
Synthesizing Context-free Grammars from
Recurrent Neural Networks

Daniel M. Yellin1 � and Gail Weiss2

1 IBM, Givatayim, Israel
dannyyellin@gmail.com
2 Technion, Haifa, Israel

sgailw@cs.technion.ac.il

Abstract. We present an algorithm for extracting a subclass of the
context free grammars (CFGs) from a trained recurrent neural network
(RNN). We develop a new framework, pattern rule sets (PRSs), which
describe sequences of deterministic finite automata (DFAs) that approxi-
mate a non-regular language. We present an algorithm for recovering the
PRS behind a sequence of such automata, and apply it to the sequences
of automata extracted from trained RNNs using the L∗ algorithm. We
then show how the PRS may converted into a CFG, enabling a familiar
and useful presentation of the learned language.
Extracting the learned language of an RNN is important to facilitate
understanding of the RNN and to verify its correctness. Furthermore, the
extracted CFG can augment the RNN in classifying correct sentences, as
the RNN’s predictive accuracy decreases when the recursion depth and
distance between matching delimiters of its input sequences increases.

Keywords: Model Extraction · Learning Context Free Grammars ·
Finite State Machines · Recurrent Neural Networks

1 Introduction

Recurrent Neural Networks (RNNs) are a class of neural networks adapted to
sequential input, enjoying wide use in a variety of sequence processing tasks. Their
internal process is opaque, prompting several works into extracting interpretable
rules from them. Existing works focus on the extraction of deterministic or
weighted finite automata (DFAs and WFAs) from trained RNNs [18,6,26,3].

However, DFAs are insufficient to fully capture the behavior of RNNs, which
are known to be theoretically Turing-complete [20], and for which there exist
architecture variants such as LSTMs [14] and features such as stacks [9,23]
or attention [4] increasing their practical power. Several recent investigations
explore the ability of different RNN architectures to learn Dyck, counter, and
other non-regular languages [19,5,28,21], with mixed results.

While the data indicates that RNNs can generalize and achieve high accuracy,
they do not learn hierarchical rules, and generalization deteriorates as the length
and ‘depth’ of the input grows [19,5,28]. Sennhauser and Berwick conjecture that

© The Author(s) 2021
J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12651, pp. 351–369, 2021.
https://doi.org/10.1007/978-3-030-72016-2 19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72016-2_19&domain=pdf
http://orcid.org/0000-0001-7214-5610
http://orcid.org/0000-0003-0762-9090
https://doi.org/10.1007/978-3-030-72016-2_19

352 D. M. Yellin and G. Weiss

RNN trained
on

(hidden)
target L

Seq of DFAs
converging to

L
PRS Rules Inferred CFG

for L
Generate

DFAs

PRS
Inference
+ Filtering

Convert

Fig. 1. Overview of steps in algorithm to synthesize the hidden language L

“what the LSTM has in fact acquired is sequential statistical approximation to
this solution” instead of “the ‘perfect’ rule-based solution” [19]. Similarly, Yu et.
al. conclude that “the RNNs can not truly model CFGs, even when powered by
the attention mechanism” [28]. This is line with Hewitt et. al., who note that a
fixed precision RNN can only learn a language of fixed depth strings [13].

Goal of this paper We wish to extract a CFG from a trained RNN. In particular,
we wish to find the CFG that not only explains the finite language learnt by the
RNN, but generalizes it to strings of unbounded depth and distance.

Our approach Our method builds on the DFA extraction work of Weiss et al.
[26], which uses the L∗ algorithm [2] to learn the DFA of a given RNN. As part
of the learning process, L∗ creates a sequence of hypothesis DFAs approximating
the target language. Our main insight is in treating these hypothesis DFAs as
coming from a set of underlying rules, that recursively improve each DFA’s
approximation of the target CFG by increasing the distance and embedded depth
of the sequences it can recognize. In this light, synthesizing the target CFG
becomes the problem of recovering these rules.

We propose the framework of pattern rule sets (PRSs) for describing such
rule applications, and present an algorithm for recovering a PRS from a sequence
of DFAs. We also provide a method for converting a PRS to a CFG, and
test our method on RNNs trained on several PRS languages. Pattern rule sets
are expressive enough to cover several variants of the Dyck languages, which
are prototypical context-free languages (CFLs): the Chomsky–Schützenberger
representation theorem shows that any CFL can be expressed as a homomorphic
image of a Dyck language intersected with a regular language[16].

A significant issue we address is that the extracted DFAs are often inexact,
either through inaccuracies in the RNN, or as an artifact of the L∗ algorithm.

To the best of our knowledge, this is the first work on synthesizing a CFG
from a general RNN (though some works extract push-down automata [23,9]
from RNNs with an external stack, they do not apply to plain RNNs). The overall
steps in our technique are given in Figure 1.

Contributions The main contributions of this paper are:

– Pattern Rule Sets (PRSs), a framework for describing a sequence of DFAs
approximating a CFL.

– An algorithm for recovering the PRS generating a sequence of DFAs, that
may also be applied to noisy DFAs elicited from an RNN using L∗ .

– An algorithm converting a PRS to a CFG.

Synthesizing Context-free Grammars from Recurrent Neural Networks 353

– An implementation of our technique1, and an evaluation of its success on
recovering various CFLs from trained RNNs.

2 Definitions and Notations

2.1 Deterministic Finite Automata

Definition 1 (Deterministic Finite Automata). A deterministic finite au-
tomaton (DFA) over an alphabet Σ is a 5-tuple 〈Σ, q0, Q, F, δ〉 such that Q is a
finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is a set of final (accepting)
states and δ : Q×Σ → Q is a (possibly partial) transition function.

Unless stated otherwise, we assume each DFA’s states are unique to itself, i.e.,
for any two DFAs A,B – including two instances of the same DFA – QA∩QB = ∅.
A DFA A is said to be complete if δ is complete, i.e., the value δ(q, σ) is defined
for every q, σ ∈ Q×Σ. Otherwise, it is incomplete.

We define the extended transition function δ̂ : Q×Σ∗ → Q and the language
L(A) accepted by A in the typical fashion. We also associate a language with

intermediate states of A: L(A, q1, q2) � {w ∈ Σ∗ | δ̂(q1, w) = q2}. The states
from which no sequence w ∈ Σ∗ is accepted are known as the sink reject states.

Definition 2. The sink reject states of a DFA A = 〈Σ, q0, Q, F, δ〉 are the
maximal set QR ⊆ Q satisfying: QR ∩ F = ∅, and for every q ∈ QR and σ ∈ Σ,
either δ(q, σ) ∈ QR or δ(q, σ) is not defined.

Definition 3 (Defined Tokens). Let A = 〈Σ, q0, Q, F, δ〉 be a complete DFA
with sink reject states QR. For every q ∈ Q, its defined tokens are def(A, q) �
{σ ∈ Σ | δ(q, σ) /∈ QR}. When the DFA A is clear from context, we write def(q).

All definitions for complete DFAs are extended to incomplete DFAs A by
considering their completion - an extension of A in which all missing transitions
are connected to a (possibly new) sink reject state.

Definition 4 (Set Representation of δ). A (possibly partial) transition func-
tion δ : Q×Σ → Q may be equivalently defined as the set Sδ = {(q, σ, q′) | δ(q, σ) =
q′}. We use δ and Sδ interchangeably.

Definition 5 (Replacing a State). For a transition function δ : Q×Σ → Q,
state q ∈ Q, and new state qn /∈ Q, we denote by δ[q←qn] : Q

′ × Σ → Q′ the
transition function over Q′ = (Q \ {q})∪ {qn} and Σ that is identical to δ except
that it redirects all transitions into or out of q to be into or out of qn.

1 The implementation for this paper, and a link to all trained RNNs, is available at
https://github.com/tech-srl/RNN to PRS CFG.

354 D. M. Yellin and G. Weisss

2.2 Dyck Languages

A Dyck language of order N is expressed by the grammar D ::= ε | L1 D

R1 | ... | LN D RN | D D with unique symbols L1,...,LN,D1,...,DN . A
common measure of complexity for a Dyck word is its maximum distance (number
of characters) between matching delimiters and embedded depth (number of
unclosed delimiters) [19]. We generalize and refer to Regular Expression Dyck
(RE-Dyck) languages as languages expressed by the same CFG, except that each
Li and each Ri derive some regular expression.

We present regular expressions as is standard, for example: L({a|b}·c) �
{ac,bc}.

3 Patterns

Patterns are DFAs with a single exit state qX in place of a set of final states, and
with no cycles on their initial or exit states unless q0 = qX .

Definition 6 (Patterns). A pattern p = 〈Σ, q0, Q, qX , δ〉 is a DFA Ap =
〈Σ, q0, Q, {qX}, δ〉, satisfying: 1. L(Ap) �= ∅, and 2. either q0 = qX , or def(qX) = ∅
and L(A, q0, q0) = {ε}. If q0 = qX then p is called circular, otherwise, it is non-
circular. Patterns are always given in minimal incomplete presentation.

We refer to a pattern’s initial and exit states as its edge states. All the
definitions for DFAs apply to patterns through Ap. We denote each pattern p’s
language Lp � L(p), and if it is marked by some superscript i, we refer to all of
its components with superscript i: pi = 〈Σ, qi0, Q

i, qiX , δi〉.

3.1 Pattern Composition

We can compose two non-circular patterns p1, p2 by merging the exit state of p1

with the initial state of p2, creating a new pattern p3 satisfying Lp3 = Lp1 ·Lp2 .

Definition 7 (Serial Composition). Let p1, p2 be two non-circular patterns.
Their serial composite is the pattern p1 ◦ p2 = 〈Σ, q10 , Q, q2X , δ〉 in which Q =
Q1 ∪Q2 \ {q1X} and δ = δ1

[q1X←q20]
∪ δ2. We call q20 the join state of this operation.

If we additionally merge the exit state of p2 with the initial state of p1, we
obtain a circular pattern p which we call the circular composition of p1 and p2.
This composition satisfies Lp = {Lp1 ·Lp2}∗.

Definition 8 (Circular Composition). Let p1, p2 be two non-circular patterns.
Their circular composite is the circular pattern p1◦cp2 = 〈Σ, q10 , Q, q10 , δ〉 in which
Q = Q1 ∪Q2 \ {q1X , q2X} and δ = δ1

[q1X←q20]
∪ δ2

[q2X←q10]
. We call q20 the join state

of this operation.

Figure 2 shows 3 examples of serial and circular compositions of patterns.
Patterns do not carry information about whether or not they have been

composed from other patterns. We maintain such information using pattern pairs.

Synthesizing Context-free Grammars from Recurrent Neural Networks 355

a b a b

()

(

)

p1 p2 p1 ⊙ p2

(i)
Serial ￮

(iii)
Serial ￮

(ii)
Cyclic ￮c

x
b

y

Legend: initial state exit state join state

a x
a

y
z

a x
a

y x
b

y
z

Fig. 2. Examples of the composition operator

Definition 9 (Pattern Pair). A pattern pair is a pair 〈P, Pc〉 of pattern sets,
such that Pc ⊂ P and for every p ∈ Pc there exists exactly one pair p1, p2 ∈ P
satisfying p = p1 0 p2 for some 0 ∈ {◦, ◦c}. We refer to the patterns p ∈ Pc as
the composite patterns of 〈P, Pc〉, and to the rest as its base patterns.

We will often discuss patterns that have been composed into larger DFAs.

Definition 10 (Pattern Instances). Let A = 〈Σ, qA0 , Q
A, F, δA〉 be a DFA,

p = 〈Σ, q0, Q, qX , δ〉 be a pattern, and p̂ = 〈Σ, q′0, Q
′, q′X , δ′〉 be a pattern ‘inside’

A, i.e., Q′ ⊆ QA and δ′ ⊆ δA. We say that p̂ is an instance of p in A if p̂ is
isomorphic to p.

A pattern instance in a DFA A is uniquely determined by its structure and
initial state: (p, q). If p is a composite pattern with respect to some pattern pair
〈P, Pc〉, the join state of its composition within A is also uniquely defined.

Definition 11. For every pattern pair 〈P, Pc〉, for each composite pattern p ∈ Pc,
DFA A, and initial state q of an instance p̂ of p in A, join(p, q, A) returns the
join state of p̂ with respect to its composition in 〈P, Pc〉.

4 Pattern Rule Sets

For any infinite sequence S = A1, A2, ... of DFAs satisfying L(Ai) ⊂ L(Ai+1), for
all i, we define the language of S as the union of the languages of all these DFAs:
L(S) = ∪iL(Ai). Such sequences may be used to express CFLs.

In this work we take a finite sequence A1, A2, ..., An of DFAs, and assume it
is a (possibly noisy) finite prefix of an infinite sequence of approximations for a
language, as above. We attempt to reconstruct the language by guessing how the

Synthesizing Context-free Grammars from Recurrent Neural Networks 355

356 D. M. Yellin and G. Weisss

sequence may continue. To allow such generalization, we must make assumptions
about how the sequence is generated. For this we introduce pattern rule sets.

Pattern rule sets (PRSs) create sequences of DFAs with a single accepting
state. Each PRS is built around a pattern pair 〈P, Pc〉, and each rule application
connects a new pattern instance to the current DFA Ai, at the join state of
a composite-pattern inserted into Ai at some earlier point. To define where a
pattern can be connected to Ai, we introduce an enabled instance set I.
Definition 12. An enabled DFA over a pattern pair 〈P, Pc〉 is a tuple 〈A, I〉
such that A = 〈Σ, q0, Q, F, δ〉 is a DFA and I ⊆ Pc ×Q marks enabled instances
of composite patterns in A.

Intuitively, for every enabled DFA 〈A, I〉 and (p, q) ∈ I, we know: (i) there is
an instance of pattern p in A starting at state q, and (ii) this instance is enabled ;
i.e., we may connect new pattern instances to its join state join(p, q, A).

Definition 13. A PRS P is a tuple 〈Σ,P, Pc, R〉 where 〈P, Pc〉 is a pattern pair
over the alphabet Σ and R is a set of rules. Each rule has one of the following
forms, for some p, p1, p2, p3, pI ∈ P , with p1 and p2 non-circular:

(1) ⊥� pI

(2) p �c (p
1 0 p2)◦= p3, where p = p1 0 p2 for 0 ∈ {◦, ◦c}, and p3 is circular

(3) p �s (p
1 ◦ p2)◦= p3, where p = p1 ◦ p2 and p3 is non-circular

A PRS derives sequences of enabled DFAs as follows: first, a rule of type (1)
creates 〈A1, I1〉 according to pI . Then, for every 〈Ai, Ii〉, each rule may connect
a new pattern instance to Ai, specifically at a state determined by Ii.
Definition 14 (Initial Composition). D1 = 〈A1, I1〉 is generated from a rule

⊥� pI as follows: A1 = ApI

, and Ii = {(pI , qI0)} if pI ∈ Pc and otherwise I1 = ∅.

Let Di = 〈Ai, Ii〉 be the enabled DFAat step i and denote Ai = 〈Σ, q0, Q, F, δ〉.
Note that for A1, |F | = 1, and for all Ai+1, F is unchanged (by future definitions).

Rules of type (1) extend Ai by grafting a circular pattern to q0, and then
enabling that pattern if it is composite.

Definition 15 (Rules of type (1)). A rule ⊥� pI with circular pI may extend
〈Ai, Ii〉 at the initial state q0 of Ai iff def(q0)∩def(qI0) = ∅. This creates the DFA
Ai+1 = 〈Σ, q0, Q∪QI \{qI0}, F, δ∪δI[qI0←q0]

〉. If pI ∈ Pc then Ii+1 = Ii∪{(pI , q0)},
else Ii+1 = Ii.

Rules of type (2) graft a circular pattern p3 = 〈Σ, q30 , q
3
x, F, δ

3〉 onto the join
state qj of an enabled pattern instance p̂ in Ai, by merging q30 with qj . In doing
so, they also enable the patterns composing p̂, if they are composite.

Definition 16 (Rules of type (2)). A rule p �c (p1 0 p2)◦= p3 may extend
〈Ai, Ii〉 at the join state qj = join(p, q, Ai) of any instance (p, q) ∈ Ii, provided
def(qj) ∩ def(q30) = ∅. This creates 〈Ai+1, Ii+1〉 as follows: Ai+1 = 〈Σ, q0, Q ∪
Q3 \ q30 , F, δ ∪ δ3

[q30←qj]
〉, and Ii+1 = Ii ∪ {(pk, qk) | pk ∈ Pc, k ∈ {1, 2, 3}}, where

q1 = q and q2 = q3 = qj.

Synthesizing Context-free Grammars from Recurrent Neural Networks 357

p1 ○ p2 ↠↠c (p1 ○ p2) p3 (i)
p1 p2 p1 p2

p3
p3

p3
p1

p2

p1

p2

p3(ii)
p1 ○c p2 ↠c (p1 ○c p2) p3

(iii)
p1

p2

pxc p1 c px

xp3 c

x
p3

p1 ○ p2 ↠s (p1 ○ p2) p3

p1 c px
r c

p2

x
p1 c px

r c
p3

(iv)
p3

Legend: initial state exit state join state transitions added to successor DFA

transitions in original DFA that are not part of p1 ○ p2

○

○

○

Fig. 3. Structure of DFA after applying rule of type 2 or type 3

Example applications of rule (2) are shown in Figures 3(i) and 3(ii).
We also wish to graft a non-circular pattern p3 between p1 and p2, but this

time we must avoid connecting the exit state q3X to qj lest we loop over p3

multiple times. We therefore replicate the outgoing transitions of qj in p1 ◦ p2 to
the inserted state q3X so that they may act as the connections back into the DFA.

Definition 17 (Rules of type (3)). A rule p �s (p1 ◦ p2)◦= p3 may extend
〈Ai, Ii〉 at the join state qj = join(p, q, Ai) of any instance (p, q) ∈ Ii, provided
def(qj) ∩ def(q30) = ∅. This creates 〈Ai+1, Ii+1〉 as follows: Ai+1 = 〈Σ, q0, Q ∪
Q3 \ q30 , F, δ ∪ δ3

[q30←qj]
∪ C〉 where C = { (q3X , σ, δ(qj , σ))| σ ∈ def(p2, q20)}, and

Ii+1 = Ii ∪ {(pk, qk) | pk ∈ Pc, k ∈ {1, 2, 3}} where q1 = q and q2 = q3 = qj.

We call C the connecting transitions. We depict this rule application in
example in Fig. 3 (iii), in which a member of C is labeled ‘c’.

Multiple applications of rules of type (3) to the same instance p̂ will create
several equivalent states in the resulting DFAs, as all of their exit states will
have the same connecting transitions. These states are merged in a minimized
representation, as depicted in Diagram (iv) of Figure 3.

We write A ∈ G(P) if there exists a sequence of enabled DFAs derived from
P s.t. A = Ai for some Ai in this sequence.

Definition 18 (Language of a PRS). The language of a PRS P is the union
of the languages of the DFAs it can generate: L(P) = ∪A∈G(P)L(A).

4.1 Examples

Example 1: Let p1 and p2 be the patterns accepting ‘a’ and ‘b’ respectively.
Consider the PRS Rab with rules, ⊥� p1 ◦ p2 and p1 ◦ p2 �s (p1 ◦ p2)◦= (p1 ◦ p2).

358 D. M. Yellin and G. Weisss

This PRS creates only one sequence of DFAs. Once the first rule creates the initial
DFA, by continuously applying the second rule we obtain the infinite sequence of
DFAs each satisfying L(Ai) = {ajbj : 1 ≤ j ≤ i}, and so L(Rab) = {aibi : i > 0}.
Figure 2(i) presents A1, while A2 and A3 appear in Figure 4(i). We can substitute
any non-circular patterns for p1 and p2, creating the language {xiyi : i > 0} for
any non-circular pattern regular expressions x and y.

1 2

(

) 1 2

(

)

3

[

]
1 2

(

)

3

[

]
4

(

) 1 2

(

)

3

[

]
4

(

)

5

(

)

(i)

(ii)

a
b

b

1 2 7

63
a

b

a b
b4 5

a
b1 2 7

63
a

b
b

Fig. 4. DFA sequences for Rab and RDyck2

Example 2: Let p1,p2,p4, and p5 be the non-circular patterns accepting ‘(’, ‘)’,
‘[’, and ‘]’ respectively. Let p3 = p1 ◦c p2 and p6 = p4 ◦c p5. Let RDyck2 be the PRS
containing rules ⊥ � p3, ⊥ � p6, p3 �c (p1 ◦c p2)◦= p3, p3 �c (p1 ◦c p2)◦= p6,
p6 �c (p4 ◦c p5)◦= p3, and p6 �c (p4 ◦c p5)◦= p6. RDyck2 defines the Dyck
language of order 2. Figure 4 (ii) shows one of its possible DFA-sequences.

5 PRS Inference Algorithm

A PRS can generate a sequence of DFAs defining, in the limit, a context-free
language. We are now interested in inverting this process: given a sequence of DFAs
generated by a PRS P, can we reconstruct P? Coupled with an L∗ extraction of
DFAs from a trained RNN, solving this problem will enable us to extract a PRS
from an RNN – provided the extraction follows a PRS (as we often find it does).

We present an algorithm for this problem, and show its correctness. In practice
the DFAs we are given are not “perfect”; they contain noise that deviates from
the PRS. We therefore augment this algorithm, allowing it to operate smoothly
even on imperfect DFA sequences created from RNN extraction.

In the following, for each pattern instance p̂ in Ai, we denote by p the pattern
that it is an instance of. We use similar notation p̂1, p̂2, and p̂I to refer to specific
instances of patterns p1, p2 and pI . Additionally, for each consecutive DFA pair
Ai and Ai+1, we refer by p̂3 to the new pattern instance in Ai+1.

Main steps of inference algorithm. Given a sequence of DFAs S = A1 · · ·An, the
algorithm infers P = 〈Σ,P, Pc, R〉 in the following stages:

1. Discover the initial pattern instance p̂I in A1. Insert p
I into P and mark p̂I

as enabled. Insert the rule ⊥ → pI into R.

Synthesizing Context-free Grammars from Recurrent Neural Networks 359

2. For i, 1 ≤ i ≤ n− 1:
(a) Discover the new pattern instance p̂3 in Ai+1 that extends Ai.
(b) If p̂3 starts at the state q0 of Ai+1, then it is an application of a rule of

type (1). Insert p3 into P , mark p̂3 as enabled, and add ⊥ � p3 to R.
(c) Otherwise (p̂3 does not start at q0), find the unique enabled pattern

p̂ = p̂1 0 p̂2 in Ai s.t. p̂
3’s initial state q is the join state of p̂. Add p1, p2,

and p3 to P , p to Pc, and mark p̂1,p̂2, and p̂3 as enabled. If p̂3 is non-
circular, add p �s (p1 ◦ p2)◦= p3 to R; otherwise add p �c (p

1 0 p2)◦= p3.

3. Define Σ to be the set of symbols used by the patterns P .

We now elaborate on how we determine the patterns p̂I , p̂3, and p̂.

Discovering new patterns p̂I and p̂3 A1 provides an initial pattern pI . For
subsequent DFAs, we need to identify which states in Ai+1 = 〈Σ, q′0, Q

′, F ′, δ′〉
are ‘new’ relative to Ai = 〈Σ, q0, Q, F, δ〉. From the PRS definitions, we know
that there is a subset of states and transitions in Ai+1 that is isomorphic to Ai:

Definition 19. (Existing states and transitions) For every q′ ∈ Q′, we say that
q′ exists in Ai with parallel state q ∈ Q iff there exists a sequence w ∈ Σ∗ such
that q = δ̂(q0, w), q

′ = δ̂′(q0, w), and neither is a sink reject state. Additionally,
for every q′1, q

′
2 ∈ Q′ with parallel states q1, q2 ∈ Q, we say that (q′1, σ, q

′
2) ∈ δ′

exists in Ai iff (q1, σ, q2) ∈ δ. We denote Ai+1’s existing states and transitions
by QE ⊆ Q′ and δE ⊆ δ′, and the new ones as QN = Q′ \QE and δN = δ′ \ δE.

By construction of PRSs, each state in Ai+1 has at most one parallel state in
Ai, which can be found in one simultaneous traversal of the two DFAs.

The new states and transitions form a new pattern instance p̂ in Ai+1,
excluding its initial and possibly its exit state. The initial state of p̂ is the existing
state q′s ∈ QE that has outgoing new transitions. The exit state q′X of p̂ is
identified by the Exit State Discovery algorithm:

1. If there exists a (q, σ, q′s) ∈ δN , then p̂ is circular: q′X = q′s. (Fig. 3(i), (ii)).
2. Otherwise, p̂ is non-circular. If it is the first (with respect to S) non-circular

pattern grafted onto q′s, then q′X is the unique new state whose transitions
into Ai+1 are the connecting transitions from Definition 17 (Fig. 3 (iii)).

3. If there is no such state, then p̂ is not the first non-circular pattern grafted
onto q′s, and q′X is the unique existing state q′X �= q′s with new incoming
transitions. (Fig. 3(iv)).

Finally, the new pattern instance is p = 〈Σ, q′s, Qp, q
′
X , δp〉, where Qp = QN ∪

{q′s, q′X} and δp is the restriction of δN to the states of Qp.

Discovering the pattern p̂ (step 2c) In [27] we show that no two enabled
pattern instances in a DFA can share a join state, that if they share any non-edge
states, then one is contained in the other, and finally that a pattern’s join states
is never one of its edge states. This makes finding p̂ straightforward: denoting qj

360 D. M. Yellin and G. Weisss

as the parallel of p̂3’s initial state in Ai, we seek the enabled composite pattern
instance (p, q) ∈ Ii for which join(p, q, Ai) = qj . If none is present, we seek the
only enabled instance (p, q) ∈ Ii that contains qj as a non-edge state, but is not
yet marked as a composite. (Note that if two enabled instances share a non-edge
state, then the containing one is already marked as a composite: otherwise we
would not have found and enabled the other).

In [27] we define the concept of a minimal generator and prove the following:

Theorem 1. Let A1, A2, ...An be a finite sequence of DFAs that has a minimal
generator P. Then the PRS Inference Algorithm will discover P.

5.1 Deviations from the PRS framework

Given a sequence of DFAs generated by the rules of PRS P, the inference
algorithm given above will faithfully infer P. In practice however, we want to
apply the algorithm to a sequence of DFAs extracted from a trained RNN using
the L∗ algorithm (as in [26]). Such a sequence may contain noise: artifacts from
an imperfectly trained RNN, or from the behavior of L∗ . The major deviations
are incorrect pattern creation, simultaneous rule applications, and slow initiation.

Incorrect pattern creation Whether due to inaccuracies in the RNN classification,
or as artifacts of the L∗ process, incorrect patterns are often inserted into the
DFA sequence. Fortunately, these patterns rarely repeat, and so we can discern
between them and ‘legitimate’ patterns using a voting and threshold scheme.

The vote for each discovered pattern p ∈ P is the number of times it has
been inserted as the new pattern between a pair of DFAs Ai, Ai+1 in S. We set a
threshold for the minimum vote a pattern needs to be considered valid, and only
build rules around the connection of valid patterns onto the join states of other
valid patterns. To do this, we modify the flow of the algorithm: before discovering
rules, we first filter invalid patterns by splitting step 2 into two phases. Phase 1:
Mark all the inserted patterns between each pair of DFAs, and compute their
votes. Add to P those whose vote is above the threshold. Phase 2: Consider each
DFA pair Ai, Ai+1 in order. If the new pattern in Ai+1 is valid, and its initial
state’s parallel state in Ai also lies in a valid pattern, then synthesize the rule
according to the original algorithm. If a pattern is discovered to be composite,
add its composing patterns to P .

As almost every DFA sequence produced by our method has some noise, the
voting scheme greatly extended the reach of our algorithm.

Simultaneous rule applications In the theoretical framework, Ai+1 differs from
Ai by applying a single PRS rule, and therefore q′s and q′X are uniquely defined.
L∗ however does not guarantee such minimal increments between DFAs. In
particular, it may apply multiple PRS rules between two subsequent DFAs,
extending Ai with several patterns. To handle this, we expand the initial and
exit state discovery methods given above.

1. Mark the new states and transitions QN and δN as before.

Synthesizing Context-free Grammars from Recurrent Neural Networks 361

2. Identify the set of new pattern instance initial states (pattern heads): the set
H ⊆ Q′ \QN of states in Ai+1 with outgoing new transitions.

3. For each pattern head q′ ∈ H, compute the relevant sets δN |q′ ⊆ δN and
QN |q′ ⊆ QN of new transitions and states: the members of δN and QN that
are reachable from q′ without passing through any existing transitions.

4. For each q′ ∈ H , restrict to QN |q′ and δN |q′ and compute q′X and p as before.

If Ai+1’s new patterns have no overlap and do not create an ambiguity around
join states, then they may be handled independently and in arbitrary order. They
are used to discover rules and then enabled, as in the original algorithm.

Simultaneous but dependent rule applications – such as inserting a pattern
and then grafting another onto its join state – are more difficult to handle, as it is
not always possible to determine which pattern was grafted onto which. However,
there is a special case which appeared in several of our experiments (examples
L13 ad L14 of Section 7) for which we developed a technique as follows.

Suppose we discover a rule r1 : p0 �s (pl ◦ pr)◦= p and p contains a cycle c
around some internal state qj . If later another rule inserts a pattern pn at the
state qj , we understand that p is in fact a composite pattern, with p = p1 ◦ p2
and join state qj . However, as patterns do not contain cycles at their edge states,
c cannot be a part of either p1 or p2. We conclude that the addition of p was
in fact a simultaneous application of two rules: r′1 : p0 �s (pl ◦ pr)◦= p′ and
r2 : p′ �c (p1 ◦ p2)◦= c, where p′ is p without the cycle c, and update our PRS
and our DFAs’ enabled pattern instances accordingly. The case when p is circular
and r1 is of rule type (2) is handled similarly.

Slow initiation Ideally, A1 directly supplies an initial rule ⊥ � pI to our PRS.
In practice, the first few DFAs generated by L∗ have almost random structure.
We solve this by leaving discovery of the initial rules to the end of the algorithm,
at which point we have a set of ‘valid’ patterns that we are sure are part of the
PRS. From there we examine the last DFA An generated in the sequence, note all
the enabled instances (pI , q0) at its initial state, and generate a rule ⊥ � pI for
each of them. This technique has the weakness that it will not recognise patterns
pI that do not also appear as extending patterns p3 elsewhere in the sequence,
unless the threshold for patterns is minimal.

6 Converting a PRS to a CFG

We present an algorithm to convert a given PRS to a context free grammar
(CFG), making the rules extracted by our algorithm more accessible.

A restriction: Let P = 〈Σ,P, Pc, R〉 be a PRS. For simplicity, we restrict the
PRS so that every pattern p can only appear on the LHS of rules of type (2) or
only on the LHS of rules of type (3) but cannot only appear on the LHS of both
types of rules. Similarly, we assume that for each rule ⊥→ pI , the RHS patterns
pI are all circular or non-circular. This restriction is natural: all of the examples

362 D. M. Yellin and G. Weisss

in Sections 4.1 and 7.3 conform to it. Still, in [27] we show how to remove this
restriction.

We create a CFG G = 〈Σ,N, S, Prod〉. Σ is the same alphabet of P and
we take S as a special start symbol. For every pattern p ∈ P , let Gp =
〈Σp, Np, Zp, P rodp〉 be a CFG describing L(p). Let PY ⊆ PC be those com-
posite patterns that appear on the LHS of a rule of type (2). Create the non-
terminal CS and for each p ∈ PY , create an additional non-terminal Cp. We set
N = {S,CS}

⋃
p∈P

{Np}
⋃

p∈PY

{Cp}.

Let ⊥ � pI be a rule in P. If pI is non-circular, create a production S ::= ZpI
.

If pI is circular, create the productions S ::= SC , SC ::= SCSC and SC ::= ZpI
.

For each rule p �s (p1 ◦ p2)◦= p3 create a production Zp ::= Zp1
Zp3

Zp2
. For each

rule p �c (p1 ◦ p2)◦= p3 create productions Zp ::= Zp1
CpZp2

, Cp ::= CpCp, and
Cp ::= Zp3 . Let Prod′ be the all the productions defined by the above process.
We set Prod = {

⋃
p∈P

Prodp} ∪ Prod′.

Theorem 2. Let G and P be as above. Then L(P) = L(G).

The proof is given in the extended version of this paper [27].

Expressibility Every RE-Dyck language (Section 2.2) can be expressed by a PRS,
but the converse is not true; RE-Dyck languages nest delimiters arbitrarily, while
PRS grammars may not. For instance, language L12 of Section 7.3 is not a Dyck
language. Meanwhile, not every CFL can be expressed by a PRS [27].

Succinctness The construction above does not necessarily yield a minimal CFG
G. For a PRS defining the Dyck language of order 2 – which can be expressed by
a CFG with 4 productions and 1 non-terminal – our construction yields a CFG
with 10 non-terminals and 12 productions. In this case, and often in others, we
can recognise and remove the spurious productions from the generated grammar.

7 Experimental results

7.1 Methodology

We test the algorithm on several PRS-expressible context free languages, attempt-
ing to extract them from trained RNNs using the process outlined in Figure 1.
For each language, we create a probabilistic CFG generating it, train an RNN
on samples from this grammar, extract a sequence of DFAs from the RNN, and
apply our PRS inference algorithm. Finally, we convert the extracted PRS back
to a CFG, and compare it to our target CFG.

In all of our experiments, we use a vote-threshold s.t. patterns with less than
2 votes are not used to form any PRS rules (Section 5.1). Using no threshold
significantly degraded the results by including too much noise, while higher
thresholds often caused us to overlook correct patterns and rules.

Synthesizing Context-free Grammars from Recurrent Neural Networks 363

7.2 Generating a sequence of DFAs

We obtain a sequence of DFAs for a given CFG using only positive samples[11,1] by
training a language-model RNN (LM-RNN) on these samples and then extracting
DFAs from it with the aid of the L∗ algorithm [2], as described in [26]. To apply
L∗ we must treat the LM-RNN as a binary classifier. We set an ‘acceptance
threshold’ t and define the RNN’s language as the set of sequences s satisfying:
1. the RNN’s probability for an end-of-sequence token after s is greater than t,
and 2. at no point during s does the RNN pass through a token with probability
< t. This is identical to the concept of locally t-truncated support defined in [13].

To create the samples for the RNNs, we write a weighted version of the CFG,
in which each non-terminal is given a probability over its rules. We then take
N samples from the weighted CFG according to its distribution, split them into
train and validation sets, and train an RNN on the train set until the validation
loss stops improving. In our experiments, we used N = 10, 000. For our languages,
we used very small 2-layer LSTMs: hidden dimension 10 and input dimension 4.

In some cases, especially when all of the patterns in the rules are several
tokens long, the extraction of [26] terminates too soon: neither L∗ nor the RNN
abstraction consider long sequences, and equivalence is reached between the
L∗ hypothesis and the RNN abstraction despite neither being equivalent to the
‘true’ language of the RNN. In these cases we push the extraction a little further
using two methods: first, if the RNN abstraction contains only a single state,
we make an arbitrary initial refinement by splitting 10 hidden dimensions, and
restart the extraction. If this is also not enough, we sample the RNN according
to its distribution, in the hope of finding a counterexample to return to L∗ . The
latter approach is not ideal: sampling the RNN may return very long sequences,
effectively increasing the next DFA by many rule applications. We place a time
limit of 1, 000 seconds (∼ 17 minutes) on the extraction.

7.3 Languages

We experiment on 15 PRS-expressible languages L1 −L15, grouped into 3 classes:

1. Languages of the form XnYn, for various regular expressions X and Y. In
particular, the languages L1 through L6 are Xni Y

n
i for: (X1,Y1)=(a,b),

(X2,Y2)=(a|b,c|d), (X3,Y3)=(ab|cd,ef|gh), (X4,Y4)=(ab,cd),
(X5,Y5)=(abc,def), and (X6,Y6)=(ab|c,de|f).

2. Dyck and RE-Dyck languages. In particular, languages L7 through L9 are
the Dyck languages of order 2 through 4, and L10 and L11 are RE-Dyck
languages of order 1 with the delimiters (L10,R10)=(abcde,vwxyz) and
(L11,R11)=(ab|c,de|f).

3. Variations of the Dyck languages. L12 is the language of alternating single-
nested delimiters, generating only sequences of the sort ([([])]) or [([])].
L13 and L14 are Dyck-1 and Dyck-2 with additional neutral tokens a,b,c
that may appear multiple times anywhere in the sequence. L15 is like L13

except that the neutral additions are the token d and the sequence abc, eg:
(abc()())d is in L15, but a(bc()())d is not.

364 D. M. Yellin and G. Weisss

LG DFAs Init Final Min/Max CFG LG DFAs Init Final Min/Max CFG
Pats Pats Votes Correct Pats Pats Votes Correct

L1 18 1 1 16/16 Correct L9 30 6 4 5/8 Correct
L2 16 1 1 14/14 Correct L10 6 2 1 3/3 Correct
L3 14 6 4 2/4 Incorrect L11 24 6 3 5/12 Incorrect
L4 8 2 1 5/5 Correct L12 28 2 2 13/13 Correct
L5 10 2 1 7/7 Correct L13 9 6 1 2/2 Correct
L6 22 9 4 3/16 Incorrect L14 17 5 2 5/7 Correct
L7 24 2 2 11/11 Correct L15 13 6 4 3/6 Incorrect
L8 22 5 4 2/9 Partial

Table 1. Results of experiments on DFAs extracted from RNNs

7.4 Results

Table 1 shows the results. The 2nd column shows the number of DFAs extracted
from the RNN. The 3rd and 4th columns present the number of patterns found
by the algorithm before and after applying vote-thresholding to remove noise.
The 5th column gives the minimum and maximum votes received by the final
patterns (we count only patterns introduced as a new pattern p3 in some Ai+1).
The 6th column notes whether the algorithm found a correct CFG, according
to our manual inspection. For languages where our algorithm only missed or
included 1 or 2 valid/invalid productions, we label it as partially correct.

Alternating Patterns Our algorithm struggled on the languages L3, L6, and
L11, which contained patterns whose regular expressions had alternations (such
as ab|cd in L3, and ab|c in L6 and L11). Investigating their DFA sequences
uncovered the that the L∗ extraction had ‘split’ the alternating expressions,
adding their parts to the DFAs over multiple iterations. For example, in the
sequence generated for L3, ef appeared in A7 without gh alongside it. The next
DFA corrected this mistake but the inference algorithm could not piece together
these two separate steps into a single rule. It will be valuable to expand the
algorithm to these cases.

Simultaneous Applications Originally our algorithm failed to accurately generate
L13 and L14 due to simultaneous rule applications. However, using the technique
described in Section 5.1 we were able to correctly infer these grammars. However,
more work is needed to handle simultaneous rule applications in general.

Additionally, sometimes a very large counterexample was returned to L∗ ,
creating a large increase in the DFAs: the 9thiteration of the extraction on
L3 introduced almost 30 new states. The algorithm does not manage to infer
anything meaningful from these nested, simultaneous applications.

Missing Rules For the Dyck languages L7−L9, the inference algorithm was mostly
successful. However, due to the large number of possible delimiter combinations,
some patterns and nesting relations did not appear often enough in the DFA

Synthesizing Context-free Grammars from Recurrent Neural Networks 365

sequences. As a result, for L8, some productions were missing in the generated
grammar. L8 also created one incorrect production due to noise in the sequence
(one erroneous pattern was generated two times,passing the threshold).

RNN Noise In L15, the extracted DFAs for some reason always forced that a
single character d be included between every pair of delimiters. Our inference
algorithm of course maintained this peculiarity. It correctly allowed the allowed
optional embedding of “abc” strings. But due to noisy (incorrect) generated
DFAs, the patterns generated did not maintain balanced parenthesis.

8 Related work

Training RNNs to recognize Dyck Grammars. Recently there has been a surge
of interest in whether RNNs can learn Dyck languages [5,19,21,28]. While these
works report very good results on learning the language for sentences of similar
distance and depth as the training set, with the exception of [21], they report
significantly lower accuracy for out-of-sample sentences.

Among these, Sennhauser and Berwick [19] use LSTMs, and show that in
order to keep the error rate within a 5 percent tolerance, the number of hidden
units must grow exponentially with the distance or depth of the sequences
(though Hewitt et. al. [13] find much lower theoretical bounds). They conclude
that LSTMs do not learn rules, but rather statistical approximations. Bernardy
[5] experimented with various RNN architectures, finding in particular that the
LSTM has more difficulty in predicting closing delimiters in the middle of a
sentence than at the end. Based on this, he conjectures that the RNN is using
a counting mechanism, but has not truly learnt the Dyck language (its CFG).
For the simplified task of predicting only the final closing delimiter of a legal
sequence, Skachkova, Trost and Klakow [21] find that LSTMs have nearly perfect
accuracy across words with large distances and embedded depth.

Yu, Vu and Kuhn [28] compare the three works above, and note that the task
of predicting only the closing bracket of a balanced Dyck word is not sufficient
for checking if an RNN has learnt the language, as it can be computed by only a
counter. In their experiments, they present a prefix of a Dyck word and train
the RNN to predict the next valid closing bracket. They experiment with an
LSTM using 4 different models, and show that the generator-attention model
[17] performs the best, and is able to generalize quite well at the tagging task .
However, they find that it degrades rapidly with out-of-domain tests. They also
conclude that RNNs do not really learn the Dyck language. These experimental
results are reinforced by the theoretical work in [13], who remark that no finite
precision RNN can learn a Dyck language of unbounded depth, and give precise
bounds on the memory required to learn a Dyck language of bounded depth.

Despite these findings, our algorithm nevertheless extracts a CFG from a
trained RNN, discovering rules based on DFAs synthesized from the RNN using
the algorithm in [26]. Because we can use a short sequence of DFAs to extract
the rules, and because the first DFAs in the sequence describe Dyck words with

366 D. M. Yellin and G. Weisss

increasing but limited distance and depth, we are often able to extract the
CFG perfectly even when the RNN does not generalize well. Moreover, we show
that our approach works with more complex types of delimiters, and on Dyck
languages with expressions between delimiters.

Extracting DFAs from RNNs. There have been many approaches to extract higher
level representations from a neural network (NN), both to facilitate comprehension
and to verify correctness. One of the oldest approaches is to extract rules from
a NN [24,12]. In particular, several works attempt to extract FSAs from RNNs
[18,15,25]. We base our work on [26]. Its ability to generate sequences of DFAs
providing increasingly better approximations of the CFL is critical to our method.

There has been less research on extracting a CFG from an RNN. One exception
is [23], where they develop a Neural Network Pushdown Automata (NNPDA)
framework, a hybrid system augmenting an RNN with external stack memory.
They show how to extract a push-down automaton from an NNPDA, however,
their technique relies on the PDA-like structure of the inspected architecture. In
contrast, we extract CFGs from RNNs without stack augmentation.

Learning CFGs from samples. There is a wide body of work on learning CFGs
from samples. An overview is given in [10] and a survey of work for grammatical
inference applied to software engineering tasks can be found in [22].

Clark et. al. studies algorithms for learning CFLs given only positive examples
[11]. In [7], Clark and Eyraud show how one can learn a subclass of CFLs called
CF substitutable languages. There are many languages that can be expressed by a
PRS but are not substitutable, such as xnbn. However, there are also substitutable
languages that cannot be expressed by a PRS (wxwR - see [27]). In [8], Clark,
Eyraud and Habrard present Contextual Binary Feature Grammars. However,
it does not include Dyck languages of arbitrary order. None of these techniques
deal with noise in the data, essential to learning a language from an RNN.

9 Future Directions

Currently, for each experiment, we train the RNN on that language and then
apply the PRS inference algorithm on a single DFA sequence generated from that
RNN. Perhaps the most substantial improvement we can make is to extend our
technique to learn from multiple DFA sequences. We can train multiple RNNs
and generate DFA sequences for each one. We can then run the PRS inference
algorithm on each of these sequences, and generate a CFG based upon rules
that are found in a significant number of the runs. This would require care to
guarantee that the final rules form a cohesive CFG. It would also address the
issue that not all rules are expressed in a single DFA sequence, and that some
grammars may have rules that are executed only once per word of the language.

Our work generates CFGs for generalized Dyck languages, but it is possible
to generalize PRSs to express a greater range of languages. Work will then be
needed to extend the PRS inference algorithm.

Synthesizing Context-free Grammars from Recurrent Neural Networks 367

References

1. Angluin, D.: Inductive inference of formal languages from positive data. Inf. Control.
45(2), 117–135 (1980), https://doi.org/10.1016/S0019-9958(80)90285-5

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

3. Ayache, S., Eyraud, R., Goudian, N.: Explaining black boxes on sequential data
using weighted automata. In: Unold, O., Dyrka, W., Wieczorek, W. (eds.) Proceed-
ings of the 14th International Conference on Grammatical Inference, ICGI 2018.
Proceedings of Machine Learning Research, vol. 93, pp. 81–103. PMLR (2018),
http://proceedings.mlr.press/v93/ayache19a.html

4. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference
on Learning Representations, ICLR 2015 (2015), http://arxiv.org/abs/1409.0473

5. Bernardy, J.P.: Can recurrent neural networks learn nested recursion? In: Linguistic
Issues in Language Technology, Volume 16, 2018. CSLI Publications (2018), https:
//www.aclweb.org/anthology/2018.lilt-16.1

6. Cechin, A.L., Simon, D.R.P., Stertz, K.: State automata extraction from recurrent
neural nets using k-means and fuzzy clustering. In: 23rd International Conference
of the Chilean Computer Science Society (SCCC 2003). pp. 73–78. IEEE Computer
Society (2003). https://doi.org/10.1109/SCCC.2003.1245447

7. Clark, A., Eyraud, R.: Polynomial identification in the limit of substitutable context-
free languages. J. Mach. Learn. Res. 8, 1725–1745 (2007), http://dl.acm.org/citation.
cfm?id=1314556

8. Clark, A., Eyraud, R., Habrard, A.: A polynomial algorithm for the inference of
context free languages. In: Clark, A., Coste, F., Miclet, L. (eds.) Grammatical
Inference: Algorithms and Applications, 9th International Colloquium, ICGI 2008,
Proceedings. Lecture Notes in Computer Science, vol. 5278, pp. 29–42. Springer
(2008). https://doi.org/10.1007/978-3-540-88009-7 3

9. Das, S., Giles, C.L., Sun, G.: Learning context-free grammars: Capabilities and
limitations of a recurrent neural network with an external stack memory. In:
Conference of the Cognitive Science Society. pp. 791–795. Morgan Kaufmann
Publishers (1992)

10. D’Ulizia, A., Ferri, F., Grifoni, P.: A survey of grammatical inference meth-
ods for natural language learning. Artif. Intell. Rev. 36(1), 1–27 (2011).
https://doi.org/10.1007/s10462-010-9199-1

11. Gold, E.M.: Language identification in the limit. Information and Control 10(5),
447–474 (May 1967), https://doi.org/10.1016/S0019-9958(67)91165-5

12. Hailesilassie, T.: Rule extraction algorithm for deep neural networks: A review.
International Journal of Computer Science and Information Security (IJCSIS) 14(7)
(July 2016)

13. Hewitt, J., Hahn, M., Ganguli, S., Liang, P., Manning, C.D.: RNNs can generate
bounded hierarchical languages with optimal memory. In: Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP). pp.
1978–2010. Association for Computational Linguistics (2020), https://www.aclweb.
org/anthology/2020.emnlp-main.156

14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation
9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

15. Jacobsson, H.: Rule extraction from recurrent neural networks: A
taxonomy and review. Neural Computation 17(6), 1223–1263 (2005).
https://doi.org/10.1162/0899766053630350

https://doi.org/10.1016/S0019-9958(80)90285-5
https://doi.org/10.1016/0890-5401(87)90052-6
http://proceedings.mlr.press/v93/ayache19a.html
http://arxiv.org/abs/1409.0473
https://www.aclweb.org/anthology/2018.lilt-16.1
https://www.aclweb.org/anthology/2018.lilt-16.1
https://doi.org/10.1109/SCCC.2003.1245447
http://dl.acm.org/citation.cfm?id=1314556
http://dl.acm.org/citation.cfm?id=1314556
https://doi.org/10.1007/978-3-540-88009-7_3
https://doi.org/10.1007/s10462-010-9199-1
https://doi.org/10.1016/S0019-9958(67)91165-5
https://www.aclweb.org/anthology/2020.emnlp-main.156
https://www.aclweb.org/anthology/2020.emnlp-main.156
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/0899766053630350

368 D. M. Yellin and G. Weisss

16. Kozen, D.C.: The Chomsky—Schützenberger theorem. In: Automata and Com-
putability. pp. 198–200. Springer Berlin Heidelberg, Berlin, Heidelberg (1977)

17. Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based
neural machine translation. In: Màrquez, L., Callison-Burch, C., Su, J., Pighin, D.,
Marton, Y. (eds.) Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2015. pp. 1412–1421. The Association for
Computational Linguistics (2015). https://doi.org/10.18653/v1/d15-1166

18. Omlin, C.W., Giles, C.L.: Extraction of rules from discrete-time recurrent neu-
ral networks. Neural Networks 9(1), 41–52 (1996). https://doi.org/10.1016/0893-
6080(95)00086-0

19. Sennhauser, L., Berwick, R.: Evaluating the ability of LSTMs to learn context-
free grammars. In: Proceedings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP. pp. 115–124. Association for
Computational Linguistics (Nov 2018). https://doi.org/10.18653/v1/W18-5414

20. Siegelmann, H.T., Sontag, E.D.: On the Computational Power of Neural Nets. J.
Comput. Syst. Sci. 50(1), 132–150 (1995). https://doi.org/10.1006/jcss.1995.1013

21. Skachkova, N., Trost, T., Klakow, D.: Closing brackets with recurrent neural net-
works. In: Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP. pp. 232–239. Association for Computational
Linguistics (Nov 2018). https://doi.org/10.18653/v1/W18-5425

22. Stevenson, A., Cordy, J.R.: A survey of grammatical inference in soft-
ware engineering. Sci. Comput. Program. 96(P4), 444–459 (Dec 2014).
https://doi.org/10.1016/j.scico.2014.05.008

23. Sun, G., Giles, C.L., Chen, H.: The neural network pushdown automaton: Architec-
ture, dynamics and training. In: Giles, C.L., Gori, M. (eds.) Adaptive Processing
of Sequences and Data Structures, International Summer School on Neural Net-
works. Lecture Notes in Computer Science, vol. 1387, pp. 296–345. Springer (1997).
https://doi.org/10.1007/BFb0054003

24. Thrun, S.: Extracting rules from artifical neural networks with distributed rep-
resentations. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in
Neural Information Processing Systems 7, NIPS Conference, 1994. pp. 505–512.
MIT Press (1994), http://papers.nips.cc/paper/924-extracting-rules-from-artificial-
neural-networks-with-distributed-representations

25. Wang, Q., Zhang, K., Liu, X., Giles, C.L.: Connecting first and second order
recurrent networks with deterministic finite automata. CoRR abs/1911.04644
(2019), http://arxiv.org/abs/1911.04644

26. Weiss, G., Goldberg, Y., Yahav, E.: Extracting automata from recurrent neural
networks using queries and counterexamples. In: Dy, J.G., Krause, A. (eds.) Pro-
ceedings of the 35th International Conference on Machine Learning, ICML 2018.
Proceedings of Machine Learning Research, vol. 80, pp. 5244–5253. PMLR (2018),
http://proceedings.mlr.press/v80/weiss18a.html

27. Yellin, D.M., Weiss, G.: Synthesizing context-free grammars from recurrent neural
networks (extended version) (2021), http://arxiv.org/abs/2101.08200

28. Yu, X., Vu, N.T., Kuhn, J.: Learning the Dyck language with attention-based
Seq2Seq models. In: Proceedings of the 2019 ACL Workshop BlackboxNLP: An-
alyzing and Interpreting Neural Networks for NLP. pp. 138–146. Association for
Computational Linguistics (2019), https://www.aclweb.org/anthology/W19-4815

https://doi.org/10.18653/v1/d15-1166
https://doi.org/10.1016/0893-6080(95)00086-0
https://doi.org/10.1016/0893-6080(95)00086-0
https://doi.org/10.18653/v1/W18-5414
https://doi.org/10.1006/jcss.1995.1013
https://doi.org/10.18653/v1/W18-5425
https://doi.org/10.1016/j.scico.2014.05.008
https://doi.org/10.1007/BFb0054003
http://papers.nips.cc/paper/924-extracting-rules-from-artificial-neural-networks-with-distributed-representations
http://papers.nips.cc/paper/924-extracting-rules-from-artificial-neural-networks-with-distributed-representations
http://arxiv.org/abs/1911.04644
http://proceedings.mlr.press/v80/weiss18a.html
http://arxiv.org/abs/2101.08200
https://www.aclweb.org/anthology/W19-4815

Synthesizing Context-free Grammars from Recurrent Neural Networks 369

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://creativecommons.org/licenses/by/4.0/

	Synthesizing Context-free Grammars from Recurrent Neural Networks
	1 Introduction
	2 Definitions and Notations
	2.1 Deterministic Finite Automata
	2.2 Dyck Languages

	3 Patterns
	3.1 Pattern Composition

	4 Pattern Rule Sets
	4.1 Examples

	5 PRS Inference Algorithm
	5.1 Deviations from the PRS framework

	6 Converting a PRS to a CFG
	7 Experimental results
	7.1 Methodology
	7.2 Generating a sequence of DFAs
	7.3 Languages
	7.4 Results

	8 Related work
	9 Future Directions
	References

