
RESEARCH ARTICLE

Suppressed expression of miR-378 targeting gzmb in NK
cells is required to control dengue virus infection

Shuyan Liu1, Lingming Chen1, Ying Zeng2, Lulu Si1, Xiaolan Guo1, Junmei Zhou1, Danyun Fang1,
Gucheng Zeng1 and Lifang Jiang1

Dengue virus (DENV) remains a major public health threat because no vaccine or drugs are available for the prevention

and treatment of DENV infection, and the immunopathogenesis mechanisms of DENV infection are not fully understood.

Cytotoxic molecules, such as granzyme B (GrzB), may be necessary to control viral infections. However, the exact role of

GrzB during DENV infection and the mechanisms regulating GrzB expression during DENV infection are not clear. This

study found that miR-27a*, miR-30e, and miR-378 were down-regulated in DENV-infected patients, and DENV

infection in humans induced a significant up-regulation of GrzB in natural killer (NK) cells and CD81 T cells. Further

investigation indicated that NK cells, but not CD81 T cells, were the major sources of GrzB, and miR-378, but not

miR-27a* or miR-30e, suppressed GrzB expression in NK cells. Notably, we found that overexpression of miR-378 using a

miR-378 agomir in DENV-infected mice inhibited GrzB expression and promoted DENV replication. These results suggest

the critical importance of miR-378 in the regulation of GrzB expression and a protective role for GrzB in controlling

DENV replication in vivo. Therefore, this study provides a new insight into the immunopathogenesis mechanism of DENV

infection and a biological basis for the development of new therapeutic strategies to control DENV infection.
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INTRODUCTION

Dengue virus (DENV) is a positive-polarity, single-stranded

RNA virus in the mosquito-borne flavivirus family. DENV

has four infectious serotypes: DENV-1, -2, -3, and -4. DENV

infection results in clinical diseases ranging from an asympto-

matic, acute self-limiting febrile illness, such as dengue fever, to

a much more severe life-threatening form of dengue infection

that is characterized by high fever, large-scale hemorrhage,

plasma leakage, and multiple organ failure, such as dengue

hemorrhagic fever (DHF)/dengue shock syndrome (DSS).1,2

More than 50 million people annually contract DENV, which

leads to approximately 500 000 hospitalizations and 25 000

deaths, particularly children.3 Therefore, DENV remains a ser-

ious public health threat in tropical and subtropical areas.3

Unfortunately, there are no drugs or vaccines that target

DENV. Elucidation of the immunopathogenesis mechanisms

of DENV infection is critically important for the development

of anti-DENV drugs and vaccines.

DENV infection induces massive immune activation and the

production of high amounts of proinflammatory cytokines,

such as tumor necrosis factor-alpha (TNF-a) and interferon-

gamma (IFN-c), which may contribute to the immunopatho-

genesis of severe DENV infection, such as DHF/DSS.4–6

Cellular cytotoxic molecules, such as perforin and granzymes,

may also contribute to the progression of DENV infection and

the development of massive vascular leaks that lead to DHF/

DSS,7,8 particularly in secondary dengue infection with hetero-

logous serotypes.

Natural killer (NK) cells, CD81 T cells, and a few CD41 T

cells are the major sources of perforin and GrzB expression.9,10

NK cells and DENV-specific CD81 T cells are likely activated at

a very early stage during an acute DENV infection.11 These cells

produce cytokines, cytotoxic molecules, and adhesion mole-

cules11–14 and demonstrate potent cytotoxic activity,14 which

may promote the development of an efficient adaptive immune

response by CD41 T cells.15 NK cells and DENV-specific CD81
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T cells participate in either the control of viral replication

or the promotion of the immunopathogenesis that leads to

DHF/DSS.11,12,14 However, use of the perforin/GrzB pathway

by NK cells and CD81 T cells to control DENV infection or

promote the immunopathogenesis that leads to DHF/DSS is

not known. The clinical expression profiles of perforin and

GrzB and the exact regulatory mechanisms that modulate the

expression of perforin and GrzB during DENV infection are

not clear.

MicroRNAs (miRNAs) are small non-coding RNAs of ,22

nucleotides that modulate gene expression at the post-tran-

scriptional level by targeting the 39-untranslated region (39-

UTR) of mRNA for degradation or inhibiting translation.16,17

Emerging data indicate that miRNAs participate in many

physiological and pathological processes, including host–virus

interactions. For example, human miR-24 modulates highly

pathogenic H5N1 influenza A virus infection by targeting furin

mRNA, and miR-451 directly targets the YWHAZ mRNA

sequence to regulate proinflammatory cytokine responses to

influenza infection.18,19 Hepatitis C virus (HCV) infection

up-regulates human miR-373 expression to impair the JAK/

STAT pathway in hepatocytes, which directly targets JAK1 and

IFN-regulating factor 9 (IRF9).20 A recent study demonstrated

that miRNA-30e* suppressed DENV replication via pro-

motion of NF-kB-dependent IFN production.21 However,

whether and how miRNAs regulate perforin and GrzB during

DENV infection is not known. The elucidation of the mechan-

isms of miRNA regulation of perforin and GrzB is theoretically

and practically important to understand the immunopatho-

genesis mechanisms of DENV infection and develop novel

anti-viral therapeutics.

MiR-27a*, miR-30e, and miR-378 correlate with perforin

and GrzB protein expression in NK cells in cord and peripheral

blood during IL-15 or IFN-a stimulation.22,23 The present

study examined whether miR-27a*, miR-30e, and miR-378

play important roles in perforin and GrzB expression during

DENV infection and further determined the roles of perforin

and GrzB in DENV infection.

MATERIALS AND METHODS

Human subjects

DENV-infected patients and healthy controls (Healthy Ctrls)

were recruited at the First Affiliated Hospital of Sun Yat-sen

University (First Hospital of SYSU). All blood samples from

DENV-infected patients or Healthy Ctrls were collected after

obtaining informed written consent according to published

International Health Guidelines. The Ethics Committee of

First Hospital of SYSU and Zhongshan School of Medicine of

SYSU approved the study protocol. DENV-infected patients

experienced fever o5 days, pain, subcutaneous hemorrhage,

and other non-typical symptoms. Supplementary Tables S1

and S2 summarize the demographic and clinical information

of dengue patients and Healthy Ctrls enrolled in this study. All

sera samples were tested for DENV infection using a DENV-

specific NS1-antigen ELISA Kit (Wantai, Beijing, China) and

DENV serotype-specific reverse transcriptase-polymerase

chain reaction (RT-PCR) (Supplementary Figure S1).

Dengue-specific IgM/IgG antibodies in sera of Healthy Ctrls

and patients were also detected using DENV-specific IgG and

IgM capture ELISA kits (DaAn Gene, Guangzhou, China).

Statistical analysis

Statistical analyses were performed using GraphPad Prism 5.0

software (GraphPad Software, Inc, San Diego, CA, USA).

Differences between groups were evaluated using a paired

two-tailed Student’s t-test or independent samples t-test, and

p values , 0.05 were considered statistically significant.

Two-tailed Pearson correlation coefficient analysis was per-

formed using SPSS software (version 13.0, SPSS, Chicago, IL,

USA).

Details for other materials and methods are shown in

the ‘‘Supplementary Materials and Methods’’ section in

Supplementary Information: Cell culture and virus; PBMCs

separation and DENV infection; Antibodies; Assay for express-

ion levels of cell-surface and intracellular molecules; NK cell

isolation; Indirect immunofluorescence assay; Plaque-forming

assay; Real-time quantitative PCR analysis; Synthesis and

transfection of miR-378 mimic and inhibitor; Lentiviral pre-

paration and transduction; and miR-378 agomir treatment

in mice.

RESULTS

DENV infection in humans induces a significant down-

regulation of miR-378

We used miRanda and TargetScan software to predict the

sequence of miRNAs that potentially bind the 39-UTR regions

of perforin and GrzB mRNA to determine whether miRNAs

regulate the expression of these human cytotoxic molecules.

MiR-27a*, miR-30e, and miR-378 most potently targeted per-

forin and GrzB (Figure 1a), which suggests that miR-27a*,

miR-30e, and miR-378 are the primary miRNAs that regulate

perforin and GrzB expression. Previous studies suggested a role

of miR-27a*, miR-30e, and miR-378 in the regulation of per-

forin and GrzB.22,23 Therefore, we chose miR-27a*, miR-30e,

and miR-378 as targets to determine the relationship between

miRNA expression and perforin and GrzB production.

MiRNA expression in peripheral blood mononuclear cells

(PBMCs) of DENV-infected patients were evaluated using RT-

qPCR to determine whether miRNAs regulated perforin and

GrzB expression during DENV infection. The expression of

miR-27a*, miR-30e, and miR-378 was significantly down-

regulated in PBMCs of DENV2-infected patients (Figure 1b).

Therefore, DENV infection in humans induces down-regu-

lation of miR-27a*, miR-30e, and miR-378. Further analyses

suggested that miR-27a* and miR-378 simultaneously targeted

perforin and GrzB (Figure 1a), but miR-378 exhibited much

higher binding potential with the 39-UTR of GrzB compared to

the 39-UTR of perforin (Figure 1a). Therefore, we focused our

efforts on understanding the relationship between miR-378

and GrzB during DENV infection.
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DENV infection in humans induces an up-regulation of

GrzB, and NK cells are a major source of GrzB during

DENV infection

We detected GrzB expression in DENV-infected patients using

intracellular cytokine staining (ICS) and flow-cytometric ana-

lysis. Supplementary Figure S2 shows the strategy for gating

CD561 NK cells, CD81 and CD41 T cells. GrzB protein was

significantly up-regulated in total PBMCs, CD81 T cells, and

CD561 NK cells of DENV-infected patients, but the mRNA level

of GrzB in PBMCs of DENV-infected patients was not signifi-

cantly increased compared with Healthy Ctrls (Figure 2a–c;

Supplementary Figure S3). These results suggest the post-tran-

scriptional targeting of GrzB mRNA by miR-378. Consistently, a

marker for the degranulation capacity of cytotoxic lymphocytes,

CD107a, which is a lysozyme-associated membrane glycopro-

tein,24,25 was also significantly up-regulated in CD81 T cells

and NK cells of DENV-infected patients (Figure 2d). Given that

both CD561 NK cells and CD81 T cells produce appreciable

amounts of GrzB, we therefore identified which cell sup-popu-

lation was the major source of GrzB. Notably, the percentages of

CD561 NK (CD32CD561) cells in total GrzB1 PBMCs of

DENV-infected patients were much higher than the percentages

of CD31CD81 T cells (Figure 2e), which suggests that CD561

NK cells are the major source of GrzB during DENV infection.

Taken together, these results suggest that the down-regulation of

miR-378 contributes to the up-regulation of GrzB protein

expression, particularly in NK cells, but it does not influence

GrzB mRNA levels in DENV-infected patients.

We determined whether the up-regulation of GrzB in CD561

NK cells was directly mediated by the down-regulation of miR-

378 or the secondary pathological or systemic effects during

DENV infection in humans. PBMCs were successfully infected

with DENV2 in vitro (Supplementary Figure S4a–c). DENV

infection induced NK and T-cell activation (Supplementary

Figure S5a–c), and GrzB expression was significantly up-regu-

lated in CD561 NK cells, but not CD81 or CD41 T cells, at 24 h

post-infection (Figure 3a–c). Notably, both CD56dim and

CD56bright subsets of CD561 NK cells exhibited strong GrzB

expression after DENV infection, but GrzB mRNA expression

levels in isolated CD561 NK cells were not significantly increased

in the DENV-infected group (Figure 3d and e). These data sug-

gest that miR-378 may participate in the regulation of GrzB

expression at the translation level, and NK cells are a major

source of GrzB expression during DENV infection.

MiR-378 regulates GrzB expression in human NK cells

during DENV infection

Given that in vivo and in vitro DENV infection induced an up-

regulation of GrzB protein with no significant increase at the

mRNA level in PBMCs, and CD561 NK cells were the major

source of GrzB, we therefore focused on CD561 NK cells and

determined whether miR-378 regulated GrzB in NK cells. qPCR

analyses suggested that miR-378 and miR-30e, but not miR-

27a*, were significantly down-regulated in NK cells during

in vitro DENV infection (Figure 3f). We performed correlation

analyses of decreased miR-378 levels versus increased GrzB levels

in CD56dim or CD56bright subsets of NK cells with and without

DENV infection to further explore whether GrzB was specifically

regulated by miR-378 in NK cells. MiR-378 was negatively cor-

related with GrzB in NK cells during DENV infection (Figure 3g).

In contrast, miR-30e did not exhibit a significant negative
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Figure 1 miR-27a*, miR-378, and miR-30e directly target perforin and/or GrzB, which are significantly down-regulated in DENV patients.
(a) Human perforin and/or GrzB are putative targets of miR-27a*, miR-30e, and/or miR-378, as predicted by miRanda and TargetScan.
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miRNA expression using qPCR analysis. Data are representative of three independent experiments (mean 6 SD; independent samples t-test,
**p , 0.01, ***p , 0.001).
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correlation with GrzB in NK cells (Supplementary Figure S6).

Taken together, these results suggest that miR-378 is a major

regulator of GrzB expression in NK cells during DENV infection.

We determined whether miR-378 specifically regulated

GrzB expression in NK cells. Primary NK cells were isolated

from PBMCs of healthy donors, and the purity and sorting

efficiency of isolated NK cells was .90%, as measured by flow

cytometry (Figure 4a). NK cells were transfected with Cy3

fluorescein-labeled synthetic miR-378 mimics, inhibitors, con-

trol mimics, or control inhibitors. Fluorescence microscopy
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Figure 3 GrzB is negatively correlated with miR-378 in human NK cells during DENV infection. PBMCs were cultured with DENV-2 (ZS01/01
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using flow cytometry. (a) Representative flow-cytometric dot plots show the percentages of GrzB1 cells in NK (CD32CD561), CD81 (CD31CD81) T
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Overlaying flow-cytometric plots of the GrzB1 NK cells in DENV2 (red curve) and Mock (blue curve) groups at 24 h post-infection. Pooled data show
that the MFI of GrzB in NK cells is significantly increased in DENV2 cells cultured within 24 h compared to Mock cells. (c) Pooled data show that the
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miR-378 relative expression values in DENV2 cells from the expression values in Mock cells. Increased values of GrzB MFI were determined by
subtracting GrzB MFI values in Mock cells from the values in DENV2 cells. The left panel shows the correlation between GrzB and miR-378 in
CD56dim NK cells (p , 0.001), and the right panel shows the correlation between GrzB and miR-378 in CD56bright NK cells (p , 0.01). The above
representative data are from eight samples and three independent experiments (mean 6 SD; paired two-tailed Student’s t-test, *p , 0.05, ***p ,

0.001). DENV2, DENV-infected group (MOI 5); Mock, non-infected group.
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and flow-cytometric analyses confirmed that miR-378 mimics

and inhibitors were transfected in NK cells (Figure 4b and c).

qPCR analysis revealed that miR-378 expression was signifi-

cantly increased in NK cells after transfection of miR-378

mimics compared with control mimics (Figure 4d). ICS/

flow-cytometric analyses of GrzB showed that transfection of

miR-378 mimics induced a significant decrease in the MFI of

GrzB in NK cells compared with control mimics (Figure 4e).

Conversely, transfection of miR-378 inhibitors induced a sig-

nificant increase in the MFI of GrzB in NK cells compared to

control inhibitors (Figure 4e). Furthermore, we used a lenti-

viral transduction method to stably overexpress miR-378 or

inhibit intrinsic miR-378 in human primary NK cells

(Figure 4f and g). Similar decreases in the MFI of GrzB after

transduction of a lentiviral vector overexpressing miR-378 and

increases in the MFI of GrzB in NK cells after transduction of a

lentiviral vector that inhibited intrinsic miR-378 compared to

controls were observed (Figure 4h). These results collectively
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nM). (a) Representative flow-cytometric plots show the purity of sorted NK cells. (b and c) Representative flow-cytometric plots show the
transfection efficiency of miR-378 mimics and inhibitors. Numbers indicate the percentages of positive cells in each plot. (d and e) The pooled
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suggest that miR-378 regulates GrzB expression in human NK

cells during DENV infection.

Treatment of mice with an miR-378 agomir suppresses GrzB

expression and facilitates DENV replication

We observed that DENV infection induced an up-regulation of

GrzB, but whether GrzB played a protective or immunopatho-

logical role during in vivo DENV infection was not clear. MiR-

378 was a major regulator of GrzB expression in our model.

Therefore, we examined whether the overexpression of miR-

378 down-regulated GrzB expression and further induced a pro-

tective or immunopathological effect in DENV-infected mice.

Bioinformatics analyses suggested that miR-378 targeted the 39-

UTR region of mouse GrzB mRNA (Figure 5a). Furthermore,

treatment of mice with an miR-378 agomir, which induces over-

expression of miR-378 in mouse spleens and peripheral blood

(Figure 5b), significantly reduced the percentages of GrzB1 NK

cells in spleens compared to treatment with a control agomir

(Figure 5c and d). These results suggested that the overexpres-

sion of miR-378 inhibited GrzB expression in DENV-infected

mice. Notably, the down-regulation of GrzB was associated

with a significant up-regulation of viral RNA levels and M and

E gene expression of DENV2 in spleens and brains (Figure 5e

and f). The reduced expression of GrzB following miR-378

treatment was associated with increased expression of DENV

M and E transcripts, which suggests that GrzB contributes to

the control of DENV replication in vivo.

Discussion

GrzB plays an important role in the control of viral infection,

but the regulatory mechanisms involved in the release of GrzB

and the exact roles of GrzB in DENV infection are not clear.

Accumulating evidence suggests that miRNAs are important

participants in host-virus immune regulation.26–33 For

example, recent studies suggested that miR-122 facilitated

HCV replication in livers, and miR-323, miR491, miR-654
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inhibited H1N1 influenza A virus replication via binding to the

PB1 gene.34,35 However, whether and how some miRNAs play

roles in the regulation of GrzB expression in DENV-infected

patients is not clear. Whether these cytotoxic molecules,

including GrzB and perforin, play a protective role in facilitat-

ing the control of DENV replication or a detrimental role by

contributing to the immunopathogenesis of severe DENV

infection, such as DHF/DSS, is also not clear.

The present study found that miR-378 expression was signifi-

cantly down-regulated in PBMCs derived from DENV-infected

patients and DENV-infected human NK cells in vitro. We fur-

ther demonstrated that DENV infection induced an up-regu-

lation of GrzB, and miR-378 was a major regulator of GrzB

expression in NK cells. The development of an animal model

that mimics human dengue immunopathogenesis remains tech-

nically challenging, but our in vivo study in DENV-infected mice

suggested that the overexpression of miR-378, which signifi-

cantly inhibited GrzB expression, was associated with the

enhanced replication of DENV in multiple organs, including

spleens and brains, which implicates a protective potential of

GrzB against DENV infection. We found that treatment with

miR-378 agomir depressed GrzB expression in DENV-infected

mice, and depressed expression GrzB was associated with an

increased expression of DENV M and E transcripts. Therefore,

we cannot exclude the possibility that other immune factors act

synergistically with GrzB to facilitate the control of DENV rep-

lication in mice. This synergism is possible because miR-378

may target multiple mRNAs,36–38 and other studies are necessary

to confirm our findings of an association of enhanced DENV M

and E gene replications and depressed GrzB expression. GrzB

may also contribute to the control of DENV replication through

a secondary effect by triggering or regulating the expression of

other immune factors that are critical for the control of DENV

replication. Therefore, future in-depth studies are required to

further understand the roles of GrzB in DENV viral replication.

Previous studies suggested that miR-378 is involved in the

regulation of immune function and the cytotoxicity of NK cells

via regulation of GrzB expression at translation levels.23

However, the exact roles of miR-378 in host–DENV interac-

tions are not known. The present study provides an important

line of evidence to help explain the possible mechanisms of host

miRNA participation in the modulation of DENV-triggered

immune responses.

We found that DENV infection in humans induced a down-

regulation of miR-378, but the processes that result in this

down-regulation were not elucidated. Previous studies on

Type I IFN signaling offer possibilities. Recent studies sug-

gested that Type I IFN induced by DENV infection39 further

induces GrzB and perforin expression in murine NK cells,

which may be required for NK cell activation in response to

viral infection.40,41 IFN-a-activated human NK cells may

enhance GrzB expression via a down-regulation of miR-378

expression.23 Therefore, the down-regulation of miR-378 in

DENV-infected patients may be a product of DENV-induced

Type I IFN signaling, but this hypothesis requires further

investigation. However, other possible regulatory factors may

affect miR-378 expression, such as systemic or secondary

effects of DENV infection, particularly in severe DENV infec-

tion (DHF/DSS), which is characterized by large-scale hemor-

rhage, high fever and multiple organ failure. Further studies are

required to investigate the exact mechanisms underlying alter-

nations in host miRNA expression induced by DENV infection.

Notably, miR-378, as a post-transcriptional regulator, is not

merely confined to the processes of NK cell regulation; it may

also play diverse roles in regulating the activation of other

cytotoxic cellular subsets, such as CD81 T cells.23 A recent

study suggested that the up-regulation of GrzB expression

mediated by Type I IFN signaling was required for the increased

cytolytic activity of virus-specific CD81 T cells.42 We cannot

exclude the possibility that miR-378 also participates in the

regulation of GrzB expression in CD81 T cells during DENV

infection in a Type I IFN signaling-dependent manner.

A previous study demonstrated that CD107a molecule

expression was required for ex vivo antigenic re-stimulation,43

but we detected significant CD107a1 cells in PBMCs derived

from dengue patients without additional ex vivo antigenic re-

stimulation. This difference likely occurred because acute den-

gue viral infection in vivo may have provided adequate stimu-

lation, and an ex vivo antigenic re-stimulation for the

expression of CD107a was rendered unnecessary.

Taken together, the current study demonstrates the involve-

ment of miR-378 in the regulation of immune responses of

GrzB production by human NK cells during acute DENV infec-

tion. This work extends our understanding of the roles of miR-

378 in interactions between hosts and DENV and provides a

biological basis for the antiviral activities of GrzB, which are

important to improving our knowledge of dengue immuno-

pathogenesis and developing potential antiviral therapeutics.
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