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Abstract: Interleukin (IL)-18 was originally discovered as a factor that enhanced IFN-γ production
from anti-CD3-stimulated Th1 cells, especially in the presence of IL-12. Upon stimulation with Ag
plus IL-12, naïve T cells develop into IL-18 receptor (IL-18R) expressing Th1 cells, which increase
IFN-γ production in response to IL-18 stimulation. Therefore, IL-12 is a commitment factor that
induces the development of Th1 cells. In contrast, IL-18 is a proinflammatory cytokine that facilitates
type 1 responses. However, IL-18 without IL-12 but with IL-2, stimulates NK cells, CD4+ NKT
cells, and established Th1 cells, to produce IL-3, IL-9, and IL-13. Furthermore, together with IL-3,
IL-18 stimulates mast cells and basophils to produce IL-4, IL-13, and chemical mediators such as
histamine. Therefore, IL-18 is a cytokine that stimulates various cell types and has pleiotropic
functions. IL-18 is a member of the IL-1 family of cytokines. IL-18 demonstrates a unique function by
binding to a specific receptor expressed on various types of cells. In this review article, we will focus
on the unique features of IL-18 in health and disease in experimental animals and humans.
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1. Introduction

Th1 cells produce interferon (IFN)-γ upon stimulation with antigen (Ag) plus antigen
presenting cells or anti-CD3 antibody in vitro and in vivo. Lipopolysaccharide (LPS)-stimulation of
anti-CD3-stimulated Th1 cells does not induce the production of IFN-γ in vitro. However, the injection
of LPS into Propionibacterium acnes-primed mice or Bacillus Calmette–Guerin (BCG)-infected mice, but not
naïve mice, strongly induced IFN-γ production in vivo [1,2]. Furthermore, to our surprise, the addition
of sera derived from P. acnes-primed and LPS-challenged mice strongly enhanced IFN-γ production by
anti-CD3-stimulated Th1 cells in vitro, suggesting the presence of IFN-γ inducing factor(s) in the sera.

Because IL-12 is produced by LPS-stimulated macrophages and dendritic cells (DC), IL-12 from
LPS-stimulated macrophages or DC in P. acnes-primed mice were initially thought to induce
anti-CD3-stimulated Th1 cells to produce IFN-γ in vivo and in vitro. Indeed, the sera contained
high levels of IL-12. However, only the addition of sera from P. acnes-primed and LPS-challenged
mice, but not the addition of excess doses of IL-12, enhanced the production of IFN-γ from
anti-CD3-stimulated Th1 cells, strongly suggesting the presence of IFN-γ inducing factors in the
sera from P. acnes-primed and LPS-challenged mice.

Physicochemical studies and amino acid sequence analysis revealed that IFN-γ inducing factor
(IGIF) is different from IL-12. The molecular cloning of IGIF was performed by Okamura in
collaboration with Hayashibara Biochemical Laboratories. Soon after human IGIF was cloned [3],
we and others found various functions of IGIF, including the induction of IL-2 production, IL-2 receptor
(IL-2R) and Fas ligand (FasL) expression on Th1 cells, and the activation of natural killer (NK)
cells. Based on these pleiotropic functions of IGIF, we named IGIF “IL-18” [2]. Although both
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IL-12 and IL-18 are major factors in IFN-γ production by Th1 cells, IL-12 is a differentiation factor
that induces the development of Th1 cells—in contrast, IL-18 is a proinflammatory cytokine that
facilitates IFN-γ production by Th1 cells particularly in conjunction with IL-12. Indeed, IL-12 and
IL-18 from LPS-stimulated macrophages synergistically induced IFN-γ production from Th1 cells in
P. acnes-primed and LPS-challenged mice.

Murine and human IL-18 proteins consist of 192 and 193 amino acids, respectively [1,3]. Based on
the homology of its amino acid sequence compared with IL-1β, IL-18 is classified as a member of
the IL-1 cytokine family. Human IL-18 and IL-1β share only 15% sequence homology although they
contain a common β-pleated sheet structure. Furthermore, similar to IL-1β, IL-18 is produced as
a biologically inactive precursor, pro-IL-18, which lacks a signal peptide and requires proteolytic
processing to become active. The cleavage of pro-IL-18 or pro-IL-1β depends mainly on the action of
the intracellular cysteine protease caspase-1 in the NLRP3 inflammasome [4,5].

The IL-18 receptor (IL-18R) consists of the inducible component IL-18Rα (IL-1 receptor-related
protein [IL-1Rrp]) and the constitutively expressed component IL-18Rβ (IL-1R accessory protein-like
[IL-1RAcPL]) [2]. Cytoplasmic domains of IL-18Rα and IL-18Rβ contain a common domain
termed the Toll-like receptor (TLR)/IL-1R (TIR) domain, shared by other IL-1R family members
and TLRs. Upon stimulation with IL-18, IL-18Rα forms a high-affinity heterodimeric complex
with IL-18Rβ—which mediates intracellular signal transduction. Cytoplasmic TIR domains of
the receptor complex interact with myeloid differentiation primary response 88 (MyD88), a signal
adaptor containing a TIR domain [6], via TIR-TIR interactions. Then, MyD88-induced events
result in the activation of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) via
association with the signal adaptors IL-1R-associated kinase (IRAK) 1-4 and tumor necrosis factor
(TNF) receptor-activated factor (TRAF) 6, respectively, which eventually leads to the appropriate gene
expressions, such as Ifng, Tnfa, Cd40l, and FasL.

Although IL-18 was originally discovered as a factor that induces IFN-γ production from Th1
cells, it also acts on non-polarized T cells, NK cells, NKT cells, B cells, DC and macrophages to produce
IFN-γ in the presence of IL-12. Moreover, IL-18 without IL-12 but with IL-2 induces Th2 cytokine
production from CD4+ NKT cells, NK cells, and even established Th1 cells. Furthermore, IL-18 with
IL-3 induces mast cells and basophils to produce IL-4 and IL-13. Therefore, IL-18 stimulates both
innate immunity and acquired immunity [2,7].

The source of IL-18 was initially demonstrated to be from Kupffer cells, which constitutively
express pro-IL-18. In addition, LPS binding to TLR4 induces the production of IL-18 via the activation
of caspase-1. In contrast, upon stimulation with LPS, DC or macrophages increase their transcription of
pro-IL-18 mRNA and subsequently their production of pro-IL-18, which is then processed by caspase-1
to be secreted as mature IL-18. In addition to these IL-18 producing cells, pro-IL-18 is produced
by a wide variety of other cells, including keratinocytes, intestinal epithelial cells, and osteoblasts
suggesting it has an important pathophysiological role in health and disease. Like other cytokines,
IL-18 shows its pleiotropic action depending on its cytokine milieu (Figure 1).
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Figure 1. Pleiotropic action of IL-18 depends on its cytokine milieu.

2. Production of IL-18

Many cell types, both hematopoietic cells and non-hematopoietic cells, have the potential
to produce IL-18. Originally, IL-18 production was recognized in Kupffer cells, liver-resident
macrophages, even in the resting state without stimulation. However, subsequently, many investigators
reported IL-18 production in non-hematopoietic cells, such as intestinal epithelial cells, keratinocytes,
and endothelial cells, even in the steady state. In addition to its unique distribution and constitutive
production in a wide variety of cell types and tissues, IL-18 is characterized by its unique process of
cellular production. Usually, cytokines such as IFN-γ and IL-4 are secreted after the corresponding
genes are expressed because their genes encompass a signal peptide that is necessary for their
extracellular release through the endoplasmic reticulum to the Golgi. In contrast, the IL18 gene,
similar to other IL-1 family members, lacks a signal peptide. It was reported that IL-18 is stored
in the cytosol of IL-18 producing cells [1,2,8]. Furthermore, similar to IL-1β but unlike IL-1α or
IL-33, IL-18 is produced as a biologically inactive precursor [1,2,8]. To become active and be released,
precursor IL-18 (pro-IL-18) needs post-translational processing [2,4,9]. Therefore, the extracellular
release of biologically active IL-18 is regulated by multiple processes, such as regular transcriptional
gene regulation, post-transcriptional gene regulation, and post-translational regulation.

2.1. IL18 Gene Expression

The IL18 gene is located on chromosome 11 in humans and chromosome 9 in mice [2].

2.1.1. Transcriptional Gene Regulation

2.1.1.1. IL18 Gene Promoter

The IL18 gene contains 7 exons, where exons 1 and 2 are noncoding. An early study reported that
promoter activity was detected upstream of exons 1 and 2 of the murine Il18 gene [10]. Furthermore,
the promoter upstream of exon 1 (5′-flanking region) contains an interferon consensus sequence
binding protein (ICSBP)-binding site and activator protein-1 (AP-1)-binding site [11], while another
promoter upstream of exon 2 (intron 1) encompasses a PU.1-binding site [11]. Similar to the genomic
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sequence of murine Il18, human IL18 gene fragments were reported to contain a PU.1-binding site
upstream of exon 2 and to have promoter activity [12].

A study on the detailed structure and sequence variations of the human IL18 promoter revealed
five single nucleotide polymorphisms (SNPs) at the 5′-end of the IL18 gene: −656 G/T (rs1946519),
−607 C/A (rs1946518), −137 G/C (rs187238), +113 T/G (rs360718), and +127 C/T (rs360717) [13].
The transcription activity of the IL18 gene promoter fragment demonstrated that−656 G/T (rs1946519),
−607 C/A (rs1946518), and −137 G/C (rs187238) are in the promoter region and that the other two
SNPs are in the 5′-untranslated region (Table 1). A change from C to A at position −607 disrupted a
cAMP-responsive element binding protein (CREB) binding site [13]. A change from C to G at position
−137 altered the histone H4 gene-specific transcription factor-1 (H4TF-1) nuclear factor binding site [13]
(Table 1). A new putative IL18 gene variant was identified in systemic lupus erythematosus (SLE)
patients [14]. These promoter variants were reported to reflect the protein levels of IL-18 produced by
peripheral blood mononuclear cells (PBMCs) isolated from healthy individuals [15].

Intriguingly, many clinical study groups have extensively studied the association between these
SNPs of IL18 gene promoters and various diseases. Table 1 shows a summary of representative
meta-analyses and/or systematic reviews of individual diseases. Therefore, IL18 promoter variants are
associated with diverse diseases such as chronic viral infection, chronic diseases, and cancer. Therefore,
these promoter variants might influence pro-IL-18 production although they might not influence the
release of biologically active IL-18. Therefore, how IL18 promoter variants are associated with the risk
of individual diseases remains to be elucidated. Cytoplasmic IL-18 might exert unknown actions on
cellular properties that might influence disease risk.

2.1.1.2. IL18 Gene Repressor

B cell lymphoma 6 protein (Bcl6) was demonstrated to repress the IL18 gene. Bcl6 was originally
identified as a human proto-oncogene [16] and was recently demonstrated to be a master regulator of
follicular helper CD4+ T cells [17]. A putative Bcl6-binding DNA located in the 5′-noncoding region at
a site −2686 from exon 1 is a prerequisite for the Bcl6 repression of the expression of luciferase under
control of the IL18 promoter. In response to LPS, bone marrow-derived macrophages from Bcl6−/−

mice expressed higher levels of Il18 than those from control mice [18].

2.1.2. Post-Transcriptional Gene Regulation (miRNA)

MicroRNAs (miRNAs) are endogenous ~21 nucleotide-long noncoding RNAs that form a
large family of post-transcriptional regulators of gene expression in metazoans and plants [19,20].
Humans have approximately 800 miRNAs, which participate in most cellular processes. However,
changes in miRNA expression are involved in the pathogenesis of human disease. miRNAs interact
with their mRNA targets by base pairing only using short sequences from these RNAs and
mediate post-transcriptional gene regulation by translational repression or mRNA degradation.
Multiple miRNAs in combination regulate their common target mRNA, whereas individual miRNAs
regulate multiple different mRNAs. Therefore, individual miRNAs coordinate the expression of cellular
proteins. The detailed mechanisms of post-translational regulation by miRNAs were extensively
reviewed in recent articles [21–23].

Multiple miRNAs regulate IL18 gene expression, directly or indirectly, and might be associated
with disease and/or disease severity [24] as discussed in the following examples.

Bruton’s tyrosine kinase (Btk) is a cytoplasmic non-receptor tyrosine kinase, and its
loss-of-function mutation was verified to be responsible for a humoral immunodeficiency named
X-linked agammaglobulinemia with impaired B cell development [25]. Recently, Btk was shown to be
involved in the stabilization of various cytokine mRNAs including Tnfa mRNA [25]. Upon stimulation
with LPS, BTK was similarly induced in human macrophages and human fibroblast-like synovial cells.
However, IL18 was induced in the macrophages but not in the synovial cells. This was explained by
the induction of miRNA-346 (miR-346) in synovial cells. Indeed, transfection with miR-346 antisense
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restored IL18 induction in synovial cells, which was Btk dependent. Therefore, miR-346 negatively
regulates IL18 levels by reducing the induction of Btk expression, at least in synovial cells [26].

miRNA-197 (mi-R197) was shown to regulate IL18 mRNA expression. Base-pair sequences were
identified in miR-197 and IL18 in THP-1 cells, a human macrophage cell line. THP-1 cells transfected
with miR-197 showed lower IL18 expression and secreted lower levels of IL-18 than control cells.
Intriguingly, there was a negative correlation between disease stage of hepatitis B virus (HBV)-infected
hepatitis (asymptomatic HBV carrier, chronic hepatitis, and acute on chronic liver failure) and miR-197
expression levels in peripheral blood mononuclear cells (PBMCs), and a positive correlation between
disease severity and IL18 expression levels in PBMCs. Therefore, miR-197 might be important for the
reactivation of hepatitis by targeting IL18 [27].

2.2. Post-Translational Regulation of IL-18 (Processing of pro-IL-18)

Pro-IL-18 requires cleavage by appropriate enzymes to become active. Caspase-1,
originally designated as IL-1β-converting enzyme and now a member of the cysteine protease (caspase)
family, is a major IL-18-processing enzyme. Processing of IL-18 with caspase-1 occurs in cytoplasmic
inflammasomes. Caspase-8, a pro-apoptotic caspase, was recently shown to also be involved in the
activation of IL-18. Various other proteases produced by killer lymphocytes, neutrophils, and mast
cells have the capacity to appropriately cleave pro-IL-18 into biologically active IL-18.

2.2.1. Caspases

Caspases (cysteine-aspartic proteases) are proteases responsible for important biological
events including inflammation as well as programmed cell death such as apoptosis, necroptosis,
and pyroptosis [28–30]. Caspases are produced as biologically inactive precursors (pro-), and require
cleavage by other caspase members or itself to become an active caspase [29,30]. Caspase-1 is
an essential enzyme for the conversion of pro-IL-1β and pro-IL-18 into mature IL-1β and IL-18,
respectively [4,9].

2.2.1.1. Caspase-1 (Inflammasome NLRP3, NLRC4, and AIM2)

Caspases are produced as biologically inactive precursors (pro-), and require cleavage by other
caspase members or themselves to become active caspases [29]. The inflammasome is a large
protein-complex generated in the cytoplasm after the activation of cells by appropriate stimuli [31].
Caspase-1 is activated within inflammasomes formed in the cytosol [31]. After stimulation with specific
inflammasome activators, the corresponding monomeric pattern-recognition receptors (PRRs) gather
together to assemble pro-caspase-1 with help from an adaptor protein, ASC (apoptosis-associated
speck-like protein containing a C-terminal caspase-recruitment domain; PYCARD), which forms a
wheel-shaped inflammasome [32,33]. Pro-caspase-1 in the inflammasome undergoes autolysis to
become active caspase-1, which converts pro-IL-18 into mature IL-18. Then, active caspase-1 cleaves
gasdermin D to liberate a pore-forming domain, N-terminal, leading to the liberation of mature
IL-1β and IL-18 and eventually pyroptosis [34–36]. Many PRRs participate in the inflammasome.
In this review article, we briefly introduce NAIP-NLRC4, AIM2, and NLRP3 inflammasomes.
Excellent reviews provide detailed features of these inflammasomes [37–41].

The nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing
3 (NLRP3) inflammasome was originally demonstrated to be a cytoplasmic platform necessary
for caspase-1 activation [42–44]. To activate the NLRP3 inflammasome in bone marrow-derived
macrophages, two sequential signals are needed—the first signal, “priming”, is usually TLR-mediated,
while the second signal, “activation”, is triggered by a wide variety of cellular responses.
NLRP3 activators include highly diverse molecules such as inducers of K+ efflux, initiators of Ca2+

mobilization, microbial pore-forming toxins, endogenous or exogenous particulates, microcrystals,
and endogenous metabolites [45–47]. However, how these biologically different signals activate the
NLRP3 inflammasome is unclear. Recently, a common NLRP3 activation pathway was identified [48].
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Zhong et al. demonstrated that macrophages began to synthesize mitochondrial DNA in response
to TLR-mediated “priming”. Upon stimulation by subsequent NLRP3 activators including inducers
of K+ efflux, Ca2+ influx, and particulates, these macrophages underwent mitochondrial insult
and produced reactive oxygen species (ROS) in their mitochondria. During the activation process,
newly synthesized mitochondrial DNA might be oxidized by ROS, and small fragmented oxidized
mitochondrial DNA might translocate from the mitochondria to the cytosol through injured
mitochondrial membranes. Indeed, transfection with oxidized mitochondrial DNA activated the
NLRP3 inflammasome (Figure 2A).
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Figure 2. Representative inflammasomes. Caspase-1, an IL-1β/IL-18-converting enzyme, is produced
as an enzymatically inactive precursor (pro). Upon the appropriate stimulation, many cell types
including macrophages and epithelial cells, form cytoplasmic machinery termed the inflammasome
for the activation of pro-caspase-1. Several cytoplasmic pattern-recognition receptors including NLR
and AIM2-like receptors, serve as a scaffold molecule for individual inflammasome activation. (A) The
NLRP3 inflammasome. After recognition of oxidized mitochondrial (ox-mit) DNA, NLRP3, a member
of the NLR, assembles a caspase activating adaptor, ASC, and pro-caspase-1, which eventually leads
to active caspase-1. (B) The NLRC4 inflammasome. After recognition of corresponding bacterial
secretion system III, components from human NAIP or murine NAIP family members associate with
NLRC4, which results in formation of the NLRC4 inflammasome. (C) The AIM2 inflammasome.
After the recognition of double-stranded (ds) DNA, AIM2 similarly generates the AIM2 inflammasome.
Active caspase-1 then cleaves pro-IL-18 and pro-IL-1β into IL-18 and IL-1β, respectively. Caspase-1
also cleaves gasdermin D into a pore-forming N-terminal protein. IL-18 and IL-1β as well as
other cytoplasmic proteins including HMGB1, are extracellularly released through membrane pores
generated by the N-terminal protein. Blue line indicated the cell membrane.

The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family of apoptosis
inhibitory proteins (NAIPs), including human NAIP, and murine Naip1, Naip2, Naip5, and Naip6, are
localized in the cytoplasm and sense bacterial components. Gram-negative bacteria exert pathological
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actions by injecting toxic molecules such as flagellin, a protein composed of flagella, via a syringe-like
shaped type III secretion system consisting of a rod and needle [49]. Upon sensing these rods, needles,
and flagellin, cytoplasmic NAIPs associate with NLR family CARD domain-containing protein 4
(NLRC4), initially designated as Ice protease-activating factor (IPAF), to generate the NAIP-NLRC4
inflammasome, which eventually leads to caspase-1-mediated IL-18 secretion (Figure 2B) [50–52].
Therefore, upon infection with Gram-negative bacteria such as Salmonella typhimurium, the resulting
production of IL-18 might participate in host defense against certain bacterial infections [50,51].

Absence in melanoma 2 (AIM2) recognizes double-stranded (ds) DNA derived from
microorganisms and host cells [53–55]. Infection with dsDNA viruses such as cytomegalovirus,
induces free viral dsDNA in the cytosol of host cells. Certain intracellular bacterium, such as
Francisella tularensis, exists in the phagosomes of macrophages and evade detection by entering
the cytosol. These bacteria are regarded as healthy in the host cytosol. However, proteolytic
enzymes activated in the cytosol damage the cytoplasmic bacterium cell wall, liberating free bacterial
dsDNA, which activates the AIM2 inflammasome, leading to the release of biologically active IL-18.
Host-derived dsDNA can activate caspase-1-mediated inflammation. Irradiation injured host cell
DNA, and free host dsDNA activates the AIM2 inflammasome. In contrast to NLRC4, AIM2 directly
senses dsDNA to activate the AIM2 inflammasome (Figure 2C).

In contrast to bone marrow-derived macrophages, Kupffer cells, resident macrophages in the liver,
release IL-18 upon a single stimulation with LPS in the absence of priming [1]. To release mature IL-18,
TLR4 [56], TRIF (TIR-domain-containing adapter-inducing interferon-β) [57], NLRP3 [57], ASC [58],
and caspase-1 [4] are required [59]. We found that Kupffer cells produce ROS in response to LPS
and that a ROS inhibitor completely inhibited LPS-induced-IL-18 release (our unpublished data).
General irradiation to generate chimeric mice causes the deletion of hematopoietic cells including
splenic macrophages but does not kill Kupffer cells [60,61]. Therefore, Kupffer cells might be different
from bone marrow-derived macrophages in the context of their potential to generate ROS.

IL-18 maturation occurs by the activation of other types of inflammasomes, such as NLRP6 and
NLRP9b inflammasomes, particularly in intestinal epithelial cells, which contribute to gut homeostasis
and host defense, respectively (described below).

2.2.1.2. Caspase-8 (upon Fas Ligation)

Fas is an extracellularly expressed cell death receptor, and its ligation with FasL leads to apoptotic
cell death, a programmed cell death without cell membrane insult. We and others found that
upon Fas engagement, neutrophils and macrophages release biologically active mature IL-1β and
IL-18, respectively that is caspase-1 independent [62,63]. Because pan-caspase inhibitors prevent
Fas-mediated IL-1β and IL-18 release, we assumed that caspases other than caspase-1 might process
these precursor proteins. Recently, we and others revealed that caspase-8, an apoptosis-initiating
protease [29], was involved in converting pro-IL-18 into mature IL-18 after the stimulation of
macrophages by FasL [64–66]. We found that the Fas-mediated pathway for IL-18 release was
important for host defense against bacterial infection. Fas−/− mice were highly susceptible to
Listeria monocytogenes, an intracellular Gram-positive bacterium that causes serious food-born infections
in humans, with the impaired secretion of IL-18 and IL-1β [64]. Fas-mediated IL-18/IL-1β processing
does not require NLRC4, NLRP3, or caspase-1, but does require ASC and caspase-8 [64,65]. Recently,
we reported that IL-1β processed by Fas-mediated caspase-8 activation was profoundly involved in
the development of Th17/Th1 cells, but not Th1 cells, during L. monocytogenes infection [67].

2.2.2. Other Proteases Involved in the Production of Biologically Active IL-18

Several proteases other than caspases can cleave pro-IL-18 to generate biologically active
pro-IL-18 fragments.

Proteinase 3 is a 29 kDa serine protease [68], which is mainly produced by neutrophils and stored
in their azurophilic granules [68]. Human oral epithelial cells that constitutively produce pro-IL-18
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release biologically active IL-18 after stimulation with neutrophilic proteinase 3, even in the presence
of caspase-1 or pan-caspase inhibitors [69]. The proteinase-3 cleavage site of human pro-IL-18 was
later identified to be at I46, while the N-terminal amino acid residue of mature human IL-18 processed
by caspase-1 is Y35 [70].

Mast cells predominantly accumulate in the dermis of atopic-dermatitis model mice, skin-specific
caspase-1 transgenic mice [71], as well as human atopic dermatitis patients [72]. The incubation
of human pro-IL-18 with human mast cell chymase produced biologically active IL-18, but its
N-terminal amino acid residue was I56, which is different from mature IL-18 cleaved by caspase-1 or
by proteinase 3 [70].

Granzyme B is a serine protease with aspartic protease activity, and is produced mainly by NK cells
and cytotoxic T lymphocytes (CTLs). Upon the recognition of target cells, cytotoxic lymphocytes inject
granzyme B through a target cell membrane pore generated by perforin polymerization, which results
in the apoptotic death of the target cells [73,74]. Granzyme B cleaves human pro-IL-18 at the same site
as caspase-1, and the granzyme B-cleaved pro-IL-18 fragment has the capacity to produce IFN-γ [75].
Human CD8+ T cells isolated from PBMCs express granzyme B and kill human keratinocytes that
constitutively produce pro-IL-18, accompanied by the release of mature IL-18 [76].

2.3. Regulation of Circulating IL-18 by IL-18-Binding Protein (IL-18BP)

IL-18-binding protein (IL-18BP) binds to IL-18 with a higher affinity than IL-18R and inhibits
IL-18 signaling [77–79]. This suggests that IL-18BP levels determine the free IL-18 concentration.
Adult-onset Still’s disease is a multi-systemic inflammatory disease characterized by upregulated
IL-18 levels and downregulated IL-18BP in the circulation, mediated by an unknown mechanism [80].
Recently, miRNA profiles in the plasma of adult-onset Still’s disease patients were investigated, and the
plasma levels of miRNA-134 (miR-134) were positively correlated with disease activity scores and
decreased after effective treatment [81]. IL18BP was identified as its target mRNA [81]. Therefore,
elevated miR-134 in adult-onset Still’s disease might induce the upregulation of IL-18 by inhibiting
IL18BP, and therefore, miR-134 might be a potential biomarker for this disease.

3. IL-18 Signaling

3.1. IL-18 Receptor

IL-18 mediates its effects by signaling through its receptor, belonging to the IL-1R family,
composed of an IL-18Rα chain (IL-18R1, IL-1Rrp) and IL-18Rβ chain (IL-18R accessory protein,
IL-1RAcPL) [2]. Following the binding of IL-18 to IL-18Rα, IL-18Rβ then binds to form a trimer.
The intracellular region contains a TIR domain in common with TLR, and MyD88 binds to TIR to
transmit a signal into the cell. Although IL-18Rα alone can bind to IL-18, its affinity is low [82].
The IL-18Rβ chain is required for high-affinity binding and cell signaling [83]. When IL-18Rα binds to
IL-18Rβ, it causes a conformational change, resulting in a high-affinity receptor [84,85].

IL-18R expression, induced by stimulation with IL-12 and IFN-α (human) in T cells and NK cells
or by signal transduction and transcriptional regulation via STAT4 (Signal transducer and activator of
transcription 4), is essential for potent IFN-γ production [86–89]. However, IL-18R is also expressed in
basophils, mast cells, and CD4+ NKT cells in the steady state, all of which produce Th2 cytokines such
as IL-4 and IL-13 in response to IL-18 stimulation [2,7]. IL-18R is also expressed by non-immune cells
such as epithelial cells and nerve cells and is involved in cell survival and differentiation. The regulatory
mechanism of IL-18R expression in these cells is poorly understood.

IL-18Rα is important for inflammatory cytokine production following IL-18 stimulation. However,
although contradictory, the inflammatory response was exacerbated in IL-18Rα-deficient mice because
IL-18Rα also binds to the inhibitory cytokine, IL-37 (IL-1F7). When IL-37 binds to IL-18Rα, it prevents
IL-18Rα binding to IL-18Rβ, which blocks the transmission of activation signals into the cell. Instead,
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the IL-37/IL-18Rα complex binds to IL-1R8 (TIR8, SIGIRR), which promotes anti-inflammatory effects
by activating STAT3 and transmitting an inhibitory signal [90–93].

3.2. IL-18 Signaling Cascade

Following the trimerization of IL-18/IL-18Rα/IL-18Rβ, MyD88 binds to the Toll-IL-1 receptor
(TIR) domain of IL-18Rα and IL-18Rβ [6]. IRAK1 and IRAK4 are combined via the death domain of
MyD88 to form a Myddosome [94–96]. Furthermore, following binding to TRAF6, inhibitor of κB (IκB)
is degraded, and phosphorylated p65/p50 NF-κB translocates into the nucleus [97]. The MAPK cascade
of Extracellular Signal-regulated Kinase (ERK), c-jun N-terminal kinase (JNK), and p38 is also activated
(Figure 3) [98]. These signals induce IFN-γ production in Th1 cells and promote cell proliferation.
IL-18 stimulation also induces the phosphorylation and activation of phosphatidylinositol-3 kinase
(PI3K)/Akt/S6 and mammalian target of rapamycin (mTOR), as well as autophagosome formation
and the expressions of Bcl-xL and Bcl2 [99,100]. Although PI3K suppresses inflammatory cytokine
production by TLR signaling in myeloid cells [101], this signal enhances the proliferation and survival
of NK cells. The PI3K/Akt pathway is also important for the survival of non-immune system cells,
such as keratinocytes and neurons following IL-18 stimulation [102,103].
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Figure 3. IL-18 signal transduction. When IL-18 binds to IL-18Rα (black arrow), IL-18Rβ binds to the
complex. IL-18 signaling activates the transcription factors NF-κB and AP-1 via signal transduction
molecules including MyD88, IRAKs, and TRAF6 (white arrows). IL-18BP competes IL-18 binding to
IL-18Rα. When IL-18Rα binds to IL-37 it prevents binding to IL-18Rβ, which binds to IL-1R8 to send
an inhibitory signal via STAT3.

IL-18R signaling is similar to that of IL-1R/TLR. On the basis of IL-1R signaling, the signaling
pathway after TRAF6 is thought to be transmitted as follows. K63-polyubiquitin chain (K63-pUb) is
formed by the E3 ubiquitin ligase activity of TRAF6 to recruit TAB2/TAB3 [104] and NF-κB essential
modulator (NEMO) [105]. K63-pUb also activates TAK1 and the phosphorylation of TAB1, IκB kinase
(IKK) α, IKKβ, and MAPK kinase (MKK) 3/6 by TAK1 promotes the subsequent activation and nuclear
translocation of MAPKs and NF-κB, inducing the expressions of various genes [105,106]. Regarding
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the activation of PI3K, the direct binding of PI3K and MyD88, or the B-cell adapter for PI3K (BCAP)
might be involved [100].

Regarding differences in signaling between IL-1 and IL-18, TRIF-related adaptor molecule (TRAM,
TICAM2) is thought to be involved in IL-18R signaling. In TLR4 signaling, MyD88 and TRIF function
downstream. Then, TIRAP (Mal) connects TLR4 and MyD88, and TRAM links TLR4 and TRIF.
However, TIRAP does not participate in IL-18 signaling [107]. Instead, TRAM directly binds to
IL-18Rα, IL-18Rβ and MyD88 and transduces IL-18 signals into the cell [108].

3.3. IL-18 Binding Protein

IL-18 binding protein (IL-18BP) is an endogenous soluble factor that specifically inhibits the action
of IL-18. IL-1 receptor family proteins are generally characterized by an extracellular portion consisting
of three immunoglobulin (Ig)-like domains; however, IL-18BP contains a single Ig domain and is similar
to TIR8 (SIGIRR, IL-1R8). In addition to mammals, various viruses possess highly homologous genes.
IL-18BP contains a signal peptide and its protein is secreted without a transmembrane domain [77].
When the extracellular region of IL-33 receptor (ST2) is secreted, as soluble ST2, competes for the
binding of IL-33 and ST2. However, IL-18BP does not correspond to the extracellular ligand binding
domain of the IL-18 receptor, which is encoded by another gene, and therefore it is different from
classical soluble receptors.

The affinity of IL-18BP for IL-18 is about 400 pM, similar to that for IL-18Rα/IL-18Rβ,
and much higher than for IL-18Rα alone (10–50 nM). IL-18BP inhibits the binding of IL-18 to
IL-18R and neutralizes IL-18 activity, thereby suppressing IFN-γ production and limiting Th1 cell
responses [77,109]. For example, the administration of IL-18BP substantially reduced the pathology in
mouse models of experimental arthritis, colitis, endotoxin shock, and type 1 diabetes, disease models
in which IL-18 is important for the pathology [110–114]. Furthermore, transgenic mice overexpressing
IL-18BP were protected from acute renal injury induced by ischemia-reperfusion [115]. In a colitis
model, IL-18 acted directly on intestinal epithelial cells to enhance inflammation, thereby exacerbating
colitis via excessive IL-18 stimulation in IL-18BP-deficient mice. In this case, the inhibition of goblet
cell maturation was observed in the intestinal tract [116].

In healthy humans, IL-18BP is present in the serum at a 20-fold molar excess compared with
IL-18 [114], suggesting IL-18BP provides a threshold at which IL-18 does not mediate its effects until the
concentration of IL-18 reaches a point where it does not induce systemic excessive Th1-type immune
responses against general infection with low pathogenicity. However, because IL-18BP-deficient mice
were reported to have markedly decreased levels of IL-18 in their blood, IL-18BP might function as a
carrier to maintain a constant blood concentration of IL-18 [117].

In autoimmune inflammatory diseases where IFN-γ is involved in the pathology, the concentration
of free IL-18 was more important for determining the severity of disease compared with IL-18 bound
to IL-18BP [114]. In Wegener’s granulomatosis and systemic lupus erythematosus, the serum levels
of IL-18BP and IL-18 were high [114,118], but the level of IL-18BP was insufficient to neutralize
IL-18 and the level of free IL-18 was higher than that of healthy individuals. Macrophage activation
syndrome is another disease where the clinical and hematologic abnormalities correlate with elevated
free IL-18 levels [119]. These studies have shown that IL-18BP therapy may be of clinical value in
situations where excessive IL-18 stimulation appears to cause disease or to enhance its severity. Indeed,
clinical trials to investigate treatment with IL-18BP for adult-onset Still’s Disease and NLRC4-associated
macrophage activation syndrome, inflammatory diseases associated with high plasma IL-18 levels,
are ongoing [120–122] (ClinicalTrials.gov Identifier: NCT 02398435, NCT 03113760).

IL-37 is another endogenous factor that suppresses the action of IL-18. IL-37 has high homology
with IL-18, and IL-18 BP also binds to IL-37 [90]. Binding to IL-37 enhances the ability of IL-18BP to
inhibit IFN-γ induction stimulated by IL-18. Of note, IL-37 has not been found in mice and human
IL-37 binds to IL-18R with very low affinity. However, mice expressing human IL-37 showed marked
anti-inflammatory effects especially related to LPS-induced cytokine production and dendritic cell
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maturation [93]. Furthermore, human IL-37 expressing mice were also resistant to dextran sulphate
sodium (DSS)-induced colitis [123].

The amount of IL-18BP is highly regulated at the level of gene expression. Because IFN-γ increases
the gene expression and protein synthesis of IL-18BP [124,125], IFN-γ invokes a negative feedback loop
for IL-18-mediated inflammation. This concept is supported by clinical data where patients treated
with IFN-α for hepatitis show elevated levels of IL-18BP [126,127]. Moreover, in patients with familial
hemophagia, the ability of IFN-γ to induce IL-18BP was decreased and inflammation might have
been exacerbated by insufficient negative feedback [128]. IL-27 functions has both inflammatory and
anti-inflammatory effects, but similar to IFN-γ, it utilizes STAT1 for signal transduction and increases
the production of IL-18BP as a negative feedback loop against inflammation in skin keratinocytes,
fibroblasts, ovarian epithelial cancer cells, and leukocytes [129,130].

4. Physiological Roles of IL-18

4.1. Cytokine and Immune Cell Milieu Determines the Biological Action of IL-18

4.1.1. IFN-γ Production

Naïve Th cells stimulated with Ag and IL-12 or IL-4 develop into IL-18R expressing Th1 or ST2
expressing Th2 cells, respectively. Therefore, the expressions of IL-18R and ST2 are convenient cell
markers for Th1 cells and Th2 cells, respectively. IL-18, originally discovered as an IFN-γ-inducing
factor, induces IFN-γ production from IL-18R expressing Th1 cells. IL-18 also induces IFN-γ production
from NK cells and CD4+ NKT cells, which constitutively express IL-18R [2,7]. In general, IL-18-induced
IFN-γ production by Th1 cells, NK cells and CD4+ NKT cells is strikingly enhanced by costimulation
with IL-12. Moreover, IL-18 can synergize with IL-12 to induce IFN-γ production in DC, macrophages,
and B cells [2,7]. It is well known that B cells develop into IgG1 and IgE-producing cells after
stimulation with anti-CD40 antibodies and IL-4. We found that when B cells were stimulated with
anti-CD40 antibodies and IL-4 in the presence of IL-12 and IL-18, these activated B cells produced
IFN-γ that inhibited IL-4 dependent IgG1 and IgE production but enhanced IgG2a production [131].
T cells increase their expression of IL-18R in response to IL-12—similarly, IL-12-stimulated B cells also
showed increased IL-18R expression and the production of IFN-γ in response to IL-18 and IL-12 [132].

How do IL-12 and IL-18 synergistically induce IFN-γ production? One major mechanism is the
reciprocal induction of the other’s corresponding receptor expression [2]. Another mechanism is the
synergistic induction of IFN-γ at the molecular level. The Ifng promoter contains a consensus sequence
for NF-κB, AP-1 and the STAT4 binding site. IL-18 activates the IRAK/TRAF6 pathway resulting in
the activation of NF-κB and AP-1, while IL-12 activates STAT4. In combination, these activate the Ifng
promoter, resulting in the synergistic induction of IFN-γ production at the transcription level.

4.1.2. Innate-Type Basophil and Mast Cell Activation by IL-3 and IL-18

Following the cross-linkage of FcεR1 by the Ag/IgE complex, mast cells and basophils produce
Th2 cytokines, including IL-4 and IL-13. We investigated whether mast cells or basophils also had the
potential to produce IFN-γ when stimulated with a combination of IL-12 and IL-18. Unexpectedly,
basophils and mast cells derived from bone marrow cell cultures supplemented with IL-3 for 10 days
expressed the IL-18Rα chain [133]. Furthermore, basophils produced large amounts of IL-4 and IL-13
concurrently in response to stimulation with IL-3 and IL-18. In contrast, mast cells mainly produced
IL-13 in response to IL-3 and IL-18. The cross-linkage of FcεR1 with the Ag/IgE complex modestly
increased IL-4 and IL-13 production by basophils and mast cells stimulated with IL-3 and IL-18.
Furthermore, mast cells and basophils did not produce IFN-γ in response to any combination of IL-3,
IL-18 and IL-12. Because IL-18 in combination with IL-3 stimulated basophils and mast cells to produce
chemical mediators and Th2 cytokines, we speculated that IL-18 might induce allergic inflammation
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without help from the Ag/IgE complex. Therefore, we described the IL-3 plus IL-18-dependent
activation of basophils and mast cells as “innate-type basophil and mast cell activation”.

4.1.3. Innate-Type Allergic Inflammation by IL-18

We detected high levels of IgG1 and IgE in the sera of wild type mice and IFN-γ-deficient
mice infected with Strongyloides venezuelensis at days 10 and 14 after infection. When a mixture
of IL-12 and IL-18 was injected daily into these infected mice, IgG1 and IgE responses were only
inhibited in wild type mice infected with S. venezuelensis. IL-12 and IL-18 stimulation induced T
cells and B cells to produce IFN-γ, resulting in the inhibition of IL-4-dependent IgE production.
To our surprise, the injection of IL-12 and IL-18 increased the serum levels of IgG1 and IgE in
IFN-γ-deficient mice infected with S. venezuelensis. Most surprisingly, the daily administration of IL-18
or a combination of IL-2 and IL-18 induced a striking increase in the serum levels of IgE that was
dependent on CD4+ T cells and IL-4/IL-4R/STAT6 [134]. Consistent with this result, transgenic mice
overexpressing human caspase-1 in keratinocytes (KCasp1-Tg) produced IL-18 and IgE in the serum.
Furthermore, they spontaneously developed atopic dermatitis (AD)-like skin lesions [71]. Therefore,
we disrupted the gene encoding STAT6, which is required for the signal transduction of IL-4, or for
IL-18 in KCasp1-Tg. Disruption of STAT6 resulted in no IgE production and did not affect the skin
manifestations of KCasp1-Tg. In contrast, IL-18-deficient KCasp1-Tg mice had markedly diminished
skin lesions. Therefore, the overproduction of IL-18 from keratinocytes induced AD-like skin lesions in
the absence of IgE [71]. On the basis of these results, we described IL-18-induced allergic inflammation
as “innate-type allergic inflammation” [71,135].

In collaboration with IL-2, but in the absence of IL-12, IL-18 stimulated NK cells, CD4+ NKT
cells and splenic Th cells to produce IL-3, IL-9 and IL-13. Because IL-3 and IL-9 induce mucosal
mastocytosis, we examined the capacity of mice injected with IL-2 and IL-18 to protect against infection
with S. venezuelensis. C57BL/6 mice pretreated with IL-18 and IL-2 developed mucosal mastocytosis
and had high levels of serum mMCP1 (mouse mast cell protease 1), an activation marker of mucosal
mast cells. Furthermore, they could expel the intestinal nematode S. venezuelensis. Therefore, IL-18 is
important for the expulsion of intestinal nematodes [136].

4.1.4. Th1 Cells Produce IFN-γ and IL-13 in Response to IL-18

Although IL-18 and IL-12 increased IFN-γ production from Ag-stimulated Th1 cells, the injection
of a mixture of IL-12 and IL-18 into IFN-γ-deficient mice infected with S. venezuelensis increased
the serum levels of IgG1 and IgE. These results suggested that IL-18 and IL-2 might stimulate even
Th1 cells to produce Th2 cytokines. Therefore, we examined the capacity of IL-18 and Ovalbumine
(OVA) peptide to stimulate OVA-specific Th1 cells to produce Th2 cytokines. We found that Th1 cells
stimulated with OVA and IL-18 produced both Th1 cytokines (IFN-γ) and Th2 cytokines (IL-9, IL-13).
Furthermore, additional IL-2 stimulation enhanced the production of Th2 cytokines, suggesting Th1
cells can alter their gene expression pattern in response to OVA, IL-2 and IL-18. We designated these
Th2 cytokine-producing Th1 cells as “super Th1 cells”. Intriguingly, after several rounds of stimulation
with Ag, IL-2 and IL-18, IL-18Rα-expressing and T-bet-expressing Ag-specific Th1 cells expressed
GATA3, and started to produce both IFN-γ and IL-13 [137]. We verified that GATA3 was essential for
the induction of IL-13 in Th1 cells after their stimulation with Ag, IL-2 and IL-18.

4.2. IL-18 in Host Defense

Microorganisms can be classified as intracellular or extracellular. Generally, intracellular
microorganisms are killed by cellular immunity, whereas extracellular microorganisms are eliminated
by humoral immunity. IL-18 plays an important role in host defense against various infectious
microorganisms because it strongly enhances the induction of IFN-γ, nitric oxide (NO), and ROS
in phagocytes. In addition, IL-18 directly activates CD8+ T cells, which play a central role in viral
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clearance. Furthermore, because IL-18 activates Th2 cytokine production and granulocytes in the
absence of IL-12, it also acts defensively in helminth infection.

4.2.1. IL-18-Mediated Defense Against Extracellular Pathogens

4.2.1.1. Bacteria Infection

For defense against extracellular bacteria, it is important to activate macrophages by IFN-γ
produced from NK cells and Th1 cells, opsonization by antibodies and activation of complement,
and phagocytosis and ROS production by neutrophils and macrophages.

Patients undergoing severe surgical stress, i.e., trauma, burns, or major surgery, suffer a loss of
immunity and physical barriers such as the skin and intestines, thereby increasing the risk of infection
such as sepsis [138]. If the host is infected with bacteria where the host defense system is weakened,
it cannot suppress bacterial proliferation, which might cause fatal multiorgan damage. In a mouse
study, Kinoshita and colleagues showed that multiple doses of IL-18 restored a state of reduced immune
function after injury suggesting the medical application of IL-18 for infections. Multiple injections of
IL-18 in burned mice significantly increased IFN-γ production from mononuclear cells and improved
bacterial clearance and mouse viability after Escherichia coli infection [139,140]. IL-18 also enhanced host
defense against Pseudomonas aeruginosa infection by enhancing IgM natural antibody production from
liver B1 cells [141]. Such antibodies can opsonize bacteria and promote their uptake by phagocytes
before bacterial antigen-specific antibodies are produced. IL-18 may also be useful for preventing
serious complications of pneumococcal respiratory infections in immunocompromised patients [138].

Burns activate neutrophils and cause tissue damage, whereas phagocytosis and pathogen
killing are decreased. IL-18 restored the burn-related decrease in activity of neutrophils and
enhanced phagocytosis and ROS production to prevent infection by methicillin-resistant Staphylococcus
aureus [141–143].

Overall, these data suggest that IL-18 treatment might be an alternative and useful treatment for
infection by extracellular pathogens, even in immunocompromised individuals.

4.2.1.2. Helminth Infection

Several types of intestinal parasitic nematodes are removed from the mammalian host Th2
responses [144]. S. venezuelensis is a rodent intestinal nematode that induces a Th2 type immune
response in the host. It is removed mainly by the action of chondroitin sulphate and protease released
from activated intestinal mucosal mast cells [145]. IL-18 induces mastocytosis by increasing the mast
cell growth factor IL-3, thereby promoting the elimination of S. venezuelensis [136]. Trichuris muris is
also expelled by mucosal mast cells activated by a Th2 response. However, in the case of T. muris,
the immune response induced by infection varies by mouse strain. Mice that mount a Th1 type immune
response following infection are susceptible, whereas mice that mount a Th2 type immune response
are resistant. In C57BL/6 mice, IL-12 is produced by T. muris infection and IL-12 and IL-18 promote
IFN-γ-producing Th1 cell differentiation. In IL-18-deficient mice that are resistant to chronic infection,
Th2 cytokine-producing cells are increased in the lymph nodes in addition to Th1 cells. However,
the administration of IL-18 inhibited Th2 cytokine production and prolonged infection [146,147].
A similar effect of IL-18 was also observed for Trichinella spiralis infection [148]. This indicates IL-18
inhibits the production of Th2 cytokines. Therefore, in a helminth infection in which a Th2 type
immune response is important, IL-18 has a different role depending on the nematode type and may
play an important role in host defense.
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4.2.2. IL-18-Mediated Defense Against Intracellular Pathogens

4.2.2.1. Bacterial Infection

The ability of IFN-γ to increase the expression of inducible nitric oxide synthase (iNOS) is essential
for killing intracellular organisms. Because NO production is critical for intracellular killing, IL-18,
an IFN-γ inducer, plays an important role in controlling infection.

Mycobacterium avium is an intracellular microorganism that infects and proliferates in macrophages.
In an M. avium infection mouse model, genetically susceptible BALB/c mice had decreased expressions
of IL-12 and IL-18 and reduced IFN-γ/Th1 responses. In contrast, resistant DBA/2 mice showed the
increased expressions of IL-12, IL-18 and IFN-γ [149] which correlated with the clearance of M. avium.
Indeed, IL-18-deficient C57BL/6 mice had a severe infection and pathological changes that were
significantly suppressed by treatment with exogenous IL-18 [150].

The role of IL-18 in host defense against M. tuberculosis infection has been demonstrated in
studies using IL-18 knockout and IL-18 transgenic mice. IL-18-deficient mice are susceptible to
M. tuberculosis infection, and IFN-γ levels in the serum, spleen, lung, and liver were lower than
in wild type mice [151,152]. IFN-γ production by spleen cells stimulated with mycobacterial
antigen was also impaired in IL-18 knockout mice. In contrast, IL-18 transgenic mice were more
resistant to M. tuberculosis infection than control wild mice, and IFN-γ levels in the serum and
production by mycobacterial antigen-stimulated splenocytes were increased. These data suggest the
important contribution of IL-18 in the development of Th1 immunity [151]. In M. tuberculosis infected
IL-18-deficient mice, IL-17 and MIP-1α were increased instead of decreasing blood IFN-γ and NO,
and in the lung, the M2 macrophage markers Arginase-1 and Ym-1 were increase. Neutrophils are
important for the control of M. tuberculosis in wild type mice, but Il18−/− mice had increased
accumulation of neutrophils as assessed histologically. However, because Il18−/− mice cannot control
M. tuberculosis, IL-18 might enhance the M. tuberculosis bactericidal activity of neutrophils [152].

In humans, the IL-18 promoter gene −137 G/C polymorphism is a risk factor for tuberculosis in
the Chinese population, and PBMCs of the −137 GG type had lower IL-18 production compared with
the GC and CC types [153]. Extensive case-control studies reported that a polymorphism of the IL-18Rα
gene was associated with tuberculosis risk in people aged over 46 years old [154]. In addition, a SNP of
the IL-18Rα promoter was associated with the methylation status of the gene and IL-18Rα expression,
and the increased DNA methylation and decreased expression of IL-18Rα might be partially involved
in the increased susceptibility to M. tuberculosis. In mice, even when IL-18Rα is deficient, there is
no change in susceptibility to M. tuberculosis, indicating differences in susceptibility related to IL-18
between humans and mice. In humans, IL-37 uses IL-18Rα as a receptor to suppress immune responses.
IL-37 levels were increased in the blood of M. tuberculosis patients, suggesting immunity is suppressed
by a reduction in IFN-α production and the induction of M2 macrophage differentiation [155,156].

L. monocytogenes are Gram-positive intracellular bacteria that cause food listeriosis in
humans. L. monocytogenes invade and multiply within the cytoplasm of various types of cells,
including macrophages, epithelial cells, and hepatocytes. The role of IL-18 in resistance to
L. monocytogenes infection is controversial. In a study using IL-18R antibodies, IL-18 potentiated
the resistance of mice to L. monocytogenes infection [157]. Furthermore, IL-12- or IL-18-deficient mice
lacked the ability to produce detectable levels of IFN-γ in the serum and showed significant and
moderate L. monocytogenes sensitivity, respectively. Ifng−/− mice and Il12−/−Il18−/− mice had a
higher sensitivity to L. monocytogenes infection than wild type mice [158]. Moreover, the administration
of IL-18 decreased the number of bacterial cells in the liver and spleen of L. monocytogenes–infected
mice [159]. However, Lockner et al. and Tsuchiya et al. reported that mice had increased resistance
to L. monocytogenes infection because of the lack of IL-18 [160,161]. It is thought that IL-10 secreted
from IL-18-stimulated NK cells was involved in the increase of L. monocytogenes susceptibility by
IL-18 [162,163]. The influence of the presence or absence of IL-18 is thought to depend on the mouse
strain and the infectious dose of L. monocytogenes used for infection.
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Listeria infection induces IL-18 production by inflammasome-dependent and -independent
mechanisms. Bacteria invade cells by listeriolysin O, which activates the caspase-1 inflammasome
through NLRP3 and AIM2 and induces IL-18 production, which is also produced by Fas signaling
independent of the caspase-1 pathway. Uchiyama et al. revealed the mechanism of the induction
of IL-18/IL-1β production by L. monocytogenes infection via Fas. Upon L. monocytogenes infection,
macrophages produce type I IFN, which induces the expression of the Il18 gene. NK cells express FasL
in response to L. monocytogenes infection that stimulates Fas expressed by infected macrophages. ASC,
ROS and caspase-8 are activated in Fas-stimulated macrophages, which then secrete IL-18/IL-1β in
their active forms [64]. Ly6C+ monocytes produce IL-18 in L. monocytogenes–infected mice, which is
important for the expression of IFN-γ, but not granzyme B, by CTLs [164].

Recently, a new mechanism for IL-18 production by Listeria infection was reported. Macrophages
infected with L. monocytogenes recognize lipoteichoic acid in bacterial cells by NLRP6, which recruits
caspase-11 and caspase-1 via ASC to form an inflammasome that processes IL-1β and IL-18 to
their active forms. At this time, NLRP6 and caspase-11 are induced by type 1 IFN similar to IL-18.
Mice deficient for NLRP6, caspase-11, or IL-18 are more resistant to L. monocytogenes than wild type
mice, but this effect is reversed by the administration of IL-18 [165].

Caspase-1 and IL-18 are important for host defense against Shigella flexneri, the causative agent
of Bacillus dysentery. IL-18-deficient mice nasally infected with S. flexneri developed more severe
inflammation in the lungs compared with wild type mice, because they could not eliminate the bacterial
infection. These studies indicate that IL-18 is important for the induction of inflammation and the
effective elimination of bacteria [166].

In a mouse model of S. typhimurium infection, the protective role of IL-18 was demonstrated
by the treatment of infected mice with anti-IL-18 Ab or the administration of IL-18. In mice
susceptible to lethal S. typhimurium infection, the administration of IL-18 increased survival and
reduced bacterial tissue load [167]. A beneficial effect of exogenous IL-18 was not observed in mice
deficient for IFN-γ. Caspase-1-deficient mice with Salmonella infection died more rapidly than wild
type mice. Both caspase-1 substrates, IL-18 and IL-1β, are involved in the control of S. typhimurium.
Infection experiments with Il18−/− mice and the administration of recombinant IL-18 to caspase-1−/−

mice showed that IL-18 was not important for resistance to the intestinal phase of infection, but rather
to the systemic infection [168].

Endogenous IL-18 is also involved in defense against infection by Yersinia enterocolitica [169,170].
In these models, IL-18 protected mice from lethality in an IFN-γ-dependent manner.

4.2.2.2. Protozoan Infection

Leishmania major is an intracellular parasitic protozoan that mainly infects monocytic cells such as
macrophages. The healing of lesions caused by L. major infection requires the induction and expansion
of Th1 cells and NO production, an important effector molecule involved in the clearance of L. major
via iNOS induction by IFN-γ [171]. IL-12 or IL-18 was administered to L. major-sensitive mice did
not induce wound healing, but combined IL-12 and IL-18 completely protected footpad swelling
in a NO-dependent manner. Treatment with anti-IL-18 neutralizing Ab reduced NO production by
the downregulation of IFN-γ induced by L. major infection and markedly reduced the tolerance to
L. major infection. In addition, IL-18-deficient mice on a L. major-resistant background developed
large lesions during the early stage of L. major infection compared with wild type littermates but
these were eventually resolved [172,173]. However, IL-18 enhanced Th2 cytokine production and
exacerbated footpad swelling in L. major susceptible BALB/c mice [174]. Neutralization of IL-18 by
IL-18BP suppressed Th2 cytokine production by IL-18 and alleviated footpad swelling.

Trypanosoma cruzi is an intracellular protozoan parasite that causes Chagas disease, mainly in Latin
America. Following infection with T. cruzi, early inflammation of the invasion site occurs followed
by hepatoma, splenomegaly after lymphadenitis, and in some cases, acute myocarditis develops and
the patient dies. Chronic infections cause chronic myocarditis, gigantic esophagus, and a giant colon.
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IFN-γ produced after infection is important for determining resistance or susceptibility. Infection with
T. cruzi also induces the production of IL-12 and IL-18 [175]. IL-12 is the major factor important for
defense because absence of IL-18 did not affect the resistance against the protozoa [176,177].

However, in humans there is a correlation between the rs360719 gene polymorphism and
T. cruzi infection (seropositive). rs360719 is located in the promoter region of the IL18 gene and its
polymorphism is thought to affect IL18 gene expression by creating a binding site for the transcription
factor OCT-1 [178]. Therefore, IL-18 might be involved in the resistance to T. cruzi infection.

Infection with T. cruzi can cause myocarditis. Mice infected with a Colombian strain of T. cruzi
had increased blood IFN-γ and IL-12 levels, and in IL-18-deficient mice, the trafficking of inflammatory
cells to the myocardium and the number of protozoa in the tissues were reduced [179]. In addition,
the myocardium of patients with chronic Chagas disease had a high expression of IL-18 [180], and in
Brazilian patients a correlation with the rs2043055 SNP was shown [181]. Therefore, although IL-18 is
not involved in the resistance to T. cruzi infection, it might affect the pathology of myocarditis.

The protozoan, Tritrichomonas musculis, a commensal parabasalid newly identified in 2016,
activates the host epithelial inflammasome and induces IL-18 release. This epithelial-derived IL-18
promotes Th1 and Th17 immunity in dendritic cells and provides protection against mucosal bacterial
infection. Colony formation by T. musculis exacerbated the development of T cell driven colitis and
sporadic colorectal tumor formation [182].

Toxoplasma gondii is an intracellular parasitic protozoan that spreads by ingestion and
vertical infection. Oral or intraperitoneal infection of low doses (<20 cysts) of T. gondii induced
IFN-γ production from Th1 cells and NK cells, which mediated the resistance of mice against
infection [183,184]. However, oral infection with a higher inoculum dose (50–100 cysts) resulted
in a deleterious Th1 cell response characterized by the development of severe small intestinal
necrosis caused by the overproduction of proinflammatory mediators [185]. In immunodeficient
mice, the injection of IL-18 decreased the number of parasites isolated from the tissue and correlated
with an increase in NK cell activity [186]. IL-18 contributed to the development of immunopathological
findings in the small intestine after the oral high-dose infection of T. gondii via the induction of
IFN-γ production [187]. By this mechanism, IL-18 acts on IL-15-dependent NKp46+ NK1.1+ cells
to induce CCL3 production, which is involved in the accumulation of CCR1 positive inflammatory
monocytes [188]. IL-22 is also an important cytokine for ileitis induced by T. gondii infection. IL-22 acts
on intestinal epithelial cells to induce IL-18 expression, which induces IL-22 production from innate
lymphoid cells (ILCs). This positive feedback causes excessive IFN-γ production and marked
neutrophil infiltration in the ileum [189].

Malaria is a major cause of morbidity and mortality, especially in sub-Saharan Africa. When the
malaria parasite invades the host body via mosquito blood sucking, it first infects hepatocytes and
then red blood cells. The early production of IFN-γ and TNF-α is crucial for protective immune
reactions [190]. However, the excessive and prolonged production of proinflammatory cytokines is
involved in the etiology of diseases associated with symptoms characteristic of severe malaria. The role
of IL-18 in host defense against blood stage mouse malaria infection was reported using the non-lethal
strain Plasmodium yoelii 265 and the lethal strain P. berghei ANKA. Infection by P. yoelii 265 or P. berghei
ANKA increased the production of IL-18, IL-12p40 and IFN-γ. The administration of IL-18 to infected
mice increased the infiltration of inflammatory cells, consisting of mononuclear cells and Kupffer cells,
into the liver and decreased necrosis and pigment hemozoin deposition. Furthermore, serum IFN-γ
levels were elevated, the onset of parasitemia was delayed, and the survival rate of infected mice
was increased. The administration of anti-IL-18 neutralizing Ab to mice exacerbated infection with
P. berghei ANKA, impaired host resistance, and shortened the mean survival time. In addition, Il18−/−

mice were more sensitive to P. berghei ANKA than wild type C57BL/6 mice. These data suggest that
IL-18 has a protective role in host defense by enhancing IFN-γ production during blood stage infection
by murine malaria [191,192]. IL-18 increased NK cell reactivity to IL-2 by increasing CD25 expression
and inducing higher IFN-γ production [193].
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Serum IL-18 levels are increased in human P. falciparum malaria patients [194]. When serum
levels of IL-18 and IFN-γwere measured by dividing malaria patients into non-complicated, severe,
and cerebral malaria, an increase in IL-18 levels was observed in all three groups. In cases with
severe malaria, IL-18 tended to be high during the disease course. In addition, there was a significant
correlation between the IL-18 level in severe malaria patients and the extent of parasitemia [195].

4.2.3. IL-18-Mediated Viral Clearance

In addition to the potent induction of IFN-γ, IL-18 activates CD8+ T cells, which play a central
role in viral clearance, suggesting a role for IL-18 in viral infection. Infection with influenza A virus
induced the production of IFN-α/β, TNF-α, IL-1β and IL-18 in human peripheral macrophages [196].
Virus infected macrophage-derived IL-18 acts synergistically with IFN-α/β, inducing rapid IFN-γ
production by T cells, resulting in the induction of Th1 immune responses. In a mouse model
of vaccinia virus infection, the intraperitoneal injection of IL-18 significantly inhibited tail pock
formation in BALB/c mice. Ectromelia virus belonging to the orthopoxvirus family is used as a mouse
model of human smallpox. In IL-18-deficient mice, resistance to E. virus infection was attenuated,
CTL numbers were decreased, and Th2 cytokine producing cells and Treg cells were increased.
Therefore, IL-18 contributes to antiviral immune responses by promoting IFN-γ production and the
induction of CTLs [197]. IL-18 induces HIV replication and in vitro experiments using the monocyte
cell line U1 showed an increase in HIV-1 production after stimulation with the proinflammatory
cytokines IL-1 and TNF-α or after exposure to IL-6 [198]. IL-18 increases HIV-1 production from U1
cells [199] and treatment with TNF binding protein or neutralizing anti-IL-6 mAb decreased IL-18
stimulated HIV-1 production, suggesting a role for IL-18 in HIV-1 pathogenesis. IL-18 levels are
elevated in the sera of HIV-infected patients 3-to-6 years after infection, and decrease thereafter. The
serum of HIV patients contains a large amount of TGF-β and the ability of blood IL-18 to induce
IFN-γ is low. Because TGF-β inhibits IL-18 production from peripheral blood monocytes, IL-18 and
TGF-β concentrations are inversely correlated [200]. In a herpes simplex virus (HSV-1) infection mouse
model, the administration of IL-18 prior to infection markedly improved survival through T and B
cell independent enhancement of IFN-γ induced NO. This effect was also observed in athymic nude
mice and SCID mice, suggesting that IL-18 potentiates innate immunity [201]. Resistance to primary
infection with herpes simplex virus 2 (HSV-2) was attenuated in IL-18-deficient mice or anti-IL-18
antibody treated mice, and the survival rate was reduced after infection [202]. Inflammatory monocytes
recruited to infected sites produce type I IFN and IL-18 induced by HSV-2 infection. IL-18 is important
for IFN-γ production from NK cells [203]. Rotavirus (RV) infects small intestinal epithelial cells,
causing severe dehydrating diarrhea in children and moderate intestinal distress in adults. Bacterial
flagellin treatment prevents RV infection in mice through adaptive immunity, interferons (IFN, type I
and type II), NLRC4, and TLR5, a receptor for the flagellin receptor, all of which combine to cure
chronic RV infection. This effect is suppressed in IL-18BP transgenic mice and Il18−/− mice. The same
protective effect was obtained by administering IL-18 and IL-22 instead of flagellin. The activation of
TLR5 in dendritic cells by flagellin induced the production of IL-22 from ILCs via IL-23. Furthermore,
flagellin also induced the production of IL-18, which was dependent on NLRC4 and independent of
dendritic cells and ILCs. IL-22 induced protective gene expression in intestinal epithelial cells and
IL-18 induced cell death by activating caspase-3 to eliminate RV-infected cells [204].

4.3. IL-18 in Metabolism

4.3.1. IL-18 in Metabolic Homeostasis

Dietary nutrients, such as carbohydrates, proteins, and lipids, are digested and absorbed through
the alimentary tract. Glucose and amino acids generated from carbohydrates and proteins, respectively
are absorbed in the small intestine and transported into the liver via the portal vein. Absorbed fatty
acids from dietary lipids are synthesized into triglycerides, which are transported into the liver. In the
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liver, these dietary units are appropriately catabolized and/or anabolized into minimal substances,
which are consumed in individual cells to produce cellular components, participate in cellular activities
and biological functions. The residual energy in each cell is collected and stored as triglycerides in
adipose tissues. However, excess energy initiates systemic diseases, termed “metabolic syndromes”,
such as type 2 diabetes mellitus, atherosclerosis, and acute myocardial infarction.

Initially, PRRs were thought to distinguish between non-self patterns (e.g., bacterial
lipopolysaccharide, viral single-stranded RNA) and self-derived molecules. However, soon after their
discovery, PRRs were demonstrated to sense various self-derived molecules, such as monosodium urate
crystals involved in gout [44], calcium pyrophosphate dehydrate crystals involved in pseudogout [44],
amyloid b in Alzheimer’s disease [205], and islet amyloid polypeptide in type 2 diabetes mellitus [206].
Now we know that a wide variety of self-derived molecules can activate the NLRP3 inflammasome
(as described above). Therefore, the activated NLRP3 inflammasome might be involved in metabolic
syndrome. Furthermore, NLRP3 inflammasome-mediated IL-1β has been identified as a key
pathogenic cytokine that triggers and/or promotes various metabolic disorders. In contrast, IL-18 is
beneficial for metabolic homeostasis. In this section, we will discuss the beneficial roles of IL-18 in
metabolic homeostasis and introduce topics regarding the unique pathogenic action of IL-18 in the
development of metabolic syndrome.

IL-1β and IL-18 belong to the IL-1 superfamily, and are activated and secreted via a cytoplasmic,
multimeric complex termed the inflammasome, to promote proinflammatory cytokine effects.
In contrast to IL-1β, IL-18 is a prerequisite for metabolic homeostasis. Several cellular and molecular
mechanisms for the maintenance of metabolic homeostasis by IL-18 have been reported.

4.3.1.1. IL-18 Regulation of Food Intake

IL-18-deficient mice spontaneously developed obesity and insulin resistance when fed a
normal chow diet [207]. Il18−/− mice developed obese diabetes mellitus with hyperglycemia,
hyperinsulinemia, impaired glucose- and insulin-tolerance tests, and ectopic lipid deposition in
the aorta wall. This was also observed for transgenic mice systemically overexpressing IL-18BP,
a functional serum decoy receptor for IL-18 [207]. Intriguingly, food intake in Il18−/− mice was
significantly higher than that of control mice. Treatment with recombinant (r) IL-18 improved food
intake in Il18−/− mice. Zorrilla et al. reported that Il18−/− mice fed a low-fat or high-fat diet (HFD)
were hyperphagic as compared with control mice [208]. Furthermore, they found that the intracerebral
ventricular administration of rIL-18 negatively regulated food intake in a dose dependent manner in
HFD-fed wild type mice [209]. These reports suggest that IL-18 suppresses appetite and promotes
energy expenditure even in people consuming an HFD.

4.3.1.2. IL-18 Regulation of Energy Expenditure by Activating Thermogenic Adipose Tissues

Il18−/− mice are characterized by impaired energy expenditure [208,209]. Recently, the
mechanism for the regulation of energy expenditure by IL-18 was unveiled. Skeletal muscle cells
are a prototype cell for energy expenditure [210]. Thermogenic adipose tissues, especially brown
and beige adipocytes that are mitochondrion-rich cells, are secondary cell types that contribute to
energy expenditure [211,212]. However, mitochondria in these cells cannot efficiently oxidize fatty
acids, but dissipate energy as heat, thus contributing to energy expenditure [211,212]. Adipocytes in
white adipose tissues, such as subcutaneous adipose tissue, have low numbers of mitochondria and
are not thermogenic. Under certain conditions, however, white adipocytes can transdifferentiate into
thermogenic beige cells [211]. Recently, it was reported that Il18−/− mice had an impaired activation
of brown adipocytes, and the beiging of white adipocytes [213]. This impairment might account for
the impaired energy expenditure in Il18−/− mice.

IL-33 is a pro-atopic innate immune cytokine and is a member of the IL-1 family. Of note,
group 2 innate lymphoid cells (ILC2s) express the IL-33 receptor and IL-33 directly activated ILC2s
to induce adipocyte beiging [214] via methionine enkephalin, a beiging-inducing molecule [215],
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as well as directly activating eosinophils to induce the beiging of adipocyte precursor cells [216].
Recently, certain populations of ILC2 were shown to express IL-18Rα but not the IL-33 receptor [217].
Skin-resident ILC2s dominantly express IL-18R, although some fat-resident ILC2s also express
IL-18R [217]. IL-18 induction of adipocyte beiging might be explained by the activation of
IL-18Rα-expressing ILC2s.

4.3.1.3. IL-18 Activation of AMPK and Lipid Oxidation in Skeletal Muscle

Adenosine monophosphate-activated protein kinase (AMPK) is a sensor of intracellular energy
status and maintains energy stores by catabolic and anabolic pathways [218]. Skeletal muscles
experience drastic energy changes during exercise and AMPK participates in cellular energy
control [218]. Cytokines such as IL-6, were reported to activate AMPK in the skeletal muscle.
Lindegaard et al. demonstrated that IL-18 activated AMPK in skeletal muscle cells and skeletal
muscle strips in vitro and ex vivo [219]. Consistently, Il18ra−/− mice were reported to be highly
susceptible to HFD, in terms of weight gain and insulin resistance [219]. Intriguingly, ectopic lipid
deposition was induced in the skeletal muscle, but rarely in the liver, of HFD-fed Il18ra−/− mice
accompanied by impaired activation of the AMPK pathway. Therefore, IL-18 might maintain metabolic
homeostasis in part by activating the AMPK signal pathway in skeletal muscle.

4.3.1.4. IL-18 Processed by the NLRP1 Inflammasome Protects Against Metabolic Syndrome.

Recently, NLRP1 inflammasome-mediated IL-18 was reported to contribute to metabolic
homeostasis in vivo [220]. It is well established that lethal toxins generated by Bacillus anthracis,
a causative bacterium of anthrax, activate the NLRP1 inflammasome to release mature IL-1β and
IL-18 [221]. Similar to Il18−/− mice, Nlrp1−/− mice spontaneously develop obesity (Figure 4A).
Their metabolic alterations are characterized by ectopic lipid droplets in insulin-responsive organs,
hepatic steatosis and adiposity in skeletal muscle, an increase in the size of adipose tissues,
and systemically decreased lipolysis [220]. Nlrp1−/− mice suffer from metabolic syndrome with
impaired glucose tolerance [220]. IL-18 levels in visceral adipose tissues were significantly decreased in
HFD-fed Nlrp1−/− mice compared with control mice. Chimeric mice generated by bone marrow
cell transfer revealed that the selective absence of NLRP1 in non-hematopoietic cells, but not
hematopoietic cells, caused these alterations when fed an HFD (Figure 4B). In contrast, mice with
a systemic gain-of-function mutation in Nlrp1, namely Nlrp1MUT mice, spontaneously developed
lethal inflammation associated with the enhanced production of IL-1β. Furthermore, Il1r−/−Nlrp1MUT

mice were resistant to the induction of inflammatory diseases [220]. Convincingly, plasma levels of
IL-18 were still elevated in Il1r−/−Nlrp1MUT mice compared with Il1r−/− mice. Il1r−/−Nlrp1MUT

mice showed a loss of fat in various organs associated with enhanced lipolysis and low glucose
tolerance. When fed an HFD, Il1r−/−Nlrp1MUT mice exhibited cachexia-like morbidity and mortality
with hepatic focal necrosis and highly elevated plasma levels of IL-18 (10-60 ng/mL) (Figure 4C) [220].
The depletion of Il18 rescued Il1r−/−Nlrp1MUT mice from the HFD-induced fatal changes and they
exhibited a comparable phenotype to Il1r−/− mice (Figure 4C) [220]. These observations clearly
demonstrate the importance of IL-18 for metabolic homeostasis, in particular by controlling lipolysis
and insulin sensitivity. Currently, endogenous agonists of the NLRP1 inflammasome remain unclear.
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Figure 4. Involvement of the NLRP1 inflammasome in non-hematopoietic cells on metabolic
homeostasis. (A) Requirement of NLRP1 for metabolic homeostasis: Nlrp1−/− mice spontaneously
develop obesity and related metabolic syndromes when fed a normal diet (ND) that does not induce
obesity in wild type (WT) mice. Nlrp1−/− mice fed a high-fat diet (HFD) had a more severe illness
compared with WT mice. (B) IL-18 is released after activation of NLRP1 in non-hematopoietic cells.
Nlrp1−/− mice reconstituted with WT bone marrow cells (Nlrp1−/− > WT) showed a phenotype
similar to Nlrp1−/− mice. In contrast, WT mice reconstituted with Nlrp1−/− bone marrow cells
(WT > Nlrp1−/−) exhibited a phenotype comparable with WT mice. (C) The protective role of IL-18
against cachexia. Il1r−/−Nlrp1MUT mice harboring a mutant gene from human patients with familial
Mediterranean fever but lacking the IL-1R gene have an almost intact phenotype when fed a ND.
However, when fed an HFD, Il1r−/−Nlrp1MUT mice suffered from fatal illness with a marked increase
in circulating IL-18 levels. By contrast, Il18−/−Il1r−/−Nlrp1MUT mice were resistant to HFD.

4.3.2. Detrimental Role of the NLRP3 Inflammasome/IL-1β Axis in the Development of
Metabolic Syndrome

It is well established that chronic inflammation, induced by proinflammatory cytokines
including IL-1β processed by the activated NLRP3 inflammasome, is associated with obesity
and resultant metabolic syndromes, such as type 2 diabetes mellitus, atherosclerosis, and cardiac
vascular diseases, which are leading causes of death [222–228]. Many NLRP3 activators have been
identified. First, oxidized low-density lipoprotein (LDL) was reported to activate macrophages
through CD36, a scavenger receptor, to produce TNF-α and other proinflammatory cytokines,
eventually leading to the development of atherosclerosis and cardiovascular diseases [229,230].
Under the conditions of oxidized LDL, cholesterol crystals that activate the NLRP3 inflammasome
are generated in macrophages [231,232]. These events promote atherosclerosis. Second, saturated free
fatty acids, such as palmitate, were identified as NLRP3 activators in addition to TLR4
agonists, which eventually cause type 2 diabetes [233,234]. Third, hyperglycemia activates
the thioredoxin-interacting protein (TXNIP)-mediated NLRP3 inflammasome in adipose tissues
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and microvascular endothelial cells, which are relevant to type 2 diabetes and myocardial
ischemic/reperfusion injury, respectively [235–237].

Patients with metabolic syndrome have elevated circulating levels of IL-18, a product of NLRP3
inflammasome activation [238,239]. Chronic inflammation in adipose tissues causes insulin resistance
and type 2 diabetes mellitus. Notably, IL-1β, but not IL-18, participates in the development of
metabolic syndromes by inhibiting adipocyte differentiation that is required for the maintenance
of insulin sensitivity [240,241] and inducing inflammation [242]. IL-18 alone does not exert a
proinflammatory effect when levels of co-activating cytokines, such as IL-12, are low [1,2,131,243,244].
Adipose tissue-associated macrophages of the M2 type produce anti-inflammatory and pro-fibrotic
cytokines but low levels of proinflammatory cytokines [245,246]. This might explain the minor role of
IL-18 in triggering obesity-associated metabolic diseases.

4.4. IL-18 in Intestinal Homeostasis

The gastrointestinal tract absorbs beneficial nutrients and paradoxically functions as a surface
barrier to prevent harmful factors from entering the circulation. To transport dietary nutrients
safely and efficiently, the gastrointestinal tract contains various control systems. Movement of the
gastrointestinal tract is regulated by a unique nervous network termed the enteric nervous system as
well as the central nervous system, under the control of sensing dietary contents, nutrients, and possible
dietary toxins [247]. Once toxic foods enter the gastrointestinal tract, these nervous systems enhance
gastrointestinal motility to rapidly exclude them via the production of diarrhea. In the gastrointestinal
tract, especially the colon, various indigenous xenogeneic microorganisms, termed microbiomes,
including viruses, bacteria, and fungi, reside symbiotically. Furthermore, the gastrointestinal tract
transports food Ag and dietary nutrients into the tissues. Therefore, the gastrointestinal tract is always
in contact with stimuli that activate innate and/or adaptive immunity. However, to accomplish their
task of nutrient intake, the gastrointestinal tract negatively regulates immune responses directed
to food Ags and microbiomes. Furthermore, symbiotic microbiome-derived metabolites, such as
butyrate, are utilized to develop regulatory T cells that prevent pathological immune responses to
food Ags and/or microbiomes in healthy individuals [248–250]. However, the gastrointestinal tract is
a gate keeper, and should also detect and prevent the potential invasion of symbiotic microbes and
food-borne pathogens [251,252]. Therefore, the gastrointestinal tract encompasses both a resistant
barrier and a unique neural and immune system/network to prevent the entry on non-self factors.

Recently, IL-18 generated by intestinal epithelial cells was shown to be required for intestinal
homeostasis [252,253]. In contrast, the uncontrolled release of IL-18 by immune cells infiltrating
into lesions had an opposite detrimental effect in inflammatory bowel diseases (IBDs) [254,255].
Intriguingly, a recent article reviewed the importance of the NLRP3/IL-1β axis in IBDs [256]. Here,
we introduce the beneficial roles of epithelial IL-18 in gut homeostasis.

4.4.1. Intestinal Epithelial Cells Constitutively Produce Constituents of the Inflammasome for
IL-18 Maturation

As described above, pro-IL-18 is produced and stored in a wide variety of cells. In contrast
to pro-IL-18, pro-IL-1β is rarely expressed in the intestinal epithelium under normal conditions.
Intestinal mucosal epithelial cells were reported to store pro-IL-18 in the cytoplasm [257–259].
These cells produce pro-caspase-1 and the caspase-1 activation adaptor molecule, ASC under a steady
state [260–262]. Furthermore, several sensors or regulators of inflammasomes are also expressed
constitutively, such as NLRP3 [263], NAIP-NLRC4 [264–266], and NLRP6 [267,268]. Therefore,
intestinal epithelial cells have pre-formed components for inflammasomes. Of note, pro-IL-18, but not
pro-IL-1β, is constitutively produced in tissue parenchymal cells in the steady state. Therefore,
upon activation of the gut epithelial inflammasome, only mature IL-18 might be selectively activated
and secreted. Therefore, the constitutive distribution of pro-IL-18 in specific cell types might determine
the pro-homeostatic action of IL-18 on parenchymal cells.
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4.4.2. Importance of the Gut Microbiome for Homeostatic IL-18 Release

Gut microbiota are necessary for the appropriate development of innate and adaptive
immunity. Indeed, intestinal T cells fail to develop into Th17 and Treg cells, under germ-free
conditions [250,269–272]. However, supplementation with commensal bacteria or their
products corrected this effect leading to their healthy development [250,269–272]. Recently,
a microbiome-derived metabolite was demonstrated to be a prerequisite for the intestinal epithelial cell
secretion of IL-18, which is necessary for intestinal homeostasis [273]. Mice fed a high-fiber diet were
resistant to DSS-induced colitis. The microbiome catabolizes food into short chain fatty acids, such as
acetate, in the mammalian gut. Mice deficient for G protein-coupled receptors that recognize short
chain fatty acids, are highly susceptible to DSS challenge even when fed a high-fiber diet. Consistently,
supplementation with acetate restored their resistance to DSS challenge. Intriguingly, the induction of
IL-18 by acetate was dependent on NLRP3 but not NLRP6 [273]. These results suggest that metabolites
generated by the microbiome participate in the constitutive secretion of IL-18 for gut homeostasis.

4.4.3. Roles of NLRP6 Inflammasome-Mediated Epithelial IL-18 in Gut Homeostasis

Nlrp6, a member of the NLR family, is preferentially expressed in the kidney, liver, lung,
and intestines, but rarely in the thymus or spleen [274]. In the colon, Nlrp6 is expressed dominantly
in epithelial cells, whereas Asc and Caspase1 are similarly expressed in epithelial cells and CD45+

hematopoietic cells [267]. Similar to the NLRP3 inflammasome, the NLRP6 inflammasome is thought
to consist of NLRP6, ASC, and pro-caspase-1 [261,275]. A recent report clearly demonstrated the
requirement of caspase-11 for the optimal processing of caspase-1 by the NLRP6 inflammasome in
macrophages upon transfection with lipoteichoic acids derived from a Gram-positive bacterium [276].
The loss of NLRP6 was reported to cause dysbiosis [261,267,275] and to impair the mucin layer in
the colon of mice [277]. However, which stimuli initiate the sustaining activation of the NLRP6
inflammasome in intestinal epithelial cells remain to be elucidated. We need to identify whether
lipoteichoic acid, presumably derived from the microbiome, contributes to the sustaining activation of
the NLRP6 inflammasome.

4.4.3.1. The NLRP6 Inflammasome is Indispensable for the Healthy Microbiota

Both Nlrp6−/− and Asc−/− mice are highly susceptible to DSS-induced colitis, strongly suggesting
the importance of the NLRP6 inflammasome in this disorder [267]. Wild type mice co-housed with
Nlrp6−/− mice have a similar susceptibility to DSS challenge as observed for wild type mice co-housed
with Asc−/−, caspase1−/− or Il18−/− mice [267], indicating colonic IL-18 is important for maintenance
of the healthy microbiome (Figure 5). Indeed, the fecal bacterial phylogenetic architecture in these
mice was clearly different from that in wild type mice [267]. Of note, wild type mice co-housed with
Il1r−/− mice show comparable clinical course after DSS challenge as wild type mice co-housed with
wild type mice [267]. This clearly suggests that IL-1β is not generated by the NLRP6 inflammasome in
colonic epithelial cells possibly because of the absence of pro-IL-1β. Alternatively, IL-1β generated
through the NLRP6 inflammasome is not involved in the microbiome. Furthermore, wild type mice
co-housed with Aim2−/− mice or Nlrc4−/− mice have an intact microbiome [267], suggesting that the
AIM2 inflammasome or NLRC4 inflammasome are not activated in colon epithelial cells in the steady
state. Therefore, the NLRP6 inflammasome is activated in the murine colon, leading to IL-18 release
which maintains gut homeostasis by preventing dysbiosis.
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Figure 5. Importance of IL-18 for gut homeostasis. Intestinal epithelial cells utilize various
inflammasomes for the constitutive production of IL-18. Under SPF conditions, colonic epithelial
cells release IL-18 dependent on the NLRP6 inflammasome, which in turn activates epithelial cells
to produce antimicrobial peptides (AMPs) to maintain microbiome homeostasis. Nlrp6−/− mice
spontaneously develop dysbiosis resulting in colitis. The NLRP6 inflammasome is involved in the
generation of the homeostatic mucin layer by intestinal epithelial cells. IL-18 derived from pyrin
inflammasome activation is involved in gut homeostasis through the generation of intact tight junction
(Tj) formation. Furthermore, pyrin inflammation-mediated IL-18 protects against colitis-associated
colorectal cancer by reducing the stemness of colon epithelial cells.

Colon tissues from wild type mice under specific pathogen-free (SPF) conditions, but not under
germ-free conditions, constitutively produce mature IL-18 [261]. Consistent with this, levels of IL-18
spontaneously produced by the colon of SPF mice are very low at birth, but are markedly increased
at around 3 weeks, with continuous high levels of IL-18 thereafter [261]. Therefore, the microbiome
might initiate IL-18 production (Figure 5). Upon stimulation with recombinant IL-18, colon tissues
from germ-free mice produced antimicrobial peptides, which were beneficial for host defense on the
barrier surfaces [278,279]. Colon tissues from wild type mice, but not Asc−/−, Il18−/−, caspase1/11−/−

or Nlrp6−/− mice, constitutively produced antimicrobial peptides (Figure 5). Exogenous IL-18 restored
the antimicrobial peptide production by these inflammasome-deficient mice concomitant with the
restoration of dysbiosis [261]. Metagenomic sequencing of germ-free wild type mice co-housed with
wild type mice or Asc−/− mice revealed decreased taurine and increased histamine and spermidine
in the metabolites of feces from the wild type mice co-housed with Asc−/− mice compared with the
wild type mice co-housed with wild type mice. The administration of spermidine or histamine in the
drinking water impaired the spontaneous activation of caspase-1 and spontaneous production of IL-18
in the colon of wild type mice. Those observations suggest that NLRP6 inflammasome-mediated IL-18
sustains a healthy microbiome via the induction of antimicrobial peptides in the murine colon [275].
Endogenous ligands that activate the NLRP6 inflammasome for the continuous release of IL-18 remain
to be elucidated.

4.4.3.2. Involvement of the NLRP6 Inflammasome in the Formation of the Colonic Mucin Layer

The mucin layer is essential for intestinal host defense [280,281]. Nlrp6−/− mice have colonic
goblet cells numerically comparable to wild type mice. However, a detailed histological analysis



Int. J. Mol. Sci. 2019, 20, 649 24 of 54

showed that the width of the colonic inner mucus layer had almost disappeared in Nlrp6−/− mice [277].
This was also observed in Asc−/− mice and caspase1/11−/− mice. In contrast, the inner mucin layer
was intact in Il1r−/− mice and Il18−/− mice, indicating other biological events downstream of
the NLRP6 inflammasome pathway might be involved in mucin formation (Figure 5). Nlrp6−/−,
Asc−/−, and caspase1/11−/− mice are highly susceptible to enteric infection with Citrobacter rodentium.
Mice deficient in the NLRP6 inflammasome have impaired autophagosome formation [277] suggesting
the NLRP6 inflammasome might contribute to healthy mucin layer formation by modulating the
autophagosome pathway because the autophagy-mediated pathway contributes to other secretory
pathways [282], and mice deficient in the molecule responsible for autophagosome generation
have an abnormal inner mucin layer in the intestine [277]. The mechanism underlying the NLRP6
inflammasome induction of autophagy remains to be elucidated.

4.4.4. Importance of Pyrin Inflammasome-Mediated Mucosal IL-18 for Tight Junction Formation

It is well established that mutations in PYRIN, alternatively named MEFV, are associated with a
hereditary autoinflammatory disease termed Mediterranean fever as well as severe IBDs [283–287].
Pyrin is a member of the innate sensor family and forms part of the inflammasome after cells are
stimulated by bacterial Rho GTPase [288,289]. Pyrin−/− mice are susceptible to infection with
pathogens that produce Rho GTPase as an exotoxin, including Burkholderia cenocepacia [288,289].
Intriguingly, ligands for TLRs, such as LPS, and TNF-α/TNFR1-mediated signaling induced Pyrin
expression [290]. Recently, it was demonstrated that the pyrin inflammasome contributes to tight
junction integrity to alleviate colitis and colitis-associated colon cancer in mice [290] (Figure 5).
Pyrin−/− mice are highly predisposed to colitis-associated colon cancer [290], which is induced
by periodical treatment with AOM-DSS [291]. Pyrin−/− mice had a larger burden of colon cancer
with more severe colitis compared with wild type mice. Furthermore, colon tissues from Pyrin−/−

mice spontaneously produced higher amounts of proinflammatory cytokines/chemokines, but lower
amounts of IL-18 despite comparable Il18 expression, when compared with control mice. Pyrin−/−

mice exhibited a loss of epithelial barrier integrity with histologically and biologically impaired tight
junctions, although the production of antimicrobial peptides and mucin were normal. Furthermore,
the colons of DSS-treated Pyrin−/− mice expressed higher levels of stem cell markers compared
with DSS-treated control mice. Intriguingly, treatment with exogenous recombinant IL-18 restored
epithelial permeability, colitis, and the tumor burden [291]. Therefore, in colon epithelial cells, the pyrin
inflammasome might be constitutively activated to release IL-18, which sustains epithelial barrier
integrity and prevents tumorigenesis. Intriguingly, IL18 and IL18RB expressions were significantly
lower in colorectal cancer patients than colon biopsies from healthy donors [291]. These observations
suggest that the supplementation of IL-18 might be beneficial for certain types of colitis to protect
against colorectal cancer.

4.4.5. Newly Identified NLRP9b-Mediated IL-18 Release is Involved in Rotavirus Clearance

Very recently, Zhu et al. demonstrated that NLRP9b formed a new inflammasome comprised of
ASC and pro-caspase-1, and that upon rotavirus infection it released IL-18, but not IL-1β, to induce
pyroptotic cell death [41,292]. Pyroptotic cell death, but not IL-18, is important for rotavirus eradication.
NLRP9b, similar to NLRP6, is constitutively expressed in intestinal epithelial cells. Nlrp9b−/− mice,
and mice selectively deficient in caspase-1 in epithelial cells, but not Il18−/− mice, were highly
susceptible to rotavirus infection, in terms of exaggerated diarrhea [292]. Furthermore, the NLRP9b
inflammasome recognizes rotavirus RNA pathogen associated molecular patterns through DHX9,
an RNA helicase [293]. Therefore, the gut mucosal epithelium is equipped with several inflammasomes
to protect against various pathogens. Currently, whether NLRP9b is involved in the homeostatic
production of IL-18 for intestinal homeostasis is unknown.
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5. IL-18 in Disease

5.1. Endotoxin-Induced Systemic and Tissue Diseases

5.1.1. Induction of Endotoxin Shock in P. acnes-Primed Mice.

Sepsis is still a common, life-threatening disorder, in which endotoxin is a key player.
Paradoxically, patients with high serum levels of endotoxin do not necessarily develop lethal
shock, whereas some patients die of septic shock even when their serum endotoxin levels are low.
To understand this paradox, we measured serum IL-6 levels of patients, because LPS induces IL-6
production in vivo. The simultaneous measurement of serum levels of LPS and IL-6 indicated that
there were at least two groups: the high IL-6 group was endotoxin shock susceptible and the low IL-6
group was endotoxin shock resistant [294]. These results suggested that limiting factors determine the
sensitivity of patients to endotoxin shock.

Rodents are genetically resistant to LPS. Therefore, naïve BALB/c mice are resistant to challenge
with high doses of LPS (100 µg/mouse). However, BALB/c mice primed with heat-killed P. acnes,
a Gram-positive skin habituating bacterium, or BCG, become highly susceptible to the lethal
shock-inducing effect of LPS. Furthermore, upon LPS (1 µg/mouse) challenge, they rapidly produced
IL-1, TNF-α and IL-6 and died of endotoxin shock or, if they survived, they suffered from acute
liver injury through apoptosis-mediated hepatocytotoxicity [294,295]. Moreover, P. acnes-primed mice
became highly susceptible to the lethal shock-inducing effects of IL-1 and TNF-α, producing high
levels of IL-6 and dying after challenge with IL-1 and TNF-α. Therefore, priming with P. acnes or BCG
induced lethal endotoxin shock in mice highly susceptible to LPS by the enhanced production of IL-1,
TNF-α, and IL-6.

After publishing these results [294], we observed that P. acnes-primed BALB/c nu/nu mice were
resistant to LPS-induced lethal shock, but died of fulminant hepatitis [1]. However, nu/nu mice
reconstituted with splenic T cells died of lethal shock before the development of fulminant hepatitis
after sequential treatment with P. acnes and LPS [296]. Therefore, P. acnes pretreatment rendered
mice highly susceptible to the lethal shock-inducing effect of LPS by the induction of Th1 cells.
Indeed, IL-12p40-deficient mice or IFN-γ-deficient mice were highly resistant to P. acnes-primed and
LPS-challenged endotoxin shock, revealing the importance of IFN-γ as a limiting factor to determine
the sensitivity to LPS shock.

5.1.2. LPS-Induced Liver Injury in P. acnes-Primed Mice

As noted above, P. acnes-primed and LPS-challenged nu/nu mice eventually died of fulminant
hepatitis. However, the administration of anti-IL-18 Ab prevented LPS-induced liver injury in
P. acnes-primed nu/nu mice [1]. We found that IL-18 induced FasL expression on Th1 cells, NK cells and
unique liver T cells. Therefore, IL-18 is a key player in LPS-induced liver injury and induced fulminant
hepatitis through Fas-mediated hepatocytotoxicity [295]. Indeed, P. acnes-primed IL-18-deficient mice
were resistant to liver injury after LPS challenge. However, the administration of IL-18 induced liver
injury in P. acnes-primed IL-18-deficient mice via the induction of FasL and TNF-α [63]. Therefore,
we are very interested in how IL-18 is released after LPS challenge in P. acnes-primed mice [295].

Wild type mice primed with P. acnes developed dense granulomas in the liver, and developed
acute liver injury when subsequently challenged with a sublethal dose of LPS [295]. These mice had
elevated serum IL-18 levels after LPS challenge. Furthermore, P. acnes-primed IL-18-deficient mice
exhibited granulomas in the liver comparable with P. acnes-primed WT mice, but were resistant to
acute hepatitis induced by LPS. In contrast, MyD88-deficient mice, which lack signaling common
to many TLRs as well as IL-18/IL-1β signaling, primed with P. acnes had low hepatic granuloma
formation and undetectable levels of IL-18 after LPS challenge [57], although MyD88-deficient Kupffer
cells secreted IL-18 in response to LPS in vitro [56,295]. Therefore, we examined the contribution
of TRIF for P. acnes-induced hepatic granuloma formation and LPS-induced IL-18 secretion [57].
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Unlike MyD88-deficient mice, P. acnes-primed TRIF-deficient mice normally develop hepatic dense
granulomas, but do not release IL-18 or develop liver injury. Therefore, we concluded that P. acnes
treatment induced hepatic granuloma formation that was dependent on MyD88. Subsequent LPS
challenge activated caspase-1 via the NLRP3 inflammasome and induced IL-18 release, which was
dependent on TRIF, eventually leading to liver injury [57].

5.2. IL-18 in Allergy

5.2.1. Induction of IgE Production by IL-18

The daily administration of IL-18, especially with IL-2, markedly increased serum levels of IgE
in naïve wild type mice [132]. An in vitro study revealed the increased expression of CD40L and
production of IL-4 in CD4+NK1.1+ T cells stimulated with IL-2 and IL-18. These IL-18-stimulated NKT
cells induced the development of naïve B cells into IgG1 and IgE-producing cells by the simultaneous
stimulation of B cells with CD40L and IL-4 [134].

5.2.2. Innate-Type Allergic Inflammation Induced by IL-18

We established transgenic mice overexpressing human caspase-1 in keratinocytes (KCasp1-Tg).
These mice spontaneously produced IL-18 and IgE, and developed atopic dermatitis (AD)-like skin
lesions. Stat6-deficient KCasp1 Tg mice did not produce IgE, but still developed similar skin lesions.
Therefore, the overproduction of IL-18 from keratinocytes induces skin lesion even in the absence of
IgE [71]. We described this inflammation as “innate-type allergic inflammation” [135].

5.2.3. The Induction of IFN-γ and IL-13 Producing Super Th1 Cells by IL-2 and IL-18

Th1 cells produce both Th1 cytokines (IFN-γ) and Th2 cytokines (IL-9 and IL-13) in response
to IL-18 plus IL-2. Furthermore, the intranasal administration of Ag, IL-2 and IL-18 to naïve
mice bearing resting Th1 memory cells induced the development of airway inflammation and
hyperresponsiveness [297]. We found that upon challenge with Ag, IL-2 and IL-18, resting memory
Th1 cells produced both Th1 cytokines (IFN-γ) and Th2 cytokines (IL-9 and IL-13), which induced
severe bronchial asthma. The administration of Ag and LPS also induced bronchial asthma by the
induction of endogenous IL-18 from LPS-stimulated bronchial epithelial cells [298]. Therefore, Th1 cells,
after stimulation with Ag and IL-18, become harmful cells that produce IFN-γ and IL-13, which induced
difficult to control bronchial asthma [297,298]. We termed pathological Th1 cells as “super Th1 cells”,
because they induced difficult to control asthma or AD-like skin lesions. This prominent feature of
IL-18 might explain the mechanism for infection-associated allergic diseases.

5.2.4. Bronchial Asthma Induced by the Intranasal Administration of IL-2 and IL-18

The nasal administration of IL-2 and IL-18 induced airway hyperresponsiveness, pulmonary
eosinophilia, and goblet cell hyperplasia in wild type mice, but not in Rag2-deficient mice [299].
However, the nasal administration of IL-33 induced similar changes in wild type mice and
Rag2-deficient mice [300]. Therefore, IL-2 plus IL-18 induced pulmonary changes in a T cell-dependent
manner, while IL-33 treatment induced the same changes in a T cell-independent and innate
cell-dependent manner.

5.3. IL-18 in Kidney Diseases

IL-18 is well documented as being involved in various types of kidney diseases. For example,
mice deficient in Il18 or those administered neutralizing anti-IL-18 Ab are resistant to acute kidney
disease induced by ischemia/reperfusion [301] or by cisplatin treatment [302]. IL-18 blockade was also
shown to protect against chronic kidney disease in mice induced by unilateral ureteric obstruction [303].
Recent excellent review articles have addressed this issue, in particular, focusing on its role in
inflammasomes [304–307]. Here, we describe two topics of IL-18: its role in human IgA nephropathy
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and IL-18 as a clinical biomarker of acute kidney injury (AKI) that influences long-term outcomes of
cardiac surgery.

5.3.1. Association between Serum IL-18 Levels and Renal Prognosis in IgA Nephropathy

IgA nephropathy is a primary mesangial proliferative glomerulonephritis with the prevalent
deposition of IgA in mesangial cells in the glomerulus. IgA nephropathy is regarded as a benign
kidney disease. However, recent clinical studies revealed that IgA nephropathy had an extremely
variable clinical course and that it led to end-stage renal disease with slow progression [308,309]. It was
reported that serum IL-18 levels were a potent prognostic factor for IgA nephropathy [310]. Notably,
serum concentrations of IL-18 in IgA nephropathy patients were significantly elevated compared with
healthy controls [310]. Patients sensitive to corticosteroid therapy showed a significant reduction in
serum levels of IL-18 after therapy, while patients resistant to therapy exhibited no reduction. Moreover,
the renal survival of IgA nephropathy patients with higher than median serum IL-18 levels at baseline
was approximately 20% at the end of the follow-up period (four years), and approximately 80% for
total IgA nephropathy patients [310]. Furthermore, immunohistochemical analyses revealed that the
intensity of IL-18 and NLRP3 proteins in renal biopsy samples from patients with IgA nephropathy
correlated with the severity of proteinuria [311]. Therefore, serum IL-18 concentration might be a
predictor for renal prognosis in this disease.

5.3.2. Urinary IL-18 as A Biomarker of AKI after Cardiac Surgery

Because murine tubular epithelial cells secrete IL-18 and contain the components required for
inflammasome activation [305,312,313], urine IL-18 levels might be elevated after acute tubular injury
in human [314,315]. Urinary IL-18 is now recognized as a biomarker for AKI [316]. AKI often
occurs in adults and children undergoing cardiac surgery and is a risk factor for morbidity and
mortality [317,318]. Levels of serum creatinine, a biomarker for the diagnosis of AKI, increase late in the
course of the disease, delaying timely treatment. Many studies have investigated new AKI biomarkers
and several urinary proteins including IL-18 have been identified as early AKI biomarkers [319].
Recently, urinary biomarkers of AKI, particularly IL-18, were reported to be an additional prognostic
factor for long-term postoperative mortality. Urinary IL-18 levels on post cardiac surgery days 1-3 were
well correlated with the mortality rate at three-year follow-up [320]. AKI contributes to multiple organ
failures [321,322], suggesting that long-term postoperative mortality might be directly evoked by AKI.
However, a recent study revealed that postoperative AKI might be indicative of cardiac vascular stress,
rather than an independent renal pathway for adverse cardiovascular death [323].

5.4. IL-18 in Metabolic Disorders

Early clinical studies revealed that IL-18 levels were elevated in the circulation and atherosclerotic
plaques of patients with atherosclerosis [324,325]. In a prospective study of 1229 patients with
coronary artery disease, at the 4-year follow-up, serum IL-18 levels were significantly higher in
patients with fatal cardiovascular events than in those who did not die [326]. A community-based
prospective cohort study showed that plasma IL-18 levels were a predictor of coronary evens in
healthy European men [327]. Recently, a meta-analysis of the association of IL-18 with coronary
heart disease identified circulating IL-18 as a possible risk factor of cardiovascular disease [328].
These reports suggest IL-18 is involved in metabolic syndrome. However, as described above (4.3.2),
during metabolic disorders caused by excess energy, the NLRP3 inflammasome is likely to be activated
by aberrant lipid metabolites and/or high glucose levels, which subsequently results in the secretion
of IL-18 as well as IL-1β, which can induce inflammatory responses [242]. In contrast, IL-18 has a
neutral or beneficial role in triggering obesity-associated metabolic diseases as described above (4.3.2).
Therefore, an increase in circulating IL-18 concentrations might be an indicator of the activation levels
of the NLRP3 inflammasome in the early phase of disease. IL-18, together with IL-12 and/or IL-15,
exerts proinflammatory effects such as the activation of Th1 cells and the induction of IFN-γ by various
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immune cells including NK cells. During the progress of metabolic syndrome, abnormal metabolites,
such as oxidized LDL and hyperglycemia activate the TLR4 and/or TLR2-mediated pathways [230,329],
potentially leading to the production of IL-12 and/or IL-15. Under these conditions, IL-18 might
activate NK cells and/or Th1 cells to produce large amounts of IFN-γ and/or TNF-α [1,2,132,243,244].

5.5. IL-18 in Cancer

As initially reported, IL-18 activates NK cells to produce IFN-γ and enhance cytotoxicity against
tumor cells in synergy with IL-12 [1,243,244,330]. Because NK cells, and recently identified innate
lymphoid cells, are well-established tumor-killing cells [331], many researchers have addressed
whether IL-18 therapy rescues cancer expansion [332–334]. Here, we describe two recent theories on
the beneficial roles of IL-18 in protecting against cancer. One is the establishment of cancer therapy by
IL-18-activated human γδT cells. The other topic is the importance of fungi in microbiota for protection
against colitis-associated colorectal cancer by inducing IL-18.

5.5.1. IL-18 Robustly Expands Human γδT Cells

γδT cells have several innate cell-like properties [335,336]. For example, similar to αβT cells,
γδT cells are activated upon T cell receptor (TCR) engagement. Whereas the TCR-mediated activation
of αβT cells occurs in an MHC-restricted manner, the TCR engagement of γδT cells is independent of
the MHC. To exert their biological function, naïve αβT cells require the appropriate differentiation into
effector T cells, whereas γδT cells, including NK cells, can rapidly produce large amounts of cytokines
and kill tumor cells. Indeed, γδT cells are well documented to exert tumoricidal activity [335–337].
However, low numbers of γδT ells are present in the peripheral blood of humans. Therefore,
the bottleneck for the development of γδT cell-mediated cancer therapy has been the lack of an
established method suitable for the efficient and safe expansion of γδT cells. Recently, Okamura’s
group reported a protocol to obtain high numbers of γδT cells using IL-18 [338–341]. The incubation
of human PBMCs including 1%–2% γδT cells with γδT cell Ag and IL-2 and IL-18, induced the
proliferation of γδT cells, but not αβT cells, by approximately several thousand-fold in a 2-week
culture [338–341] (Figure 6A). They used zoledronate as an activator of endogenous γδT cell Ag,
which induces the accumulation of intermediate isopentenyl pyrophosphate, an endogenous γδT cell
Ag, by blocking farnesyl pyrophosphate synthase in human monocytes [337,342,343]. The depletion of
monocytes from PBMCs prevented the expansion of γδT cells [339]. Intriguingly, the IL-18-mediated
expansion of human γδT cells requires CD56+CD11c+cells [338,339], initially termed NK-like dendritic
cells (NKDCs) [344,345]. Indeed, CD56intCD11c+ cells in PBMCs co-cultured with monocytes in the
presence of IL-12 and IL-18 robustly expanded and differentiated into CD56brightCD11c+ cells [338].
However, how CD56brightCD11c+ cells contribute to the expansion of γδT cells remains unknown.
They also demonstrated that combination therapy with IL-18 and immune-checkpoint therapy with
anti-PD-L1 and/or anti-CTLA4 mAb, synergistically prevented the mortality of mice harboring various
tumor cell lines [346]. Combination therapy with IL-18 induced the expansion of precursor mature
NK cells (counter cells of human CD56+CD11c+ cells) but did not affect regulatory T cells. The in vivo
depletion of precursor mature NK cells or CD8+ T cells abrogated these therapeutic effects [346].
Therefore, IL-18 in combination with immune-checkpoint therapy might be a potential treatment for
the early stages of cancer in humans.
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Figure 6. IL-18 protection against cancer. (A) Robust proliferation of tumoricidal human γδT cells.
IL-18 in combination with IL-2 activates and induces the proliferation of human CD56+CD11c+

precursor NK cells, which in turn robustly proliferate and activate γδT cells stimulated with γδT cell
antigen produced by zoledronate (Zol)-treated monocytes (Mo). (B) Involvement of CLRs-mediated
CARD9 inflammasome activation in the induction of colon cancer. Fungi in the intestinal microbial
flora activate macrophages through C-type lectin receptors (CLRs), which promote Syk to activate
caspase-1 via the CARD9 inflammasome. The resultant IL-18 is required for protection against colitis
and colitis-associated cancer.

5.5.2. Mycobiome-Mediated IL-18 Protects Against Colitis-Associated Colorectal Cancer

A recent report confirmed the anti-cancer effect of IL-18 released from macrophages in
response to commensal fungi on colitis-associated cancer [347]. The microbiome contains fungi
as well as bacteria and other microorganisms [348]. C-type lectin receptors including Dectin-1,
Dectin-2, Dectin-3, and Mincle are expressed on host cells and recognize β-glucan and α-mannans
expressed by fungi [349–352]. Upon ligation with their ligands, C-type lectin receptors recruit
Syk kinase, followed by NF-κB and MAPK signaling by assembling the CARD9/MALT/BCL10
complex [353]. Malik et al. reported that the recognition of commensal fungi by C-type lectin receptor
induced Syk-dependent CARD9 inflammasome activation induced the release of mature IL-18 [347]
(Figure 6B). Card9−/− mice and mice selectively deficient for Syk in myeloid cells were predisposed to
azoxymethane (AOM)/DSS-induced colitis-associated colorectal cancer, concomitant with reduced
mature IL-18 in colon explants and an impaired accumulation of anti-tumorigenic T cells in the colon.
Exogenous IL-18 prevented these mutant mice from colorectal cancer and restored the migration of
anti-tumorigenic T cells. Of note, the administration of antifungal drugs rendered wild type mice
highly susceptible to AOM/DSS-induced colitis-associated colorectal cancer, and supplementation
with IL-18 rescued their predisposition to colorectal cancer [347]. These observations suggest the
careful per os treatment of IBD patients with antifungal drugs might be of benefit. The depletion of
mycobiota by antifungal drugs might initiate and/or promote colorectal cancer in IBD patients.
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6. Similarities and Differences between IL-18 and IL-33

IL-33 is an IL-1 cytokine family member that uses ST2 and IL-1RacP (IL-1 receptor accessory
protein) as a receptor to transduce signals via MyD88 [354], similar to IL-18. In contrast to IL-18R
expressed on Th1 cells, which enhances IFN-γ production, ST2 is expressed on Th2 cells and enhances
Th2 cytokine production. Furthermore, ST2 is expressed on various cells including ILC2s, mast cells,
eosinophils, and basophils, and IL-33 stimulates these cells to induce Th2-type cytokines including
IL-4, IL-5 and IL-13. By the action of these cytokines, IL-33 is involved in allergic inflammation and
anthelminthic immunity by enhancing eosinophilic inflammation and mucus secretion [355].

Both IL-33 and IL-18 are released from epithelial cells or macrophages, but the individual
production mechanisms are different. IL-33 exists as an active full-length form in the nucleus,
which is released when cells undergo necrosis or are stressed [356]. In contrast, IL-18 stored in
the cytoplasm as an inactive precursor and is released in response to stimulation by proteases such
as caspase-1 [357]. When IL-18 is produced from macrophages by TLR stimulation, IL-12 may be
also produced, to markedly induce the production of IFN-γ in vivo. Caspase-1 inactivates IL-33,
and therefore, IL-33 is not produced when cells are activated to form an inflammasome by infection
with bacteria harboring TLR ligands [358]. However, granule proteases in neutrophils and mast cells
cleave IL-18 and IL-33 to enhance their activity [69,70,359,360]. IL-18 and IL-33 can stimulate basophils
and mast cells to produce IL-4 and IL-13 and might be involved in Th2 type inflammation [300].

Mice overexpressing IL-18 or IL-33 in the skin developed spontaneous dermatitis, although their
pathogenic phenotypes are different. Eosinophil infiltration was frequently observed in the lesion
areas of skin-specific IL-33 transgenic mice [361], while neutrophil infiltration was mainly observed in
skin-specific IL-18 transgenic mice [71]. The nasal administration of IL-2 and IL-18 induced airway
hyperresponsiveness, pulmonary eosinophilia and goblet cell hyperplasia in wild type mice, but not in
Rag2-deficient mice [299]. However, the administration of IL-33 induced these changes in wild type
and Rag2-deficient mice [300]. IL-33 increased the number of ILC2s and promoted the production of
IL-5 and IL-13 independent of T cells, thereby inducing lung eosinophilia and goblet cell hyperplasia.
Therefore, IL-33 plays an important role in inducing Th2 cell-dependent and ILC2-dependent allergic
diseases. ILC2s are activated by IL-33 during nematode infection. Infection of the lung by the intestinal
nematode S. venezuelensis increases the number of IL-33-producing alveolar epithelium type II (ATII)
cells in wild type and Rag2-deficient mice, which develop eosinophilic inflammation and goblet
cell hyperplasia (Loeffler syndrome) [362]. Furthermore, ILC2s induced by S. venezuelensis became
memory-like ILC2s, with a higher reactivity than ILC2s from naïve mice, and protected against new
parasite infections by a non-specific mechanism [363]. As described above, lung ILC2s have strong
reactivity to IL-33, but recently, differences in ILC2s isolated from specific organs were reported.
ILC2s in the skin express IL-18Rα [364], and the effect of IL-18 on skin ILC2s is expected to be clarified
in future studies.

7. IL-18 as A Therapeutic Target

Because of the strong proinflammatory activity of IL-18, many researchers are investigating IL-18
as a therapeutic target for the treatment of inflammatory diseases. To neutralize IL-18, IL-18 BP
or anti-IL-18 Ab formulations were devised and clinical trials have been conducted to verify its
safety and efficacy [365,366]. Clinical trials are underway to investigate the treatment of adult-onset
Still’s disease and NLRC4-related macrophage activation syndrome (inflammatory diseases associated
with high plasma IL-18 levels) using IL-18BP [120–122] (ClinicalTrials.gov Identifier: NCT 02398435,
NCT 03113760).

In addition, the immunostimulatory effects of IL-18 have been investigated for treatments.
The first attempts to administer IL-18 to cancer patients showed that its toxicity was generally
mild-to-moderate [367]. For optimal cancer therapy, combination with other therapies is being
considered. Anti-CD20 Ab is used to treat CD20 positive B cell lymphoma. Clinical studies using IL-18
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with an anti-CD20 Ab are underway, and it was reported that the effect of anti-CD20 Ab was enhanced
by the administration of IL-18 [368].

Although it is still at the stage of animal experiments, a new treatment method using IL-18 for
cancer treatment has been studied. Recently, immune-checkpoint therapy by the neutralization of
PD-1 or CTLA4 has dramatically improved cancer treatment. Combination therapy with IL-18 and an
immune-checkpoint inhibitor synergistically reduced mortality in mice harboring various tumor cell
lines. Therefore, IL-18 in combination with immune-checkpoint therapy might be a potential treatment
for the early stages of cancer in humans [346]. Furthermore, chimeric antigen receptor (CAR) T cells
artificially expressing a cancer antigen-specific TCR were effective treatments for B cell lymphoma
and leukemia [369,370]. Studies on the effect on tumors of expressing IL-18 in CAR T cells in mice,
demonstrated that IL-18 enhanced the antitumor effect [371,372]. These new therapy methods are
expected to be applied to humans in the future and to save those suffering from cancer.

Table 1. IL-18 gene promoter polymorphisms (meta-analysis and/or systematic review).

Disease Association

SNP Polymorphism

RefPromoters 5’-UTR

−1297 C/T −656 G/T −607 C/A −137 G/C +113 T/T

rs360719 rs1946519 rs1946518 rs187238 rs360718

Chronic viral
infection

HBV ND ND + + ND [373]

HCV ND ND − + ND [374]

Periodontitis
ND ND + + ND [375]

ND ND − − ND [376]

Autoimmune
diseases

SLE

ND ND − ND ND [377]

+a ND +a +b ND [378]

ND ND +c − ND [379]

+ ND +a − ND [380]

Behcet’s disease ND ND + ND ND [381]

RA
ND ND − ND ND [377]

ND ND +c − ND [379]

ND ND +b − ND [382]

T1D
ND ND − ND ND [377]

ND ND + − ND [383]

ND ND +b − ND [384]

CD
ND − + + + [385]

ND ND − ND ND [377]

UC ND ND − ND ND [377]
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Table 1. Cont.

Disease Association

SNP Polymorphism

RefPromoters 5’-UTR

−1297 C/T −656 G/T −607 C/A −137 G/C +113 T/T

rs360719 rs1946519 rs1946518 rs187238 rs360718

Ischemic stroke ND ND + − ND [386]

Cancer

Total cancer

ND ND + − ND [387]

ND ND − +b ND [388]

ND ND +b ND ND [389]

ND ND ND +b ND [390]

Nasopharyngeal
cancer

ND ND + + ND [388]

ND ND ND + ND [387]

ND ND ND + ND [390]

ND ND + ND ND [389]

ND ND + ND ND [391]

Esophageal
cancer ND ND + ND ND [389]

Gastric cancer ND ND + ND ND [388]

Head and neck
cancer ND ND ND + ND [392]

Hepatocellular
carcinoma ND ND − − ND [393]

Recurrent pregnancy loss ND ND + + ND [394]

ND ND − + ND [395]

Polycystic ovary syndrome ND ND − − ND [396]

+; significant association between the variant and disease. −; no significant association between the variant and
disease. +a; association in European/Caucasian populations, but not in Asian populations. +b; association in Asian
populations, but not in European/Caucasian populations. +c; association in Chinese populations, but not in Asian
populations. ND; not determined. Abbreviations: HBV, hepatitis B virus; HCV, hepatitis C virus; SLE, systemic lupus
erythematosus; RA, rheumatoid arthritis; T1D, type 1 diabetes mellitus; CD, Crohn’s disease; UC, ulcerative colitis.
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Abbreviations

Ag Antigen
AIM2 Absence in melanoma 2
AKI Acute kidney injury
AMPK Adenosine monophosphate-activated protein kinase
AP-1 Activator protein-1
ASC Apoptosis-associated speck-like protein containing a C-terminal caspase-recruitment domain
BCG Bacillus Calmette–Guerin
Bcl6 B cell lymphoma 6
Btk Bruton’s tyrosine kinase
CTL Cytotoxic T lymphocyte
ds Double-stranded
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DSS Dextran sulphate sodium
FasL Fas ligand
HFD High-fat diet
IBD Inflammatory bowel disease
IFN Interferon
IGIF IFN-γ inducing factor
IL-18BP IL-18 binding protein
IL-18R IL-18 receptor
ILC Innate lymphoid cell
iNOS Inducible nitric oxide synthase
IRAK IL-1R-associated kinase
LDL Low-density lipoprotein
LPS Lipopolysaccharide
MAPK Mitogen-activated protein kinase
miRNA MicroRNA
MyD88 Myeloid differentiation primary response 88
NAIP NLR family of apoptosis inhibitory protein
NF-kB Nuclear factor (NF)-κB
NK Natural killer
NLR Nucleotide-binding oligomerization domain (NOD)-like receptor
NLRC NLR family CARD domain-containing protein
NLRP Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing
NO Nitric oxide
OVA Ovalbumin
PBMC Peripheral blood mononuclear cell
ROS Reactive oxygen species
SNP Single nucleotide polymorphism
SPF Specific pathogen-free
STAT Signaltransducer and activator of transcription
TCR T cell receptor
TIR TLR/IL-1R
TLR Toll-like receptors
TNF Tumor necrosis factor
TRAF6 TNF receptor-activated factor 6
TRIF TIR-domain-containing adapter-inducing interferon-β
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