PERV and other porcine endogenous retroviruses,33 or between PERV 
and human retroviruses could theoretically result in a functional virus, 
but if it occurred would be at low frequency34 with minimal risk in clin-
ical xenotransplantation. Selecting porcine donor tissue with fully de-
generate PERV sequences does however reduce the in vitro frequency 
of infection from these tissues and thus is expected to proportionately 
reduce the likelihood of in vivo infection. If such an event occurred, in 
vitro studies have shown that human-tropic PERV is susceptible to an-
tiviral therapies,35-37 adding a prophylactic layer of therapeutic control 
to the donor preventative considerations described above.

UNOS estimates that 20 people die each day on the transplant 
waiting list. This human loss is however an underestimate of the 
need for transplant organs as the chronic shortage of donor organs 
means that many patients who would benefit from transplantation 
are never placed on to the waiting list. In the last 20 years, a wealth 
of information on PERV and other porcine zoonotic pathogens has 
been generated resulting in the development of DPF barrier facil-
ities, assays to monitor infectious zoonotic pathogens, including 
PERV, preventative strategies to severely limit the likelihood of PERV 
infection, and identification of therapeutics to treat the potential in-
fection. While no single method can fully eliminate the theoretical 
risk that PERV presents, this matrix of preventative, monitoring, and 
therapeutic measures is a powerful rational basis to now support the 
clinical application of solid organ xenotransplantation.
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