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ABSTRACT Host-to-host transmission is a necessary but poorly understood aspect
of microbial pathogenesis. Herein, we screened a genomic library of mutants of the
leading respiratory pathogen Streptococcus pneumoniae generated by mariner trans-
poson mutagenesis (Tn-Seq) to identify genes contributing to its exit or shedding
from the upper respiratory tract (URT), the limiting step in the organism’s transmis-
sion in an infant mouse model. Our analysis focused on genes affecting the bacterial
surface that directly impact interactions with the host. Among the multiple factors
identified was the dlt locus, which adds D-alanine onto lipoteichoic acids (LTA) and
thereby increases Toll-like receptor 2-mediated inflammation and resistance to anti-
microbial peptides. The more robust proinflammatory response in the presence of
D-alanylation promotes secretions that facilitate pneumococcal shedding and allows
for transmission. Expression of the dlt locus is controlled by the CiaRH system, which
senses cell wall stress in response to antimicrobial activity, including in response to
lysozyme, the most abundant antimicrobial along the URT mucosa. Accordingly, in a
lysM�/� host, there was no longer an effect of the dlt locus on pneumococcal shed-
ding. Thus, our findings demonstrate how a pathogen senses the URT milieu and
then modifies its surface characteristics to take advantage of the host response for
transit to another host.

IMPORTANCE Streptococcus pneumoniae (the pneumococcus) is a common cause of
respiratory tract and invasive infection. The overall effectiveness of immunization
with the organism’s capsular polysaccharide depends on its ability to block coloniza-
tion of the upper respiratory tract and thereby prevent host-to-host transmission.
Because of the limited coverage of current pneumococcal vaccines, we carried out
an unbiased in vivo transposon mutagenesis screen to identify pneumococcal factors
other than its capsular polysaccharide that affect transmission. One such candidate
was expressed by the dlt locus, previously shown to add D-alanine onto the pneu-
mococcal lipoteichoic acid present on the bacterial cell surface. This modification
protects against host antimicrobials and augments host inflammatory responses. The
latter increases secretions and bacterial shedding from the upper respiratory tract to
allow for transmission. Thus, this study provides insight into a mechanism employed
by the pneumococcus to successfully transit from one host to another.
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Successful pathogens require the ability to transit to new hosts. Studying host-to-
host transmission within an experimental setting, however, has proven to be

problematic because of a lack of tractable, representative animal models and the
inherent complexities of the steps involved (exit from the host, transit and survival in
the environment, and establishment in a new host). As a result, we have limited
biological insight into the contributions of either bacterial or host factors in a patho-
gen’s dissemination.

Our current understanding of host-to-host transit comes mainly from epidemiolog-
ical studies that address modes of transmission (1–6). The transmission route utilized by
one of the leading bacterial pathogens, Streptococcus pneumoniae (the pneumococcus),
is via the nasal secretions of colonized individuals and requires close contact (7, 8).
Although colonization of the nasopharynx is generally considered asymptomatic (the
carrier state), under certain circumstances pneumococci can invade sterile sites within
the host, resulting in disease manifestations, including otitis media, pneumonia, sepsis,
and meningitis (8, 9). Colonization and transmission are most common among young
children, especially in crowded settings, such as day care centers, or in association with
episodes of viral upper respiratory tract infection (8, 10, 11).

Each year, approximately a million individuals succumb to infections associated with
S. pneumoniae (12, 13). For this reason, the World Health Organization has labeled S.
pneumoniae a priority pathogen, a designation that emphasizes the need for new
strategies to combat its spread (14). Due to the challenges of studying pneumococcal
transmission, most studies have focused on its disease manifestations (within-host
events), where significant advances have broadened our understanding of pneumo-
coccal pathogenesis (7). Recently, we utilized an infant mouse model to study the
biology of pneumococcal transmission (the between-host events) (15). Collectively,
these studies demonstrate that infection induces a mild acute inflammatory response
on the mucosal surfaces of the upper respiratory tract (URT) that promotes nasal
secretions and increases the numbers of pneumococci shed from colonized pups (16).
A high level of bacterial shedding is required to overcome the tight population
bottleneck observed during intralitter transit from colonized to uncolonized pups (17).

We recently showed that the two major virulence determinants of the pneumococ-
cus also contribute to its transmission among infant mice. Pneumolysin, the organism’s
sole toxin that forms pores in host membranes, facilitates transmission by enhancing
mucosal inflammation and the frequency of high-shedding events (18). We also ob-
served that certain pneumococcal capsule types are transmitted at higher rates and
that this effect is independent of the genetic background (19). This role of capsule type
correlates with its effect on shedding and the ability of the organism to escape from
entrapment from negatively charged URT mucus.

The purpose of this study was the high-throughput identification of the complete
array of pneumococcal factors that affect its transmission using the infant mouse
model. We used the technique of mariner transposon mutagenesis (Tn-Seq) to screen
a genomic transposon library to identify loci that negatively affect pneumococcal
shedding, the limiting step in its transmission (16, 17, 20). Many of the genes identified
impact the bacterial surface or host environment. In this report, we focused on one
such factor, the dlt locus, which modifies teichoic acids through D-alanylation (21, 22).
We show that the dlt locus promotes shedding and transmission by affecting URT
inflammation by altering signaling in a Toll-like receptor 2 (TLR2)-dependent manner.
Moreover, this effect of Dlt-mediated D-alanylation correlated with decreased sensitivity
to the abundant URT antimicrobial lysozyme.

RESULTS
Identification of pneumococcal genes that affect transmission of the pneumo-

coccus. To identify genes that potentially impact pneumococcal transmission, we used
mariner transposon mutagenesis (Tn-Seq) to generate a library of �16,000 random
mutants in a streptomycin-resistant derivative of strain TIGR4 (T4S) (Fig. 1A). In total, 28
pools, each containing �500 random mutants, were screened in infant mice (pups).
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Each pool (4,000 to 8,000 CFU) was inoculated intranasally (i.n.) into two 4-day-old
infant mice. Samples obtained from each of the pups were kept separate and consid-
ered biological replicates for each pool. Shedding was used as a proxy for transmission
because of the tight population bottleneck between hosts and its close correlation with

dltA dltB dltDdltC
p-value 

Shedding 0.114 0.014 0.712 0.064

TIGR4
Designation SP_2176 SP_2175 SP_2174 SP_2173

Gene 
Deletion

B.

C.

~500 Tn random
 mutants / pool 

~16K random
 transposon (Tn)
 mutant library

Age 5-9
 Days Nasal wash in

 PBS
Shedding collected 

on each day and 
pooled together

Age 9 Days

DNA isolated
 Colonization
(Output II)

DNA isolated
Shedding

 (Output I)

Pups infected i.n.
 with a pool of

 4000-8000 CFU
 at Day 4 of life

(Input)

A.

D.

6.25 12.5 250

50

100

150

Nisin (µg/ml) 

Pe
rc

en
t S

ur
vi

va
l (

%
) WT

dltB-
dlt-
dltB+

**

*

**
***

***

**

*

*

**

*
**

***

1.5 3 6
0

20

40

60

80

Bacitracin (µg/ml)

Pe
rc

en
t S

ur
vi

va
l (

%
)

***

**

*
*

**

***

**

WT
dltB-
dlt-
dltB+

FIG 1 (A) Schematic representation of the mariner transposon mutagenesis screen (Tn-Seq) carried out
in vivo in infant mice (pups). Pups at day 4 of life were infected with 4,000 to 8,000 CFU of a random
mutant pool (�500 mutants), and the bacteria shed daily from nasal secretions were collected, quanti-
fied, and pooled from days 5 to 9. DNA was isolated from the pooled samples (output I). At 9 days of age,
URT lavage fluids in PBS were obtained to quantify the colonization density and DNA isolated (output II).
(B) The genetic organization of the genes within the dlt locus of S. pneumoniae with the TIGR4
designation and their names are listed. Adjusted P values for shedding for each gene are listed, and the
solid red lines represent the gene deletions constructed for the current study. (C and D) Survival assay
using S. pneumoniae strain TIGR4 Strepr (T4S), the dltB- and dlt-negative mutants, and the corrected strain
(the dltB� strain) in the presence of various concentrations of nisin or bacitracin. Survival was quantified
by incubating serially diluted bacteria in tryptic soy broth with the indicated concentration of the
antimicrobial peptide for 3 h at 37°C in 5% CO2. Each strain was independently tested at least three times,
with statistically significant differences being calculated using the Kruskal-Wallis analysis of variance with
Dunn’s posttest. *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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the rate of transmission (15, 17–19). Shedding was quantified daily over 5 days (days 5
to 9), colonies were pooled, and DNA was isolated (output I). At day 9 of life, nasal
lavage fluid specimens were collected from the URT and placed in phosphate-buffered
saline (PBS) to determine the colonization density and DNA isolated (output II). Isolated
DNA from the outputs was used as a template for PCR amplification and addition of
unique sequence tags to distinguish the different outputs. These samples were pro-
cessed as described in detail in the Materials and Methods section. Input pools were
processed in a similar manner.

Data analysis was carried out by using TnseqDiff, which utilizes a two-step approach
in determining the conditional essentiality of a gene (the output compared to the
input) (23). To identify factors that affect shedding, genes revealed through the
TnseqDiff approach were further filtered to find candidates defective in shedding that
did not impact colonization by using an arbitrary cutoff of an adjusted P value of �0.05
for shedding and an adjusted P value of �0.05 for colonization. Using these parameters,
there were �300 candidates that negatively affected pneumococcal shedding (see
Table S1 in the supplemental material). No pneumococcal genes that positively im-
pacted shedding were identified. There were an average of �10 unique transposon
insertions per open reading frame.

As the pneumococcal surface is dynamic and interfaces with the host, further
analyses focused on candidates that modify its surface or the surrounding host envi-
ronment. This targeted approach revealed a list of 20 candidate genes (Table 1) whose
functions included (i) the biosynthesis of capsular polysaccharide, which was previously
implicated in shedding (19), (ii) adherence (pilus attachment, choline binding proteins),
and (iii) interactions with glycans in host glycoconjugates and mucus (deglycosylation
and mucin binding).

Identification and analysis of the dlt locus. A candidate of particular interest was
the gene dltB (Table 1), which forms part of the dlt locus (dltA, dltB, dltC, and dltD
[dltA-D]). The Dlt pathway modifies the anionic glycopolymer teichoic acid (TA), a
prominent surface feature of Gram-positive bacteria, by the addition of D-alanine onto
its ribitol or glycerol (in Staphylococcus aureus) backbone (21, 22, 24). In Bacillus subtilis,
inactivation of the Dlt pathway prevents D-alanylation of both lipoteichoic acid (LTA)
and wall teichoic acid (WTA) (25). D-Alanylation has the effect of decreasing the
negative charge of TAs, which could alter interactions with host factors and inflamma-
tory responses. We were intrigued by the potential role of the Dlt pathway in altering
the host inflammatory response, as our previous report demonstrated that expression
of the pneumococcal cytolysin, pneumolysin, causes an inflammatory response that
enhances shedding and transmission (18).

DltB, identified in our shedding screen, is proposed to function as a chaperone in the
secretion of the D-alanine carrier protein (DltC) (26). To confirm that the dlt locus
impacts pneumococcal shedding, we constructed a mutant with an unmarked, in-frame
deletion of dltB (the dltB-negative [ΔdltB] mutant) and also a mutant with complete
in-frame knockout of the entire dlt locus (the dltA-D-negative [ΔdltA-D] mutant)
(Fig. 1B).

Previous studies showed that D-alanylation of the TA of S. pneumoniae results in
increased resistance to cationic antimicrobial peptides (AMP), in an effect thought to be
related to the altered surface charge of D-alanylation (27). To validate the phenotype of
our constructs, we assessed resistance to the cationic AMP nisin, which has previously
been shown to be affected by dlt (27), and confirmed that interruption of the pneu-
mococcal dlt locus decreased survival in the presence of nisin (Fig. 1C). The dlt mutants
were also more sensitive to the cyclic antimicrobial peptide bacitracin. This suggests a
more general effect of Dlt-mediated cell surface modification, since bacitracin acts by
a different mechanism: the disruption of peptidoglycan biosynthesis (28) (Fig. 1D). In
the presence of both of these antimicrobials, the survival defect was specific to the dlt
locus, as correction of the genotype (producing the dltB-positive [dltB�] mutant)
restored the wild-type (WT) phenotype.
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Contribution of the dlt locus to pneumococcal shedding and transmission.
Because of day-to-day variation, shedding was measured daily (days 1 to 5 postinoc-
ulation) and values were pooled for comparison (15). Both the dltB- and dlt-negative
mutants showed reduced median shedding compared to either the corrected mutant
(the dltB� mutant) or the WT type 4 strain (Fig. 2A). These results included intralitter
comparisons of strains from pups from multiple litters to control for host and environ-
mental effects on shedding. The contribution of the dlt locus to shedding was not due
to differences in colonization density, as all the strains colonized equally well at the
conclusion of the shedding experiment at age 9 days (Fig. 2B).

Next, we determined whether the attenuated shedding seen in dlt mutants leads to
reduced transmission. Using a 1:1 ratio of pups colonized by inoculation (index pups)
to uninoculated littermates (contact pups), no transmission events were detected with
either the dltB- or dlt-negative strains that showed diminished shedding (Fig. 2C).
Importantly, transmission to levels previously reported for the WT strain was restored
by correction of the deletion in dltB (producing the dltB� strain) (15, 18). Again, all

TABLE 1 Surface-exposed or surface-acting factors in pneumococcal sheddinga

TIGR4
designation

P value
for shedding

Gene name and
description Function (reference)

SP_0112 0.019949 artP; amino acid ABC transporter Arginine ABC transporter (64)
SP_0148 0.000324 gshT; ABC transporter Predicted glutathione ABC transporter (65)
SP_0198 0.030898 Hypothetical protein Lipoprotein, putative D-stereospecific aminopeptidase (44, 45)
SP_0314 0.013614 hysA; hyaluronate lyase Surface enzyme that cleaves hyaluronan, a component of the

host extracellular matrix (66, 67)
SP_0352 0.000993 cps4G; glycosyltransferase Biosynthesis of capsular polysaccharide (68)
SP_0368 0.000004 eng; endo-alpha-N-acetylgalactosaminidase Secreted O-glycosidase that modifies host O-linked glycans (69)
SP_0391 0.001690 cbpF; choline binding protein F Modulates the autolytic function of LytC (70)
SP_0467 0.036190 srtC; sortase C Involved in covalent attachment of the pilus to the

peptidoglycan cell wall (71, 72)
SP_0614 0.016540 estA; esterase Enhances neuraminidase activity by removing acetylation from

sialic acid (73)
SP_0667 0.000046 cbpL; choline binding protein L Contributes to resistance against phagocytosis and is involved

in adhesion (74)
SP_0771 0.021157 slrA (ppiA); peptidyl-prolyl cis-trans-

isomerase, cyclophilin type
Catalyzes isomerization of proline containing tetrapeptides (75)

SP_0899 0.037124 Conserved hypothetical protein Surface-exposed lipoprotein of unknown function (76)
SP_0965 0.023346 lytB; endo-beta-N-acetylglucosaminidase Nonautolytic peptidoglycan hydrolase, acts as a

glucosaminidase and is involved in cell division cycle (77)
SP_1000 0.016753 etrx2; thioredoxin family protein Surface-exposed lipoprotein that provides oxidative stress

resistance (78)
SP_1004 0.000050 phtE; histidine triad protein Surface-exposed protein that promotes adherence to host cell

surfaces (79)
SP_1154 0.014494 zmpA; zinc metalloproteinase Cleaves human immunoglobulin A (IgA1) (80, 81)
SP_1492 0.035625 mucBP; cell wall surface anchor family

protein
Binds mucin, has a potential role in pneumococcal adherence

(82, 83)
SP_1573 0.000314 lytC; lysozyme Surface-bound lysozyme that acts as a pneumococcal cell wall

hydrolase (84)
SP_1796 0.045895 fusA (susX); carbohydrate ABC transporter,

substrate binding protein
Required for utilization of fructose oligosaccharide, uses inulin

as a carbon source (85–87)
SP_1872 0.034338 piuA; iron compound ABC transporter, iron

compound-binding protein
Lipoprotein component of iron ABC transport Piu system

(88, 89)
SP_1963 0.036813 Putative hemolysin CBS domain-containing protein with homology to putative

cytolysin proteins (64)
SP_1964 0.033659 endA; DNA entry nuclease Surface endonuclease that degrades the DNA scaffold of

neutrophil extracellular traps (NETs) (90)
SP_2084 0.041972 pstS; phosphate ABC transporter,

phosphate-binding protein
Subunit of the phosphate ABC transporter, implicated in

penicillin resistance (91, 92)
SP_2099 0.003095 pbpIB; bifunctional penicillin-binding

protein
Synthesis of peptidoglycan (transglycosylation and

transpeptidation) (93)
SP_2175 0.014521 dltB; membrane protein involved in D-

alanine export
Addition of D-alanine to teichoic acids (27)

aStreptococcus pneumoniae genes identified by mariner transposon mutagenesis (Tn-Seq) screening to be involved in pneumococcal shedding and predicted to be
either surface-exposed or surface-acting factors.
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constructs colonized pups at a high density at the conclusion of the transmission
experiment at age 14 days (Fig. 2D). Thus, we validated the initial observations from the
Tn-Seq screen and confirmed that the dlt locus does not impact colonization but is
needed for sufficient pneumococcal shedding to allow for host-to-host transmission.

Because expression of the pneumolysin toxin (Ply) also increases shedding and
transmission (18), we examined whether the dlt locus had an additive effect with Ply.
The dlt- and ply-negative double mutant showed low median shedding that was
indistinguishable from that of the dlt-negative single mutant (Fig. 2A). The major effect
of the loss of ply, however, was fewer high-shedding events (�300 CFU) rather than
altered median shedding (18). The proportion of high-shedding events was significantly
lower for the dlt- and ply-negative double mutant than for the dlt-negative single
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FIG 2 The dlt locus affects pneumococcal shedding and transmission without impacting colonization.
(A) Pups were challenged i.n. at 4 days of age with the indicated construct, and bacteria shed daily from
nasal secretions were collected and quantified from days 5 to 9. Median values are indicated, and each
symbol represents the number of CFU measured from a single pup. The dotted horizontal line represents
the 300-CFU threshold described in Results. The dashed vertical line separates the intralitter comparisons
of two pneumococcal strains. Data are for 6 to 10 pups per group. (B) Colonization density of each
pneumococcal construct in cultures of URT lavage fluids obtained from pups at 9 days of age. Median
values are shown. (C) Summary of the rate of transmission of dlt locus mutants and the corrected strain
(the dltB� mutant) from colonized index pups at the age of 4 days to naive contact pups in the same
litter. The transmission rate was determined by the number of contact pups (at a 1:1 ratio to index mice)
colonized by S. pneumoniae at the age of 14 days. Data for the WT are historic data (15). dlt locus mutants
were compared to the dltB� group by using Fisher’s exact test. (D) Colonization density of each
pneumococcal dlt construct tested for transmission (index mice) in cultures of URT lavage fluids obtained
from pups at 14 day of age. *, P � 0.05; **, P � 0.01; ****, P � 0.0001, n.s, not significant.
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mutant, suggesting that the toxin and D-alanylation may act through different path-
ways to induce shedding.

Role of D-alanylation in URT inflammation. In vitro studies have shown that LTA,
once it is released after bacteriolysis, triggers an inflammatory response via recognition
by the pathogen recognition receptor Toll-like-receptor 2 (TLR2) (29–31) and that
D-alanylation of pneumococcal LTA augments TLR2-mediated inflammation (31, 32).
Therefore, we postulated that disruption of the dlt locus might impact shedding by
dampening the proinflammatory responses of the URT during colonization. As pre-
dicted, at age 7 days (2 days postchallenge), the numbers of neutrophils (CD45�,
Ly6G�, and CD11b� events) detected by flow cytometry of the nasal lavage fluid
specimens from infant mice infected with the dltB-negative mutant were reduced
compared to the numbers for infant mice infected with the WT strain (Fig. 3A).
Additionally, there was decreased URT transcription of the chemokine CXCL-2, which
stimulates neutrophil recruitment, and the proinflammatory cytokine interleukin-1�

(IL-1�) in the lavage fluid specimens obtained from infant mice colonized with the
dltB-negative mutant (Fig. 3B). The observed differences in the inflammatory response
were not due to differences in colonization density, as both strains colonized to a high
density at this earlier time point (Fig. 3C). Thus, our in vivo data correlated with the
findings of the in vitro studies linking D-alanylation to increased inflammation and
provided further evidence correlating inflammation and shedding.

The effect of D-alanylation of LTA on shedding requires signaling through
TLR2. Next, we examined if the increased inflammation observed with strains express-
ing D-alanylated TAs was due to increased TLR2-mediated signaling, as suggested by
the in vitro studies.

We previously reported that tlr2�/� pups show decreased URT inflammation and
reduced shedding (18). The difference in median shedding between mice infected with
the dlt-negative mutant and mice infected with its parent strain, as noted in WT mice,
was no longer observed in tlr2�/� infants, and both strains colonized the knockout
mice at equivalent densities (Fig. 4A and B). Moreover, in tlr2�/� mice infected with the
dlt-negative mutant or its parent strain, there was no difference in neutrophil numbers
or the transcript levels of chemokines/cytokines upregulated by the presence of dlt
(Fig. 4C and D). Together, our in vivo data suggest that D-alanylation of LTA increases
inflammation in a TLR2-depentent manner and that this increased host response drives
pneumococcal shedding.

Lysozyme treatment leads to upregulation of the dlt locus. Lysozyme, an
antimicrobial enzyme that functions by degrading the bacterial peptidoglycan back-
bone, is one of the most abundant antimicrobial proteins present on the mucosal
surface of the URT (33). To evade lysis by the high concentration of lysozyme in its URT
niche, S. pneumoniae, like other mucosal pathogens, must modify its cell wall (34). The
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FIG 3 The absence of D-alanylation (dltB negative) leads to reduced URT inflammation. (A) Number of
neutrophils determined by flow cytometry (CD45�, CD11b�, and Ly6G� events) in URT lavage fluids
obtained from WT (T4S)-inoculated or isogenic dltB-negative construct-inoculated pups at age 7 days.
Values are �SEM (n � 8 to 11). (B) Gene expression in pups colonized with the dltB-negative mutant
relative to that in WT strain-inoculated pups at age 7 days, as measured by qRT-PCR, for the chemokine/
cytokine shown. Values are �SEM (n � 10). (C) Colonization density in URT lavage fluids obtained at age
7 days, with the median values being shown. *, P � 0.05; n.s, not significant.
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dlt locus has been reported to confer resistance against lysozyme in diverse bacterial
species, such as Bacillus subtilis, Clostridium difficile, and Enterococcus faecalis (26,
35–37). As the Dlt pathway modifies TA, we hypothesized that it might also contribute
to the resistance of S. pneumoniae against lysozyme-mediated killing, as observed for
bacitracin, another antimicrobial that targets peptidoglycan (Fig. 1D). In the presence
of physiologic concentrations of lysozyme in the URT (33), the WT strain was resistant
to its lytic effects, but survival was reduced when the dlt locus was disrupted (Fig. 5A).
Restoration of the intact dlt locus (producing the dltB� strain) led to WT levels of
survival.

It has been suggested that in response to AMPs the CiaRH two-component regu-
latory system, present in different streptococcal species, upregulates expression of the
dlt locus (38). Therefore, we examined whether the cell wall stress caused by lysozyme
would also lead to Dlt pathway upregulation. As shown in Fig. 5B, we observed a 2-fold
induction of the dlt locus, as evidenced by an increase in dltA transcript levels, that was
dependent on CiaRH, since for a ciaRH-negative mutant treated with lysozyme, there
was no upregulation of dltA expression. Our finding suggests that CiaRH-mediated
sensing of cell wall perturbation by lysozyme upregulates the Dlt pathway. We then
determined whether the contribution of the dlt locus required lysozyme by the use of
lysM�/� mice, which lack the enzyme in URT secretions. In the absence of the cell wall
stress from lysozyme, when our study predicts that expression of the dlt locus would
not be upregulated, shedding was lower than that in WT mice and there was no longer
an effect of the dlt locus (Fig. 5C). Deletion of the dlt locus or the lack of lysozyme had
no effect on the colonization density (Fig. 5D).

DISCUSSION

The long-term goal of this project is to provide a thorough understanding of the
biology of pneumococcal transmission. Widespread immunization of children with the
pneumococcal conjugate vaccine (PCV) since 2000 has led to a dramatic reduction in
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FIG 4 The pneumococcal dlt locus is epistatic to the host pattern recognition receptor TLR2. (A)
Congenic tlr2�/� pups were colonized at age 4 days with the WT strain (T4S) or with its isogenic
dlt-negative construct. Daily shedding in nasal secretions was quantified from ages 5 to 9 days, with the
median values being indicated and with each symbol representing the number of CFU observed from a
single pup on a single day. Data are for 8 pups per group. (B) Colonization density in URT lavage fluids
obtained at age 9 days, with the median value being shown. (C) Number of neutrophils determined by
flow cytometry (CD45�, CD11b�, and Ly6G� events) in URT lavage fluids obtained from tlr2�/� pups
inoculated with either the WT strain (T4S) or its isogenic dlt-negative construct at age 7 days. Values are
�SEM (n � 8 to 11 pups/group). (D) Gene expression in colonized tlr2�/� pups infected with the
dlt-negative construct relative to those infected with the WT (T4S) at age 7 days, as measured by qRT-PCR
for the chemokine/cytokine shown. Values are �SEM (n � 8). n.s, not significant.
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invasive pneumococcal disease, including for unimmunized groups, such as adults and
the elderly (39, 40). This indirect protection, or herd immunity, which accounts for most
of the overall efficacy of PCV, has been attributed to reduced carriage and transmission
within the community (41, 42). PCV, however, is based on capsular polysaccharide and
targets only a limited number of the �95 known serotypes (43). A more comprehensive
understanding of pneumococcal surface factors contributing to its transmission, there-
fore, could yield novel targets that could broaden and make more effective prevention
strategies through immunization.

In the current study, we used a genomic approach to identify pneumococcal genes
affecting the exit of the pneumococcus from the colonized host (i.e., shedding) through
nasal secretions using an infant mouse model. The function and the role of a large
proportion of pneumococcal genes in transmission remain to be determined. Shedding
was used as a proxy for transmission because of the tight population bottleneck during
transmission (17). It was necessary to focus on shedding, an earlier event that is the
limiting step in host-to-host transit (15, 17–19). We validated this approach by con-
firming that pneumococci carrying one of the hits from the Tn-Seq screen, the dlt locus,
that showed reduced shedding were also attenuated in transmission among infant
mice. Besides confirming the effects of the dlt locus, to date we have validated the
effects of two other hits listed in Table 1, SP_1963 (annotated as a putative hemolysin)
and SP_1964 (endonuclease; endA). Pneumococci carrying both were confirmed to
have a defect in shedding, but they did not impact colonization density. Prior studies
using in vitro or in vivo or screens of random pneumococcal transposon mutants have
been used to identify essential genes or within-host factors (virulence factors), whereas
our in vivo screen is the first to examine factors involved in between-host events
(44–47).
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FIG 5 D-Alanylation of pneumococcal lipoteichoic acids provides protection against host lysozyme. (A)
Lysozyme survival assay using S. pneumoniae strain TIGR4 (T4S), the dltB- and dlt-negative mutants, and
the corrected strain (the dltB� strain). Survival was quantified by incubating serially diluted bacteria in
tryptic soy broth with 1.0 mg/ml of chicken egg lysozyme for 3 h at 37°C in 5% CO2. Each strain was
independently tested at least three times. (B) Gene expression of dltA for pneumococcal strains treated
with or without lysozyme for 60 min in tryptic soy broth at 37°C, as measured by qRT-PCR. (C) Congenic
lysM�/� pups were colonized at age 4 days with the WT strain (T4S) or with its isogenic dlt-negative
construct using intralitter comparisons. Daily shedding in nasal secretions was quantified from ages 5 to
9 days, with median values being indicated and with each symbol representing the number of CFU
observed from a single pup on a single day. Data are for 4 to 5 pups per group. (D) Colonization density
in URT lavage fluids obtained at age 9 days, with the median value being shown. *, P � 0.05; **, P � 0.01;
n.s, not significant.
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There are several important caveats to the approach used in our genomic screen.
First, we identified over 300 genes that impact pneumococcal shedding, suggesting
that �15% of all nonessential TIGR4 genes significantly affect its shedding (output I)
and not its colonization (output II). One reason that our screen identified such a high
number of genes affecting shedding could be the less stringent cutoff (P � 0.05) used
because shedding is an inherently variable readout. Additionally, our screen was carried
out with a single highly annotated pneumococcal strain (TIGR4), although pneumo-
coccal isolates show marked differences in genome content and transmissibility (19,
48–50). Moreover, mice are not a natural host for the pneumococcus, even though the
infant mouse model recapitulates many of the key features of human contagion (need
for close contact, increased rate during viral coinfection and among infants). It is also
likely that random transposon insertions might only partially abrogate the function of
a gene or lead to polar effects, and TnseqDiff accounts only for inserts that occur within
coding regions. Finally, trans-acting factors, such as the effect of ply on inflammation,
could be obscured when screening large pools of mutants. This could explain why the
effect of the loss of dlt appeared to be greater for the constructs (the dltB- and
dlt-negative constructs) tested individually than for the transposon mutant pools.

Taking into account the dynamic nature of the pneumococcal surface and its
interactions with the host, we focused on factors that attenuate shedding, thereby
reducing transmission, by modifying its surface. This led us to further characterize the
dlt locus, since pneumococcal LTA triggers a strong TLR2-dependent response that is
partially dependent upon its D-alanylation via the Dlt pathway (29–32). Our findings
confirmed that mutants disrupting the Dlt pathway showed reduced shedding, a defect
that correlated with reduced levels of acute inflammation, with sensing by TLR2
mediating the inflammatory signal. URT inflammation increases the production of
mucins, including the major secretory mucin Muc5ac, and the volume of nasal secre-
tions that drive pneumococcal shedding (16). The mechanism of how D-alanylated LTA
contributes to recognition through host pattern recognition receptors remains to be
determined. In this regard, there remains controversy as to the contribution of TLR2-
mediated sensing of LTA. Work by Kang et al. showed that LTA can bind to the TLR2
extracellular domain but not cause heterodimerization (51). This work, however, used
only the soluble domains, and the authors suggest that their findings do not exclude
the possibility that LTA may induce the dimerization of full-length TLR2 with TLR1 or
TLR6 under membrane-attached conditions. Furthermore, Gisch et al. showed that with
lipid-free LTA (through hydrogen peroxide treatment or the use of a mutant defective
in lipidation of the prelipoproteins [a Δlgt mutant]), IL-8 production in vitro was
abolished, suggesting that the lipid moiety is important for signaling (52). This report
also suggested that lipopeptide-free LTA still had an immunostimulatory effect in
human mononuclear cells, supporting the suggestion that the lipid moiety in LTA may
still be important for sensing, possibly via TLR2 recognition, an observation consistent
with our findings. On the other hand, in Staphylococcus aureus, D-alanine modification
of LTA, which is structurally distinct from that of S. pneumoniae, did not similarly affect
inflammatory responses (53). It is also possible that the dlt locus affects the release of
lipoproteins in response to antimicrobial activity, with subsequent sensing via TLR2.

Our previous study demonstrated the importance of TLR2-mediated sensing and the
pneumolysin toxin in inflammation, shedding, and transmission but did not establish a
link between these pathways. The dlt-dependent effects observed in the current study
are epistatic to TLR2 sensing but independent of pneumolysin (Fig. 2A). These results
suggest that there is more than a single type of inflammatory response to pneumo-
coccal colonization that affects bacterial shedding and transmission. Furthermore, ply
was not identified in the screen because transposon mutations in this gene affected
both shedding and colonization. Since we previously showed that mutants with a
nonpolar ply in-frame clean deletion have a shedding defect that does not impact
colonization, it is possible that the transposon insertions in ply have polar effects.
Consistent with our previous findings that link shedding levels with the transmission
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rate, we observed that reduced shedding in the absence of a functional dlt locus results
in a complete loss of transmission.

Another effect of Dlt-mediated D-alanylation of LTA observed in our study was
increased resistance to the antimicrobial actions of lysozyme. This result adds to the list
of pneumococcal enzymes, including pgdA and adr, that modify the pneumococcus cell
surface to evade lysis by this highly abundant host factor found in URT secretions (34,
54–56). Our findings obtained with bacitracin, which hinders peptidoglycan biosynthe-
sis, and lysozyme, which cleaves the peptidoglycan backbone, show that the reduced
surface charge by D-alanylation acts in a manner that aids in protecting the pneumo-
coccus against both cationic AMPs and other agents that perturb the integrity of the
cell surface. A recent report on group B streptococcus suggests that D-alanylation
increases the cell wall density by changing the conformation of the LTA in a manner
that can limit penetration by AMPs and, thus, increase resistance and survival (57).
Furthermore, during treatment with physiological levels of lysozyme, there is a CiaRH-
dependent upregulation in expression of the Dlt pathway, suggesting a programmed
response to cell wall stress. It appears that when targeted by antimicrobial peptides/
proteins, such as lysozyme, pneumococci increase D-alanylation of LTA, which enhances
TLR2-mediated inflammation. This increased URT inflammation in turn facilitates in-
creased shedding to allow for exit of the organism to establish itself in a new, more
hospitable host. Thus, our study demonstrates that the pneumococcus is a highly
adaptable pathogen capable of modifying its cell surface in response to the host
environment to promote both its survival and its dissemination.

MATERIALS AND METHODS
Ethics statement. This study was conducted according to the guidelines outlined by National

Science Foundation animal welfare requirements and the Public Health Service Policy on Humane Care and
Use of Laboratory Animals (58). The New York University Medical Center IACUC oversees the welfare,
well-being, and proper care and use of all vertebrate animals.

Growth conditions and strain construction. Pneumococcal strains were grown statically in tryptic
soy (TS) broth (Becton, Dickinson [BD]) at 37°C. Upon reaching the desired optical density at 620 nm
(OD620), cells were washed and diluted in sterile phosphate-buffered saline (PBS) for inoculation. For
quantitative culture, serial dilutions were plated on TS agar-streptomycin (200 �g/ml) supplemented
with either 5% sheep blood or catalase (6,300 U/plate; Worthington Biochemical Corporation) and
incubated overnight at 37°C with 5% CO2. A streptomycin-resistant derivative of the type 4 strain TIGR4
(T4S), P2406, was used throughout the study (15).

The dltB knockout strain was constructed in a two-step process using the Janus cassette (59). In the
first step, the Janus cassette was amplified from genomic DNA, obtained using a MasterPure DNA
purification kit (Epicentre/Lucigen), from strain P2408 (60), with flanking regions (�1 kb) upstream and
downstream of the dltB gene added via isothermal assembly. Strain P2406 was then transformed with the
PCR product, and the transformants were selected on TS agar-kanamycin (125 �g/ml) plates. A PCR-
confirmed mutant, P2552 (dltB::Janus Kanr Streps), was selected to make an in-frame deletion. The mutant
was transformed with a PCR product using primers F1-dltB/R7-dltB and F8-dltB/R6-dltB and genomic DNA
obtained from P2406 and selected on TS agar-streptomycin (200 �g/ml) to generate strain P2555 (ΔdltB
Strepr Kans). The in-frame knockout strain (the ΔdltB strain) has a scar containing the first and the last
5-amino-acid coding sequences of the dltB gene.

The corrected mutant, P2556 (the dltB� mutant), was constructed by transforming strain P2552 with
a PCR product generated using primers F1-dltB and R6-dltB to amplify genomic DNA from strain P2406,
and the transformants were selected on TS agar-streptomycin (200 �g/ml). The dlt locus knockout
mutant was constructed as described above, with the primers used being listed in Table S2 in the
supplemental material. Neither the dltB- nor dlt-negative mutant constructs showed a growth defect in
nutrient medium.

The ciaRH knockout strain P2597 (ciaRH::erm) was constructed by transforming genomic DNA
obtained from an isolate with a ciaRH::erm cassette into P2406 (15). The resulting transformants were
selected on TS agar plates supplemented with erythromycin (2 �g/ml) and 5% blood. A second
back-transformation was carried out in P2406 with genomic DNA obtained from one of the transfor-
mants, and isolates were selected on plates as described above to generate strain P2597 (ciaRH::erm Ermr

Strepr).
Shedding and colonization in infant mice. WT, tlr2�/�, and lysM�/� C57BL/6J mice were obtained

from The Jackson Laboratory (Bar Harbor, ME) and bred and maintained in our conventional animal
facility at the NYU Langone Medical Center. The pups were housed with their dam (mother) for the
duration of the experiment and gained weight like uninfected animals.

At day 4 of life, the pups were given an intranasal (i.n.) inoculation, without anesthesia, containing
�2,000 CFU of S. pneumoniae suspended in 3 �l of PBS, as described previously (15, 16). Shedding was
quantified by gently tapping the nares (20 taps/pup) on a TS agar plate supplemented with streptomycin
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(200 �g/ml) or kanamycin (125 �g/ml) to prevent the growth of contaminants, followed by spreading of
the secretions over the agar surface with a sterile cotton-tipped swab. Because of the day-to-day
variability in the numbers of shed bacteria, values were obtained daily for 5 days and pooled. To control
for environment effects, shedding of different strains was compared for pups within the same litter. To
measure colonization density, we euthanized the pups at the ages indicated below by CO2 asphyxiation,
followed by cardiac puncture. The upper respiratory tract (URT) was lavaged with 200 �l of sterile PBS
from a needle inserted into the trachea, and fluid was collected from the nares. The limit of detection in
lavage fluids was 33 CFU/ml.

Transmission in infant mice. The pneumococcal monoinfection transmission model was described
in previous studies (15). Briefly, half of the pups in a litter were randomly selected and, at day 4 of life,
infected with the S. pneumoniae strain indicated above. These index mice were then returned to the dam
and the other uninfected pups (contact mice) and cohoused for 10 days postinfection. To detect bacterial
transmission from the index pups to the contact pups, all pups were euthanized at the age of 14 days,
and nasal lavage fluid specimens were cultured.

Transposon library preparation and in vivo selection. Library construction using the mariner
transposon was carried out as previously described (20) with slight modifications. Briefly, 28 independent
libraries were generated, with each library containing �500 mutants with transposon insertion muta-
tions in nonessential genes. On a given day, a transposon pool was thawed and grown at 37°C, and two
4-day-old pups (biological replicates) were inoculated i.n. with 4,000 to 8,000 CFU of transposon mutants,
such that each pup received an �10-fold excess of the random mutants (input). Pilot experiments with
various inocula confirmed an infectious dose of �10 CFU and the lack of a population bottleneck (the
systematic loss of clones) when pups were colonized as described above (data not shown).

After infection, pneumococcal shedding over 5 days was carried out as described above. After shed
pneumococci were quantified, colonies were removed with a swab, transferred to 2 ml of TS broth, and
incubated at 37°C for an hour, before adding glycerol at a final concentration 20% for storage at �80°C
until further processing. Shedding for the two biological replicates was kept separate and was carried out
over 5 days. Afterwards, shed bacteria collected over all 5 days (�3,000 total CFU) were pooled and
pelleted by centrifugation at 4,300 	 g for 10 min. Genomic DNA was isolated as described above, and
samples were sequenced as described previously (20) (output I). A cleanup step was added to the ligation
mixture to remove excess adaptor using AMPure XP beads (Beckman Coulter), before using PCR to
amplify the transposon insertion site.

At day 9 of life, pups infected with S. pneumoniae transposon library mutants were sacrificed and
nasal lavage specimens were collected in a 200-�l volume as described above. Ten microliters was used
to determine the colonization density, and the remainder of the lavage fluid was plated on TS
agar-streptomycin (200 �g/ml) supplemented with catalase and incubated overnight at 37°C. On the
next day, the colonies were collected by swabbing and transferred to 5 ml sterile PBS (output II). Genomic
DNA was isolated, and samples were prepared as described above.

Sequencing and bioinformatics analysis. Transposon junction DNA fragments were subjected to
single-end 50-rapid-run sequencing on an Illumina HiSeq 2500 instrument (Illumina, San Diego, CA). The
resulting reads were filtered, mapped, and normalized as described previously (61). Briefly, raw sequenc-
ing reads were searched for the transposon sequence ACAGGTTG, and the reads without this sequence
were discarded. The FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) was used to debarcode the
reads based on the barcode sequences at the 5= ends, and the reads that became shorter than 12 bp after
barcode trimming were discarded. The debarcoded reads were then processed using an IN-Seq pipeline
as published previously (61). Specifically, reads were aligned to the S. pneumoniae TIGR4 reference
genome using the Bowtie program (62), and insertion sites were called for each sample based on the
alignment counts. Only uniquely mapped reads with no more than one mismatch were used. Insertion
sites within 80% of the gene length from the transcription start sites were treated as candidates that
could affect gene functions. Finally, TnseqDiff (23) was used to compare the insertions between output
and input samples to identify genes potentially essential under different conditions. Comparison was
carried out for the following groups: input versus shedding and input versus nasal lavage.

Antimicrobial sensitivity assay. Stocks of nisin (catalog number M5764-1G; Sigma) were prepared
in 0.05% acetic acid (10 mg/ml), stocks of bacitracin (catalog number B5150-250KU; Sigma) were
prepared in 1 M HCl (50 mg/ml), and stocks of hen egg white lysozyme (Roche) were prepared in distilled
water (20 mg/ml). To determine susceptibility to these antimicrobial peptides, strains were grown in TS
broth to mid-log phase and diluted 200-fold in a microtiter plate containing a 2-fold concentration
gradient of either nisin or bacitracin, with the final volume being 200 �l. The plate was incubated at 37°C
in 5% CO2 for 3 h, after which serial dilutions were plated on TS agar plates and incubated at 37°C in 5%
CO2 overnight. Percent survival was calculated by counting the number of CFU at various concentrations
of the antimicrobial peptide versus that for the vehicle control. Each experiment was repeated at least
4 times.

To test sensitivity to lysozyme, strains were grown as mentioned above and diluted 200-fold in a
microtiter plate containing either 500 or 1,000 �g/ml lysozyme, with the final volume being 200 �l.
Incubation, serial dilutions, and calculation of percent survival were as described above.

Flow cytometry. Neutrophils present in the nasopharynx were quantified as previously described
(18). Briefly, nasal lavage samples from individual pups were pelleted by centrifugation at 500 	 g for
5 min. Samples were resuspended in 50 �l ACK lysis buffer (Thermo Fisher Scientific) and incubated for
5 min at room temperature. Afterwards, 200 �l of PBS was added to the samples, and cells were pelleted
as described above and resuspended in PBS containing 1% bovine serum albumin (BSA). Samples were
stained with a LIVE/DEAD Fixable Aqua dead cell stain kit (Invitrogen, Thermo Fisher Scientific). Next,
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samples were blocked with a 1:200 dilution of a rat anti-mouse CD16/32 (clone 93; BioLegend). Cells were
stained for 30 min at 4°C with fluorophore-conjugated antibodies (diluted 1:150) against the following
surface markers: CD11b-V450 (BD), Ly6G-peridinin chlorophyll protein (PerCP)-Cy5.5 (BD), and CD45-
allophycocyanin (APC)-Cy7 (BD). Samples were run on a BD LSR II flow cytometer and analyzed with BD
FACSDiva software.

qRT-PCR. The upper respiratory tract of the pups was lavaged using RLT lysis buffer (Qiagen) to
obtain RNA from the epithelium. Total RNA and cDNA generation was carried out as previously described
(60). Quantitative reverse transcription-PCRs (qRT-PCRs) were performed using Power SYBR green master
mix (Applied Biosystems), �10 ng cDNA, and 0.5 mM primers per reaction mixture. Samples were run in
duplicate, and each experiment run was repeated. Samples were run on a CFX384 Touch real-time PCR
detection system (Bio-Rad). Primers directed toward the GAPDH (glyceraldehyde-3-phosphate dehydro-
genase) gene were used as an internal control. RNA expression was quantified using the ΔΔCT threshold
cycle (CT) method. The primers used in this study were previously described (60, 63).

To determine the dltA transcript level upon treatment with lysozyme, the bacterial strains were grown in
TS broth at 37°C until they reached mid-log phase (OD620 � 0.5), back-diluted 4-fold in fresh TS broth
containing either 1 mg/ml lysozyme or water (mock treatment), and grown statically again at 37°C for 1 h.
Afterwards, the cultures were spun down at 4°C at 4,300 	 g for 10 min. Samples were treated with
RNAprotect Bacteria Reagent (Qiagen), and RNA was isolated using an AllPrep bacterial DNA/RNA/protein kit
(Qiagen) following the manufacturer’s protocol. cDNA and qRT-PCR were carried out as described above using
a primer set against dltA and a primer set against DNA gyrase (gyr) as an internal control.

Statistical analysis. All statistical analyses were performed using GraphPad Prism (version 7.0)
software (GraphPad Software, Inc., San Diego, CA). Unless otherwise specified, differences were deter-
mined using the Mann-Whitney U test (comparing two groups) or the Kruskal-Wallis test with Dunn’s
postanalysis (comparing multiple groups).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.01032-19.
TABLE S1, XLSX file, 0.04 MB.
TABLE S2, DOCX file, 0.01 MB.
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