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Terpenoids are a large family of natural products with remarkable diverse biological
functions, and have a wide range of applications as pharmaceuticals, flavors, pigments,
and biofuels. Synthetic biology is presenting possibilities for sustainable and efficient
production of high value-added terpenoids in engineered microbial cell factories, using
Escherichia coli and Saccharomyces cerevisiae which are identified as well-known
industrial workhorses. They also provide a promising alternative to produce non-native
terpenes on account of available genetic tools in metabolic engineering and genome
editing. In this review, we summarize the recent development in terpenoids production
by synthetic biology approaches.
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INTRODUCTION

Terpenoids, also known as terpenes or isoprenoids, are a large family of natural products. More
than 80,000 different terpenoids have been found in almost all life forms. Structural diversity of
terpenoids makes them a wide range of applications as pharmaceutical, biofuels, and flavors. The
skeletons of terpenoids are derived by condensation of multiple units of isopentenyl diphosphate
(IPP) and its isomer dimethylallyl diphosphate (DMAPP), which are naturally generated by either
mevalonate (MVA) pathway in eukaryotes and methylerythritol-phosphate (MEP) pathway in
prokaryotes and plant plastids. In addition to these natural routes, synthetic routes for non-natural
precursors have also been reported (Kang et al., 2016; Chatzivasileiou et al., 2019; Clomburg et al.,
2019). Core structures of terpenes are then post-modified by cytochromes P450s (P450s) that play
a vital role in endowing various bioactivities to terpenoids.

Production of terpenoids from natural resources may encounter technical challenges. For
instance, ginsenoside Rh2, a potent candidate for cancer therapy, is a triterpenoid saponin
derived from Panax species (Wong et al., 2015). Its content in dried Panax ginseng roots is less
than 0.01% (Wang et al., 2019). Using the synthetic biology approach in engineered yeast, the
yield of ginsenoside Rh2 has reached 2.25 g/L in fed-batch fermentation (Wang et al., 2019).
This result provides an excellent case for improving cell factories to produce plant rare natural
products. The rapid advances in synthetic biology suggest an alternative sustainable approach to
achieve the industrial scale of terpenoids production (Bian et al., 2017; Clomburg et al., 2017;
Wang et al., 2018). However, several significant challenges remain in microbial biosynthesis as
a general approach for the supply of valuable terpenoids, including (i) the biological parts for
genetic circuits construction have not been sufficiently characterized; (ii) the post-modifications
of terpenoids remains inefficient; and (iii) the toxic accumulation of intermediate products and
insufficient supply of precursors. Therefore, a platform that can provide available genetic tools and
a comprehensive understanding of its metabolism is urgently needed. In this purpose, Escherichia
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coli and Saccharomyces cerevisiae have been used as ideal
platform hosts for various creative explorations (Table 1). In
this review, we focus on recently developed strategies specific to
address challenges that in the pathway efficiencies optimization,
gene circuits construction and regulation, pathway programing,
subcellular engineering and co-culture strategy of terpenoids
biosynthesis using synthetic biology approaches.

GENETIC CIRCUITS AND DYNAMIC
CONTROL

As the basic genetic elements of biosynthetic pathways,
biological parts (e.g., promoter, terminator, ribosome-binding
site (RBS), regulatory protein, etc.) should be well-characterized
and optimized for synthetic biology. Constitutive or inducible
promoters with different strengths are always the major theme
in synthetic biology. Their efficiency are also affected by the
combination of terminators and RBS.

Comparing to constitutive promoters, inducible promoters
possess a strong capacity to start gene expression only
under specific culture conditions. For example, the glucose-
sensing promoter HXT1(PHXT 1) is strong at high glucose
concentrations and weak at low glucose concentrations. Using
glucose-responsive promoters also avoids the need for expensive
repressors or inducers (Scalcinati et al., 2012; Xie et al., 2015;
Zhao et al., 2017; Cheng et al., 2019). By using PHXT 1, the
competing gene farnesyl diphosphate synthase (ERG20) for the
consumption of precursors IPP and DMAPP was inhibited,
and the carbon flux was reallocated from the growth pathway
to the limonene synthetic pathway, and the limonene titer
reached 917.7 mg/L in fed-batch fermentation (Cheng et al.,
2019). When each of MVA pathway enzymes was transcribed
from high-expression galactose-regulated promoters (PGAL1 or
PGAL10), an amorpha-4,11-diene yield of more than 40 g/L
was resulted (Westfall et al., 2012). FPP (farnesyl diphosphate)
is the intermediate of MVA pathway, but exhibits toxicity
when it accumulates in E. coli (Martin et al., 2003). Whole-
genome transcript arrays identified an FPP-responsive promoter
answering to the accumulation of FPP (Dahl et al., 2013).
Using IPP/FPP-responsive promoter in E. coli, Shen et al. (2016)
coordinated the expression of all genes of the MVA pathway
from S. cerevisiae using the tunable intergenic regions to increase
the availability of FPP. The dynamically regulated MVA pathway
prevented the toxic accumulation of IPP/FPP, and the titer
of zeaxanthin reached 722.46 mg/L in fed-batch fermentation
(Supplementary Figure S1A). PERG1 represents an ergosterol-
sensitive promoter, was shown to restrict squalene synthase
(ERG9) expression levels efficiently (Yuan and Ching, 2015).
Callari et al. (2018) replaced the promoter regions of ERG20 and
ERG9 with PHXT 1 and PERG1 to redirect the flux from FPP and
sterols, generated a titer of 108.5 mg/L of casbene.

Clustered regularly interspaced short palindromic repeats
interference (CRISPRi) uses a catalytically-inactive Cas9 protein
(dCas9) and a single guide RNA (gRNA) to repress the expression
of targeted genes by blocking transcription (Qi et al., 2013).
Kim et al. (2016) established a dynamic regulation CRISPRi

system to coordinate the metabolic flux between cell growth and
IPP/DMAPP accumulation. An L-rhamnose-inducible promoter
was used to control the expression of dCas9. During the
production phase, L-rhamnose was removed to restore gene
expression, and the production of lycopene and α-bisabolol
increased. Lian et al. (2017) developed a CRISPR-AID system
using three orthogonal CRISPR proteins combines. When HMG1
was overexpressed, down-regulation of ERG9 and deletion of
ROX1 could significantly increase the production of β-carotene
in S. cerevisiae. These genes were chosen as the targets for
CRISPRa (transcriptional activation), CRISPRi, and CRISPRd
(gene deletion), respectively (Supplementary Figure S1B).

The modular pathway engineering group multiple genes into
modules to reduce regulatory complexities and help to unlock
the potential of the multi-gene pathway for the production
of terpenoid products (Ajikumar et al., 2010; Supplementary
Figure S1C). Keasling’s group tuned the expression of multiple
genes within operons by generating libraries of tunable intergenic
regions and balancing the expression of MVA pathway, which
resulted in a 7-fold increase in mevalonate production (Pfleger
et al., 2006). Zhang et al. (2018b) reported a multidimensional
heuristic process for astaxanthin production. Astaxanthin
biosynthesis pathway was grouped into four modules, that each
module controlled by different promoter of pre-determined
strength, and get a yield of 320 mg/L in E. coli. Through screening
of combinations of promoters and terminators, valencene
synthase expression cassette was optimized to reach a titer of
539.3 mg/L (Chen et al., 2019). When Shukal et al. (2019)
introduced viridiflorol synthase (VS) from Agrocybe aegerita
to E. coli, three T7 promoter variants were characterized for
different pathway expression, and RBS libraries that covered
a broad range of translational initiation rates were optimized.
The yield of viridiflorol was increased to 25.7 g/L in fed-
batch fermentation.

PATHWAY ENZYME DESIGN

Directed evolution and rational protein design have been used to
engineer enzymes in heterologous pathways (Eriksen et al., 2014;
Niu et al., 2018; Hong et al., 2019; Supplementary Figure S1E).
Monoterpenes are synthesized from geranyl diphosphate (GPP),
which is also the precursor for the biosynthesis of FPP. Therefore,
preventing the consumption of GPP by restricting FPP formation
is profitable to produce monoterpenes. Mendez-Perez et al.
(2017) introduced a mutation (Ser81 to Phe) in native FPP
synthase of E. coli, resulting in an enzyme that preferentially
synthesizes GPP instead of FPP, and the engineered strains
yielded 653 mg/L of 1,8-cineole and 505 mg/L of linalool,
which are 30- and 5-fold improvement, respectively. Jiang et al.
(2017) demonstrated that two essential amino acid residues Y436
and D501 located in active pocket of the key enzyme geraniol
synthase are critical for the key step of dephosphorylation.
By overexpression of truncated 3-hydroxy-3-methylglutaryl-
coenzyme reductase (tHMGR) and isopentenyl diphosphate
isomerase (IDI), the highest titer of 1.68 g/L geraniol was
achieved in fed-batch fermentation in S. cerevisiae.
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TABLE 1 | Strategies for production of various terpenoids in S. cerevisiae and E. coli

Product Strategy and features Culture conditions Titer or Improvement References

S. cerevisiae

8-hydroxygeraniol Mitochondrial compartmentalization by targeting the geraniol biosynthetic pathway to the
mitochondria

Fed-batch fermentation 227 mg/L Yee et al., 2019

Geraniol Protein structure analysis, site-directed mutation, overexpression of tHMGR and IDI Fed-batch fermentation 1.68 g/L Jiang et al., 2017

Limonene Regulation of ERG20 by PHXT1 promoter (glucose-sensitive) Fed-batch fermentation 917.7 mg/L 6-fold Cheng et al., 2019

N-degron-mediated destabilization of ERG20 Batch fermentation 76 mg/L Peng et al., 2018

Amorpha-4,11-diene Optimization of [NADPH]/[NADP+] ratios by introducing mutations into phosphofructokinase (PFK)
along with overexpression of ZWF1

Shake flasks 497 mg/L Kwak et al., 2019

Mitochondria compartmentalization by targeting the whole FPP pathway together with
Amorpha-4,11-diene synthase (ADS) into mitochondria

Shake flasks 427 mg/L Yuan and Ching, 2016

Zerumbone Regulation of ERG9 by PHXT1 promoter Fed-batch fermentation 40 mg/L Zhang et al., 2018a

Farnesene Increase the availability of acetyl-CoA by removing the native source of cytosolic acetyl-CoA
(1RHR2) and overexpressing xPK, PTA, ADA and NADH-HMGr

Fed-batch fermentation 2.24 g/L/h >130 g/L Meadows et al., 2016

Oxygenated taxanes E. coli–S. cerevisiae co-culture by dividing the synthetic pathway for the acetylated diol paclitaxel
precursor into two modules

Co-culture in bioreactor 33 mg/L Zhou et al., 2015

Nerolidol Minimizing competition for FPP by destabilizing squalene synthase, degrade ER
membrane-integrating protein.

Two-phase flask 4–5.5 g/L Peng et al., 2017

Casbene Regulation of ERG20 and ERG9 by PHXT1 and PERG1 promoters Deepwell microplate 108.5 mg/L Callari et al., 2018

Jolkinol C Optimize soluble expression of Cbsp using protein tagging strategies, codon-optimization of CYPs Milliliter plates 800 mg/L Wong et al., 2018

Carotenoid Colorimetric-based promoter strength comparison system; inducer/repressor-free sequential
control strategy by combining a modified GAL regulation system and a PHXT1-controlled squalene
synthetic pathway

Fed-batch fermentation 1156 mg/L Xie et al., 2015

Lycopene Lipid engineering; Improve triacylglycerol metabolism Fed-batch fermentation 2.37 g/L Ma et al., 2019

Scaffold-free enzyme assemblies (IDI and CrtE); Fed-batch fermentation 2.3 g/L Kang W. et al., 2019

Medicagenic acid Endoplasmic reticulum (ER) engineering; expand the ER by disrupting the phosphatidic acid
phosphatase

Tube cultures 27.1 mg/L 6-fold Arendt et al., 2017

β-Carotene Tri-functional CRISPR system combines transcriptional activation, transcriptional interference, and
gene deletion

Tube cultures 2.8-fold Lian et al., 2017

Squalene ER engineering; expand the ER by overexpressing a key ER size regulatory factor, INO2. Shake flasks 634 mg/L Kim J.E. et al., 2019

E. coli

Total monoterpenoids Non-natural route to isoprenoid biosynthesis (isoprenoid alcohol pathway/IPA) Shake flasks 0.6 g/L Clomburg et al., 2019

Pinene Adaptive laboratory evolution for improving pinene tolerance; E. coli co-culture system; whole-cell
biocatalysis

Shake flasks 166.5 mg/L Niu et al., 2018

Cell-free enzyme systems for production of monoterpenes from glucose Glass vials 14.9 g/L Korman et al., 2017

Limonene Cell-free enzyme systems Glass vials 12.5 g/L Korman et al., 2017
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Protein tagging strategies are effective means for enzyme
engineering. A truncated gene encoding casebene synthase
from Jatropha curcas with various protein tags was integrated
into a geranylgeranyl diphosphate (GGPP)-producing strain,
which yields 160 mg/L of casbene (Wong et al., 2018).
Using a small ubiquitin-like modifier (SUMO) fusion tag and
phylogenetics based mutations, ophiobolin synthase solubility
and activity were improved. The yield of sesterterpene ophiobolin
F was increased to 150.51 mg/L in E. coli (Yuan et al.,
2019). Endoplasmic reticulum-associated protein degradation
decreased cellular levels of ERG9, and increased the titer of
sesquiterpene nerolidol to 100 mg/L (Peng et al., 2017). Also,
N-degron-mediated destabilization of ERG20 improved the
production of monoterpenes of 18 mg/L linalool or 76 mg/L
limonene in S. cerevisiae (Peng et al., 2018). To decrease the
concentration of pivotal enzyme, a synthetic degradation has
been established based on Mesoplasma florum tmRNA system
(Cameron and Collins, 2014). Based on the CRISPRi and the
N-end rule for protein stability, Martínez et al. (2017) described
a genome editing approach by changing the rates of both RNA
synthesis and protein degradation. Synthetic protein scaffolds
provide precise control of metabolic flux by preventing the loss of
intermediates to diffusion or competing pathways (Dueber et al.,
2009). However, scaffolded enzyme assemblies have different
limitations, as enzymes fused in large structures may encounter a
decrease or complete loss of the activity (Jia et al., 2014). Recently,
Kang W. et al. (2019) developed a scaffold-free modular enzyme
assembly by employing a pair of short peptide tags. The GGPP
synthase and IDI were modularly assembled, which increased
carotenoid production by 5.7-folds in E. coli and yielded a titer
of 2.3 g/L lycopene in S. cerevisiae.

REPROGRAMING AND DESIGN NEW
PRECURSOR BIOSYNTHETIC
PATHWAYS

High intracellular levels of the essential intermediate IPP, may
cause growth inhibition, reduce cell viability and plasmid
instability (Martin et al., 2003; George et al., 2014, 2018). To
explore more efficient and practical terpenoids biosynthetic
pathways, non-natural pathways were developed. Kang et al.
reported an alternative IPP-bypass MVA pathway by utilizing
promiscuous activities of phosphomevalonate decarboxylase and
an E. coli endogenous phosphatase, which successfully decoupled
isopentenol production from IPP generation, and remarkably
improved isoprenol titer to 3.7 g/L in batch cultures (Kang et al.,
2016; Kang A. et al., 2019). Clomburg et al. (2019) constructed
an isoprenoid alcohol pathway (IPA) for terpenoids synthesis,
which could convert isoprenoid precursors through a minimal
number of steps, and less ATP consumption. Chatzivasileiou
et al. (2019) established an isopentenol utilization pathway (IUP)
for bioconversion of isopentenols, isoprenol, or prenol to IPP
or DMAPP. The IUP is composed of choline kinase (from
S. cerevisiae), isopentenyl phosphate kinase, and isopentenyl-
pyrophosphate delta isomerase and requires ATP as its sole
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co-factor, whereas much more straightforward than the current
MVA or MEP alternatives.

Acetyl-CoA is also the critical branch-point precursor for
terpenoids biosynthesis. However, in S. cerevisiae, acetyl-CoA
is compartmentalized that mainly derived from pyruvate in
mitochondria and fatty acids degradation in the peroxisome
(Hammer and Avalos, 2017). Meadows et al. (2016) rewired the
central carbon metabolism of S. cerevisiae to improve redox
balance and enable biosynthesis of cytosolic acetyl-CoA with a
reduced ATP requirement. The engineered strains produced 25%
more farnesene while requiring 75% less oxygen, and sustaining
stable yield for 2 weeks that reaches >130 g/L farnesene. This
system has provided a reference for all terpenoids and other
acetyl-CoA-derived compounds. Lu et al. (2019) constructed a
synthetic acetyl-CoA pathway, in which, the catalytic activity
of glycolaldehyde synthase was improved by directed evolution.
Then the acetyl-phosphate synthase was selected based on the
phylogenetic tree of PKs, which converts glycolaldehyde into
acetyl-phosphate (AcP). AcP could be used to generate acetyl-
CoA by the phosphate acetyltransferase. It is the shortest pathway
from formaldehyde to acetyl-CoA.

In S. cerevisiae, NADPH production highly depends
on the oxidative pentose phosphate pathway (Minard and
McAlister-Henn, 2005). Kwak et al. (2019) engineered mutated
phosphofructokinase (PFK) along with overexpression of
glucose-6-phosphate dehydrogenase to reduce glycolytic
metabolic fluxes, resulted in substantial increases of
[NADPH]/[NADP+] ratios. Moreover, amorpha-4,11-diene
was overproduced in S. cerevisiae achieved a titer of 497 mg/L
with a 3.7-fold increase compared to the parental strain.

SUBCELLULAR ENGINEERING AND
CELL FREE SYSTEM

Compared with cytosol, mitochondria provide a
compartmentalized environment with higher reducing redox
potential. There is a growing interest in utilizing the acetyl-
CoA pool in mitochondria for the biosynthesis of value-added
compounds. By transplanting the whole FPP pathway together
with amorpha-4,11-diene synthase into yeast mitochondria,
the yield of amorpha-4,11-diene in engineered strain reached
427 mg/L (Yuan and Ching, 2016). Yee et al. (2019) targeted the
geraniol biosynthetic pathway to the S. cerevisiae mitochondria
to protect the GPP pool from consumption by the cytosolic
ergosterol pathway. The production of geraniol in mitochondrial
was 6-fold increase compared to cytosolic producing strains
(Figure 1A). Lipid droplets (LDs) are ubiquitous organelles that
store metabolic energy in the form of neutral lipids. Ma et al.
(2019) established a lipophilic lycopene production strategy
in S. cerevisiae by using LDs accumulation. A non-oleaginous
S. cerevisiae for triacylglycerols production was combined
with their composition adjustment and LDs size regulation.
Therefore, lycopene accumulated continuously to 2.37 g/L in
5 days (Figure 1B). Expansion of the endoplasmic reticulum
(ER) could increase yeast metabolic capacity. Arendt et al.
(2017) reported that the disruption of the phosphatidic acid

phosphatase (PAH) resulted in the expansion of the ER, which
stimulated the production of triterpene biosynthesis enzymes
and increased triterpenoid and triterpene saponin accumulation.
Kim J.E. et al. (2019) engineered S. cerevisiae to expand the
ER by overexpressing a key ER size regulatory factor, INO2.
The production of squalene was increased by 71-fold, with
the titer of 634 mg/L in shake flask fermentation (Figure 1C).
Liu et al. (2020) compartmentalized yeast peroxisome as a
subcellular factory for squalene biosynthesis. Hybridization
of the cytoplasm- and peroxisome-engineered strains was
constructed, and squalene with a titer of 11.0 g/L was reached in
two-stage fed-batch fermentation (Figure 1D).

On the other hand, cell free biosynthesis (CFB) systems are
easy to use multiple enzyme pathways sourced from various
organisms, and also overcome the challenges of precursor supply
and products toxicity. The purified enzyme system and crude
cell extract system are common application forms of CFB
systems (Dudley et al., 2015; Li et al., 2018; Figure 1E). CFB
systems designed by Korman et al. (2017) converted glucose into
monoterpenes and can be self-sustaining for long periods. The
platform contains 27 enzymes and using glycolysis reconstituted
to generates both ATP, NADPH, and acetyl-CoA, resulting in the
production of 12.5 g/L limonene and 14.9 g/L pinene. In addition,
CFB systems provide great flexibility for biochemical pathways
study. Chen et al. (2017) utilized in vitro metabolic engineering
to reveal the regulatory network of a reconstituted amorpha-4,11-
diene synthetic pathway, and identified the inhibition of ATP on
both FPP synthase and amorpha-4,11-diene synthase.

CYTOCHROMES P450 AND
POST-MODIFICATIONS OF TERPENOIDS

Cytochromes P450 (P450s) play a crucial role in yielding final
terpenoid products with wide chemical diversity and bioactivities.
S. cerevisiae is a favored host for expressing P450s on account of
advanced protein expression mechanism, abundant intracellular
membranes and the inherent benefits of large-scale microbial
fermentation (Paddon et al., 2013; Gold et al., 2018; Wong
et al., 2018; Zhang et al., 2018a). It is generally deemed that the
ability to express soluble P450s in E. coli is limited. The main
challenge is the lack of an endomembrane system for attachment
of the eukaryotic P450s, as they have a helical hydrophobic
transmembrane domain containing 20–30 amino acid residues
at their N-terminal ends. Transmembrane domain truncation
and N-terminal replacement are vastly used for heterologous
expression of eukaryotic P450s. Ichinose and Wariishi (2013)
performed extensive heterologous expression of fungal P450s in
E. coli using 304 of P450 isoforms and identified N-terminal
amino acid sequences that can significantly improve chimeric
P450s expression levels. They revealed that the choice of
combinations of N-terminal and catalytic domains is critical
for high-level expression. Biggs et al. (2016) demonstrated
E. coli could be a feasible host for P450-mediated terpenoid
biosynthesis. In their study, the first module, “MEP,” was
comprised of the rate-limiting enzymes of the IPP-producing
MEP pathway. The second “cyclase” module was comprised of
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FIGURE 1 | Overview of terpenoids biosynthesis by subcellular engineering (A–D), and cell-free terpenoids biosynthesis (E). Yeast cells contain various subcellular
organelles (e.g., mitochondria, endoplasmic reticulum, etc.) which provide beneficial circumstances for different terpenoids biosynthetic pathways. Cell-free
biosynthesis systems by in vitro reconstructing the entire biosynthetic pathway is another efficient solution for terpenoid production. PDH, pyruvate dehydrogenase;
IDI, isopentenyl diphosphate isomerase; FPS, farnesyl diphosphate synthase; GES, geraniol synthase; PAH, phosphatidic acid phosphatase; ACS, acetyl-CoA
synthetase; ACL, ATP-dependent citrate lyase; ERG20, farnesyl diphosphate synthase; ERG9, squalene synthase; NADH-HMGR, NADH-specific HMG-CoA
reductase.
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taxadiene synthase (TxS) and GGPP synthase. The relatively low
expression of a five-copy plasmid with a weak promoter was
essential for P450 and CPR functionality. Besides, with reductase
partner interactions and N-terminal modifications, a record yield
of 570 mg/L of oxygenated taxanes was achieved in E. coli.

The important post-modifications of terpenoids also include
hydroxylation by P450s and glycosylation by glycosyltransferases.
Gold et al. (2018) showed a platform for the production
of steviol glucosides (SGs) in S. cerevisiae. Two P450s of
kaurene oxidase (KO) and kaurenoic acid hydroxylase (KAH)
are required in succession in the conversion of kaurene into
steviol. By optimizing the copy number modulation of KO-KAH-
CPR combinations, the conversion was maximized. Wang et al.
(2015, 2019) established a series of cell factories to produce
ginsenoside Rh2 by optimizing UDP-glycosyltransferase bioparts
expression. Combined with precursor (protopanaxadiol) supply
optimization, the titer of ginsenoside Rh2 reached 2.25 g/L in
fed-batch fermentation.

CO-CULTURE OF ENGINEERED
STRAINS

A newly approach of co-culture engineering to enhance
terpenoids production was developed. In some conditions, a
single host cell cannot provide an optimal environment for
functioning all pathway enzymes, and metabolic burdens from
overexpression of complex pathways may reduce biosynthetic
efficiency (Zhang et al., 2015; Wang et al., 2020). By dividing
the acetylated diol paclitaxel precursor synthetic route into
two modules, expressed in either S. cerevisiae or E. coli, a
stable co-culture was achieved in the bioreactor. The engineered
E. coli strain accomplishes the biosynthesis of the intermediate
taxadiene. Meanwhile, S. cerevisiae is the preferred host for
cytochrome P450 (P450s) expression, using this two-component
system, oxygenated taxanes with a titer of 33 mg/L was
overproduced (Zhou et al., 2015; Supplementary Figure 1D).
Similarly, Niu et al. (2018) constructed an E. coli - E. coli
co-culture system for pinene biosynthesis. The MEV pathway and
heterologous pathway (the GPP synthase and pinene synthase)
were engineered in different pinene tolerance E. coli strains,
respectively. The optimization of whole-cell biocatalysis, which
could separate cell growth and production phase, improved
pinene production to 166.5 mg/L.

CONCLUSION

Over the last few decades, biological engineers achieved grand
developments in synthetic biology. The enormous potential
of E. coli and S. cerevisiae as platform strains has been
confirmed with various successes. However, as synthetic biology
targets are progressively more complicated, there remain some
challenges to engineering industrial hosts because of the lack of
knowledge of complex biochemical and cellular metabolism and
its regulation. With the fast development of synthetic biology
tools such as CRISPR-Cas9, adaptive laboratory evolution (ALE)
combine with next-generation sequencing and high-throughput
screening, it promises to reach a deeper understanding of cellular
metabolism. The capacity of DNA synthesis has been made
great progressed over the past decade, and it is conventional
to synthesize the large gene cluster for terpenoids biosynthesis.
In addition, new DNA assembly methods facilitate the speedy
construction of different genetic part combinations or to
replace genetic parts in a single step. Besides, dynamic control,
compartmentalization, module design, or cell-free system are
practical methods to enhance the overall reaction efficiency of
multi-enzyme pathways.
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