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Recent advancements in fluorescence imaging have shown that the bacterial nucleoid is surprisingly dynamic in terms of both
behavior (movement and organization) and structure (density and supercoiling). Links between chromosome structure and rep-
lication initiation have been made in a number of species, and it is universally accepted that favorable chromosome structure is
required for initiation in all cells. However, almost nothing is known about whether cells use changes in chromosome structure
as a regulatory mechanism for initiation. Such changes could occur during natural cell cycle or growth phase transitions, or they
could be manufactured through genetic switches of topoisomerase and nucleoid structure genes. In this review, we explore the
relationship between chromosome structure and replication initiation and highlight recent work implicating structure as a regu-
latory mechanism. A three-component origin activation model is proposed in which thermal and topological structural elements
are balanced with trans-acting control elements (DnaA) to allow efficient initiation control under a variety of nutritional and
environmental conditions. Selective imbalances in these components allow cells to block replication in response to cell cycle im-
passe, override once-per-cell-cycle programming during growth phase transitions, and promote reinitiation when replication
forks fail to complete.

Regulation of the timing and number of replication events is
critical for genomic stability and evolutionary fitness in all

cells. Normally, all chromosomes in a cell replicate exactly once
per division cycle and in a timely manner to allow successful chro-
mosome segregation. Even subtle deviations from this formula
can have severe consequences for cell viability, including in-
creased mutation rate and DNA repair stress (1, 2) and increased
rates of missegregation, leading to aneuploidy—a major driver of
genetic disease, including cancer (3). Precise replication timing is
even more critical in bacteria, which have strong evolutionary
pressure to replicate and divide as rapidly as possible. Addition-
ally, as most bacteria utilize a single replication origin to replicate
their chromosome, origins must fire with 100% efficiency to keep
pace. Replication timing precision is illustrated by the extraordi-
narily low variability in cell mass at the time of replication initia-
tion (coefficient of variation, 9% [4]). During fast growth, all cop-
ies of the origin present on a multiforked chromosome (usually 4
or 8) fire simultaneously, with �5% of wild-type cells exhibiting a
nonsynchronous initiation (5).

In the majority of cases, once a replication fork is started, it
progresses at a relatively constant rate to the terminus. When forks
stall (and they frequently do), dedicated and highly conserved
mechanisms exist to restart the fork at the site of failure (6). Thus,
in all cells replication is controlled at the step of initiation. Regu-
lation of initiation is often considered a binary relationship be-
tween the origin (the replicator) and the trans-acting protein that
catalyzes DNA duplex opening (the initiator). This model, known
as the replicon hypothesis, was first proposed by Jacob and col-
leagues in 1963 (7), and the root principles have been confirmed in
all domains of life (8). However, the replicator/initiator relation-
ship is only one component of a larger initiation regulatory sys-
tem; there is also strong dependence on chromosome structure,
loosely measured in terms of supercoiling density (below), both at
the origin and globally. For example, the selection and timing of
origin firing in eukaryotes are largely dependent on local chroma-
tin structure, with origins in the decondensed regions initiating
first (9). Such dependence is not typically associated with bacterial

origins, although this view is beginning to change. For instance,
binding of the bacterial initiator protein, DnaA, to the bipartite
origin of Helicobacter pylori is supercoiling dependent (10).
Also, replication initiation in Caulobacter crescentus is regulated
through cell cycle changes in chromosome structure and position
(11). It is well established that chromosome condensation in early
stationary phase of bacterial growth is highly refractive to initia-
tion of replication and transcription (12), both of which require
duplex melting, and there is emerging evidence that initiation in
Escherichia coli is sensitive to chromosome structure changes in
the cell cycle (13). In this review, we outline the key determinants
of chromosome structure in bacteria and discuss the role of DNA
structure in regulating replication initiation.

INITIATION IS A THERMODYNAMIC PROCESS GOVERNED BY
FACTORS THAT INFLUENCE DUPLEX MELTING

The dependency of bacterial replication initiation on favorable
DNA topology has been known for nearly as long as the require-
ment for DnaA (14–16); however, the understanding of topolo-
gy’s role as a regulatory mechanism has developed more slowly.
This is in part due to the inherent differences in DNA structures of
the various experimental systems (in vitro, in vivo, plasmid, or
chromosome) as well as a lack of tools to measure DNA structure.
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Replication origins in all cells are thermodynamically unstable
AT-rich elements that become single stranded upon the supply of
sufficient duplex underwinding (reduced twist in units of base
pairs per helical turn). DNA in this state generally forms compen-
satory negative supercoils, and underwound segments are com-
monly referred to as negatively supercoiled. Although most natu-
ral chromosomes are maintained with a net negative supercoiling,
DNA topology fluctuates strongly both along the chromosome
and during different phases of growth (17, 18).

DnaA: ONE PART OF THE PUZZLE

DnaA promotes strand opening at oriC by modulating nearby
DNA topology. In E. coli, DnaA is bound to oriC for much of the
cell cycle at three high-affinity binding sites; then, through a com-
plex maneuver involving an exchange of Fis and integration host
factor (IHF) binding (19; see also below), DnaA binds sequentially
along two arrays of low-affinity binding sites (20) (Fig. 1). Rozgaja
and colleagues (20) propose that oligomerization of DnaA be-
tween the two arrays, which are out of helical phase, may intro-
duce torsional strain on the DNA duplex, resulting in strand
opening at the adjacent DNA-unwinding element (DUE). After
DUE unwinding, DnaA remains bound and may stabilize short-
lived unwound structures (21). Most other bacteria have similarly
organized origins, with a series of high- and low-affinity DnaA
binding sites 50 to 100 bp from an AT-rich DUE (reviewed in
reference 22).

Several lines of evidence indicate that DnaA alone is insuffi-
cient to drive initiation. First, the ability of DnaA to catalyze
strand opening is highly dependent on global DNA context. DNA
footprinting in stationary-phase cells permeabilized with ethanol
shows that origins have a protein binding signature identical to
that of growing cells at the time of initiation (23), suggesting that
some other non-origin-binding component is repressing initia-
tion. Given the reduced supercoiling status of stationary-phase
chromosomes (17), it is a fair conclusion that origin firing is pre-
vented in these cells by an insufficient level of free negative super-
coiling. Similarly, in growing cells the amount of DnaA binding
required for initiation varies significantly with growth rate (24),
supercoiling status (14), and whether initiation occurs on the
chromosome or a plasmid (reviewed in reference 25), which have
very different supercoiling buffering capacities. Second, overpro-
duction of DnaA has a limited effect on initiation. High overex-
pression of wild-type DnaA triggers a rapid initiation event, but
subsequent initiations occur at normal once-per-division-cycle
intervals (e.g., see reference 26) with only slightly upset initiation
synchrony between multiple origins in the same cell (27). It is

possible that the excess DnaA molecules are inactivated by the
Hda-mediated RIDA (regulatory inactivation of DnaA) system,
which hydrolyzes bound ATP on DnaA (28). Supporting this the-
ory, oversupply of a DnaA variant that is RIDA insensitive (DnaA-
cos) is lethal, presumably due to overinitiation and subsequent
replication fork collapse (1). However, it was very recently shown
that subtle (50%) overexpression of ATP-DnaA caused no change
in the cell cycle timing of initiation under a wide range of growth
conditions (29). On the whole, it appears that DnaA is necessary
but not sufficient for replication initiation and that origin func-
tion is ultimately dependent on other factors besides DnaA.

OTHER FACTORS THAT AFFECT oriC STRUCTURE

In addition to DnaA, several accessory DNA structure-modifying
proteins bind E. coli oriC, including (but not limited to) IHF, Fis,
HU, and SeqA (30). Similarly to DnaA, these proteins affect DNA
topology and may regulate initiation by generating favorable or
unfavorable torsional strain at the DUE (31–34). None of the ac-
cessory proteins are essential, but null mutants exhibit severely
asynchronous initiations and grow poorly in rich medium (e.g.,
see references 34 and 35), suggesting that they are important for
initiation timing during multiforked replication. SeqA is a partic-
ularly potent negative regulator of initiation, and immediately
after initiation, oriC is strongly and specifically bound by SeqA
protein, which precludes origin firing in a process known as se-
questration (36, 37). SeqA binds preferentially to hemimethylated
GATC sequences, normally remethylated by DNA adenine meth-
ylase �5 or so min after passage of the replication fork but ex-
tended to 10 to 20 min at a few chromosomal loci, including oriC
(37). Enhanced SeqA binding at the origin may affect initiation by
occluding DnaA binding, either at specific DnaA boxes where
SeqA and DnaA are juxtaposed (38) or over a broader region by a
SeqA-promoted association of oriC with the inner membrane
(39–42; see also below). In addition, SeqA may directly inhibit
DUE melting by forming a RecA-like filament along the GATC-
rich origin (33, 43, 44), which has been shown to reduce available
free negative supercoiling and block open complex formation on
oriC plasmids (31, 33). Whatever the exact mechanism of SeqA,
independent cycles of oriC sequestration and DnaA control are
key elements of E. coli’s precise and synchronous initiation system
(45). The replication origins of C. crescentus and Bacillus subtilis
are also DnaA binding centers; however, unlike E. coli, these or-
ganisms also utilize master response regulators to modulate struc-
ture at the DUE. In Caulobacter, the transcription regulator CtrA,
which is at the center of a comprehensive cell cycle control net-
work (46), binds the origin (Cori) and represses initiation through
DnaA occlusion and/or modulating transcription within the ori-
gin (47; below). Similarly, Spo0A, originally discovered as a spo-
rulation regulator in B. subtilis, also inhibits replication initiation
through direct binding to oriC (48).

DNA topology is also affected by active transcription com-
plexes, and promoters in and around origins have a stimulatory
effect on replication initiation in a number of bacteria, including
E. coli and C. crescentus (e.g., see references 16 and 47). Activating
transcription does not prime DNA synthesis, as transcripts lacking
a 3=-OH group are fully capable of driving oriC initiation in vitro
and DnaG primase is essential even in the presence of the tran-
scription (16). Instead, it appears that transcription disrupts base
pairing at the DUE either by creating a stable R-loop (16) or by the
introduction of DNA supercoils from the migrating RNA poly-

FIG 1 The E. coli origin of replication. The 245-bp oriC sequence composed of
an AT-rich DNA-unwinding element (DUE) and binding sites for DnaA, IHF,
and Fis is shown. High-affinity DnaA binding sites (asterisks) and low-affinity
DnaA binding site arrays (horizontal arrows) are indicated (20). The tran-
scription direction of the oriC-flanking genes, mioC and gidA (large arrows),
with predicted topological effects on DNA supercoiling and duplex twist (thick
and thin helices, respectively), is shown.
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merase complex (49). By far, the best-understood relationship
between transcription and replication initiation is at the E. coli
origin, which is flanked by two well-conserved genes, gidA and
mioC (Fig. 1). Given their orientations about oriC, the twin-do-
main supercoiling model (49) predicts that mioC transcription
introduces duplex overtwist (positive supercoils) into the DUE
and gidA introduces duplex undertwist (negative supercoils), al-
though some mioC transcripts progress completely through oriC
(50), thus possibly having the opposite effect. Supporting this
model, their transcription is strongly cell cycle regulated, with
maximal gidA (activating) transcription before initiation and
maximal mioC (inhibiting) transcription immediately after initi-
ation (51). Also, transcription from at least one of the two genes is
required for initiation of an E. coli extragenic oriC replicon, or
minichromosome (15, 52), and can be replaced with an antibiotic
marker oriented away from the DUE (53). Surprisingly, however,
gidA and mioC are completely dispensable on the chromosome,
and in fact, double promoter deletion mutants show no measur-
able change in growth, initiation rate, or synchrony under a vari-
ety of growth conditions (35, 54). This discrepancy may be due to
differences in supercoiling buffering capacity between plasmids
and the chromosome (25, 54). Why then are these genes and their
positions so highly conserved among enterobacteria? One possi-
bility is that their transcriptions help drive initiations under sub-
optimal conditions or at times outside the normal cell cycle
initiation window. Supporting this idea, cells initiating asynchro-
nously via a partial oriC deletion required either mioC or gidA for
viability (54). Also, severe overinitiation leading to fork breakage
and cell death after thymine starvation is prevented by inactiva-
tion of the gidA and mioC promoters (55). This result suggests that
these transcriptions may be part of a (sometimes pathological)
response pathway to reinitiate replication on chromosomes with
stalled forks. In a greater context, cells may utilize gidA and mioC
to trigger other “nonstandard” initiations, such as those that occur
during entry and exit from multiforked (fast growth) replication,
which requires division-less initiations and initiation-less divi-
sions, respectively. Another reason that these genes may be so well
conserved is that their gene products have an apparent role in cell
division (35). As the name implies, gidA (glucose-inhibited divi-
sion) mutants, and to a lesser extent mioC mutants, exhibit a de-
layed cell division phenotype that is exacerbated in rich medium
(35, 56). It is possible that replication-dependent expression of
these genes, by promoter remodeling at initiation, provides an
activating signal to the cell division machinery (35).

FACTORS THAT AFFECT GLOBAL CHROMOSOME
STRUCTURE

Superhelical tension along the chromosome is mainly a product of
the DNA-unwinding activities of replication and transcription,
constraint of free supercoils by nucleoid-associated proteins, and
enzymatic control of supercoiling by topoisomerases (57). DNA
gyrase and topoisomerase I (Topo I), which introduce and remove
negative supercoils, respectively, have strong genetic interactions
with DnaA. For instance, deletion of topA (Topo I) causes in-
creased negative supercoiling and suppresses the temperature sen-
sitivity of dnaA46 mutants (58). Conversely, partial loss-of-func-
tion mutations in gyrA and gyrB (gyrase) cause reduced negative
supercoiling and enhance the replication defects of dnaA46 (14).
Topoisomerase mutations also disrupt initiation synchrony (59),
implying poor initiation control. Supercoiling density is also

strongly affected by the nucleoid-associated proteins (60), which
can bind and constrain negative supercoils from driving strand-
opening reactions. Among these proteins, HU is probably the
most important and conserved, with mutants exhibiting severely
decondensed nucleoids and reduced supercoiling (61). Con-
versely, overproduction of HU apparently has the opposite effect,
as it suppresses the temperature sensitivity of dnaA46 (62). An-
other abundant DNA-binding protein with significant effects on
global DNA topology is the B. subtilis DnaD protein, which is
essential for replication initiation (63). Similarly, SMC in B. sub-
tilis and the SMC-like MukB protein in E. coli contribute to nu-
cleoid condensation, and mutants have reduced plasmid and
chromosome supercoiling and exhibit initiation defects (64, 65).
Additionally, mukB null mutants are hypersensitive to the gyrase
inhibitor novobiocin and are suppressed by a topA mutation (66),
demonstrating their strong effect on chromosome topology. Im-
portantly, biochemical evidence indicates that DnaA binding to
the origin is not supercoiling dependent (67, 68), signifying that
the above-observed suppression of DnaA deficiency by supercoil-
ing is not likely caused by increased DnaA binding.

Another factor affecting chromosome supercoiling is tran-
scription. Although duplex unwinding by RNA polymerase gen-
erates both positive and negative supercoiling (in front of and
behind the transcribing complex), a collective topoisomerase bias
toward removal of positive supercoils likely results in a net in-
crease in negative supercoiling (57, 69). Treatment of cells with
the RNA polymerase (RNAP) inhibitor rifampin causes immedi-
ate decondensation of the nucleoid with reduced supercoiling,
presumably resulting from a sudden lack of active RNAP-gener-
ated supercoiling (70, 71). The rRNA genes, which account for
�80% of all transcription activity in rapidly growing E. coli (72),
may account for the bulk of the supercoiling effects, as blocking
rRNA transcription specifically (by the stringent response) causes
nucleoid decondensation (73). Additionally, many highly tran-
scribed genes, including 5 of 7 rRNA genes, are positioned near the
origin, in an �1-Mb zone known as the Ori macrodomain (74).
This region displays unique cellular localization (74) and signifi-
cantly elevated negative supercoiling (57). Inhibiting transcrip-
tion globally with rifampin (75) or at rRNA operons by the strin-
gent response (73) causes an immediate block to replication
initiation.

It has also been shown that various environmental signals such
as temperature and osmolarity can greatly affect the levels of chro-
mosome supercoiling, which also have significant effects on rep-
lication initiation. Thermal energy promotes DNA duplex dena-
turation by lengthening hydrogen bonds, which results in
decreased bond strength between base pairs. Increasing the tem-
perature of exponentially growing E. coli cells by �10°C induces
an immediate “round” of DNA replication at all existing origins
(76). This so-called heat-induced replication is dependent on a
fully intact DUE (77) and probably triggers initiation by decreas-
ing the activation energy of open complex formation. Since only a
single round of replication is triggered by an increase in tempera-
ture, topological changes are likely quickly compensated for by
adjustments to expression of gyrase and Topo I (78), implying that
net origin energy status is under homeostatic control (below).
Similarly, rapidly increasing osmotic levels (to �0.5 M NaCl),
which results in an immediate but temporary increase in negative
supercoiling (79), induces replication initiation in dnaA46 mutant
cells at a restrictive temperature (80) and also in cells blocked for
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replication initiation by a chromosome-membrane tether (13; see
also below).

CHROMOSOME STRUCTURE CHANGES DURING THE CELL
CYCLE

Do chromosome structure changes that might regulate initiation
occur predictably during the cell cycle? Both the aforementioned
gidA-mioC transcription switch and origin sequestration are chro-
mosome structure-modifying events triggered by replication of
the oriC sequence. Remodeling of DnaA and SeqA at the gidA and
mioC promoters triggers a switch from an initiation-promoting
gidA-on/mioC-off state to an initiation-repressing gidA-off/
mioC-on state (35, 51; see also above). At the same time, strong
binding by SeqA protein at hemimethylated oriC could restrain
negative supercoils through formation of an extended filament
(33; see also above). Thus, cell cycle-specific protein remodeling at
the time of initiation may induce a local topological state that is
incompatible with further DUE opening.

Another source of chromosome structure change that occurs
during the cell cycle is the replisome itself, which generates super-
helical torque at the fork and leads to nucleoid expansion and
reorganization as new material is added and segregated. Sufficient
positive supercoiling is generated at the fork that it evidently mi-
grates backwards, wrapping newly replicated daughter DNA du-
plexes together in what is known as a precatenane (81). Precat-
enanes for most of the chromosome are estimated to be removed
in �10 min (82–85), but several key loci have prolonged entan-
glement (cohesion), including oriC, ter, and a right-arm multilo-
cus region (82, 84, 85). Delayed release of these regions correlates
precisely with the timing of observed jumps in nucleoid size
(length and volume) as measured by HU-mCherry fluorescence in
E. coli (86). The cause-effect relationship between nucleoid expan-
sion events and the release of cohesion linkages is unknown, but
expansion appears to be fueled by rapid wave-like nucleoid den-
sity oscillations that migrate back and forth across the nucleoid in
the time frame of a few seconds (86). Given the magnitude of
nucleoid growth seen during the peak of each expansion event
(�15 nm in length per min), there are potentially significant con-
sequences for replication initiation, and further studies are needed
to explore this new aspect of chromosome behavior.

TETHERING AND OTHER DRAMATIC CHANGES TO
CHROMOSOME STRUCTURE

Some less subtle nucleoid changes seen in growing cells or after
drug treatment have unambiguous effects on initiation. We pre-
viously observed a period late in the cell cycle in which the nucle-
oid and chromosomal loci (oriC and ter) remained relatively mo-
tionless (87). After cell birth, an increase in mobility preceded
replication initiation, and we speculated that this mobility shift
reflected a structural change that licensed a round of replication
initiation (87). Both this ter-mediated immobility period (88, 89)
and the origin sequestration period (39–42) involve specific at-
tachments of the chromosome to the cell membrane. Association
of oriC with acidic phospholipids in the cell membrane stimulates
turnover of bound nucleotide on DnaA, resulting in rejuvenation
of the active ATP-DnaA form (reviewed in reference 90), and also
sequesters the origin from Dam methylase for an extended period,
which results in continued SeqA binding and oriC repression (39–
41). However, the mechanism by which a ter-membrane connec-
tion could affect initiation is less clear.

We recently tested whether chromosome-membrane attach-
ments in general can inhibit initiation by artificially tethering the
chromosome via a transmembrane-Tet repressor fusion protein
and chromosomally inserted tetO array (13). This study showed
that tethering any chromosomal locus caused a rapid initiation
block without affecting replication elongation or any known met-
abolic or cell cycle response. As tethers placed far (�1 Mb) from
oriC were no less effective, it is unlikely that the blockage resulted
from an increased association of origin-bound DnaA with the
inner membrane. Furthermore, initiation blocking could not be
suppressed by manipulation of any trans-acting initiation factor
(including DnaA overexpression), and untethered oriC minichro-
mosome replication was unaffected when the host cell chromo-
some was tethered, indicating that the blocking mechanism oper-
ated in cis. The only discernible physical effect of tethering was a
dramatic decondensation of the nucleoid and global reduction in
supercoiling, which may have directly prevented open complex
formation at the DUE.

Strikingly, tethering of the chromosome blocked initiation
with kinetics nearly identical to those of rifampin treatment,
which targets RNA polymerase. Why replication initiation is sen-
sitive to rifampin is a long and unsettled question in bacterial
genetics, but the mechanism does not involve production of an
essential protein (75) or transcription of the origin-flanking gene
gidA or mioC (54). Like tethering, rifampin treatment causes nu-
cleoid decondensation and reduced chromosome supercoiling
(70, 71), and we expect that rifampin and tethering block initia-
tion by the same supercoiling mechanism. Supporting this view,
initiation in tethered cells was temporarily restored after treat-
ment with high concentrations of salt, suggesting that a rapid in-
flux of negative supercoiling (above) activated the blocked origins.
Together, these findings demonstrate the unconditional require-
ment for negative supercoiling in replication initiation and point
to possible routes for controlling initiation through natural super-
coiling transitions (below).

THREE-COMPONENT ENERGY MODEL LINKS REPLICATION
INITIATION TO CELL PHYSIOLOGY

Replication initiation is dependent on three major energy compo-
nents: (i) unregulatable DUE parameters that dictate relaxed DNA
hydrogen bonding strength (base composition, temperature, and
ionic strength), (ii) trans-acting DNA-binding proteins that
torque DNA (most notably DnaA and SeqA), and (iii) negative
supercoiling, which provides general DNA undertwist (Fig. 2). To
maintain matched rates of replication and cell division (balanced
growth) under a variety of growth conditions, the sum of these
three components must be maintained at a near-constant level.
Supporting this model, it is well established that supercoiling lev-
els adapt rapidly to an array of environmental changes such as
temperature (78, 91), pH (91), osmolarity (92), and oxygen avail-
ability (93). Also, species or mutants with altered levels of super-
coiling are more or less tolerant of thermal and ionic extremes
(e.g., see references 94 and 95). As described above, supercoiling
changes can be either localized at the DUE or global and can result
from a number of mechanisms, including altered expression of
Topo I and DNA gyrase (reviewed in reference 91), altered topo-
isomerase function caused by a change in the cell energy (�ATP/
ADP ratio) status (92, 93), changes in transcriptional activity, or
changing the availability of free supercoils (constraint) by nucle-
oid binding proteins (79).
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The three-component energy model (Fig. 2) predicts that a
change in temperature, supercoiling, or DnaA will result in an
immediate but short-lived effect on replication initiation and a
slower but stable compensatory adjustment of another energy
component. Indeed, this appears to be the case. For example,
rapidly reducing negative supercoiling by novobiocin treat-
ment or upshift of a temperature-sensitive gyrase mutant dis-
rupts initiation synchrony (59), enhances the temperature sen-
sitivity of a dnaA46 mutant (14), and leads to an increase in
DnaA expression (96). Also, a temperature upshift of more
than 10°C induces a single round of replication initiation (76),
followed by a reduction in negative supercoiling via altered
expression of gyrase and Topo I (76, 78). A sudden increase in
temperature can even induce a round of initiation in the pres-
ence of rifampin (76, 97), suggesting that thermal activation
can compensate for a gross deficit in negative supercoiling.
This kind of homeostatic control of origin energy status pre-
sumably allows E. coli cells to initiate replication at the proper cell
age and mass to achieve balanced growth over a range of temper-
atures of about 35°C. Such a control feature may explain different
requirements for oriC depending on its setting: chromosome,
plasmid, or in vitro. For example, E. coli cells can grow at temper-
atures below 10°C, while open complex formation does not
occur below 28°C in vitro (98). Or, deletion of roughly half the
DnaA binding sites is permissible in chromosomal oriC with-
out loss of function, while oriC plasmids, which have much
lower supercoiling capacity, cannot tolerate deletion of a single
binding site (24, 99). We envision that programmed changes to
DNA topology, for example, those occurring when the chro-
mosome terminus is attached to the division septum (87),
could act as checkpoints to reset chromosome structure to an
initiation-competent state and thus ensure a once-per-cell-cy-
cle relationship between replication and division (13). Addi-
tionally, cells could create temporary imbalances in supercoil-
ing to change initiation frequency during growth phase
changes or in response to replication elongation problems.
Both of these latter deviations require breaking the standard
rule of a 1:1 ratio of initiation to division.

Of course, the effects of chromosome structure changes are
not limited to replication initiation but include all DNA met-
abolic processes involving strand separation, most notably
transcription. These effects are well documented (e.g., see ref-
erences 12 and 18). Modification of origin supercoiling inde-
pendently of the rest of the chromosome, such as occurs in
thymine-starved cells, which promote hyperinitiation by regu-
lated gidA transcription (55), might enable cells to change ini-
tiation rate without affecting global supercoiling and thus tran-
scription rates (100).
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