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Applying diffusive models for simulating the spatiotemporal change of concentration of tumour cells is a modern application of
predictive oncology. Diffusive models are used for modelling glioblastoma, the most aggressive type of glioma. This paper presents
the results of applying a linear quadratic model for simulating the effects of radiotherapy on an advanced diffusive glioma model.
This diffusive model takes into consideration the heterogeneous velocity of glioma in gray and white matter and the anisotropic
migration of tumor cells, which is facilitated along white fibers. This work uses normal brain atlases for extracting the proportions
of white and gray matter and the diffusion tensors used for anisotropy. The paper also presents the results of applying this glioma
model on real clinical datasets.

1. Introduction

Cancer causes more than 13% of all deaths worldwide
with an estimation of 12 million deaths in 2030 [1, 2]. In
United States, 2.5% of cancer deaths are caused by brain
tumors [3], with grade IV astrocytoma, namely, glioblastoma
multiforme (GBM), accounting for 23.1% of them [4–
6]. Despite extensive research on GBM during the last
decades, mortality has not changed significantly over the last
years, with average life expectancy ranging 12 months after
diagnosis and only 4% of treated patients being alive after 5
years [7–12].

Unfortunately, the detection rates of the exact boundaries
of GBM with common imaging techniques, such as magnetic
resonance imaging (MRI), X-ray computed tomography
(CT), and positron emission tomography (PET), are still
poor [12–14]. Unlike solid tumors, for which simple expo-
nential or geometric expansion could represent expansion of
tumor volume, the GBM growth rate cannot be determined
as the classical doubling rate [15], because GBM does not
form a solid and compact mass with cells invading the sur-
rounding lesion.

Clearly, new mathematical formulations are necessary
when studying this specific glioma case. Since early 90s,
there has been a vast amount of research towards simulating
and formulating the mechanisms of GBM development,
both in macroscopic and microscopic levels. Microscopic
models [16–20] study the intracellular biological interactions
in cell level, while macroscopic models [21–27] study the
tumor behavior, velocity, and mass deformation with using
anatomical information derived from medical images.

Gompertzian and volumetric macroscopic models [28–
30] did not produce realistic clinical cancer growth repre-
sentations as they lack taking invasion of tumor cells into
account. The class of macroscopic models that has been
widely used for simulating this diffusive behavior is diffusive
modeling [31]. These models make use of equations based on
diffusion reaction schemes of glioma cell concentration, in
order to couple the migration of GBM cells (diffusion term)
and the proliferation of cells (reaction/source term).

The first diffusive GBM model was introduced in 1995
by Tracqui [21] who used the diffusion reaction equation
(DRE) for simulating the spatiotemporal change of glioma
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cell concentration. The DRE writes as follows:

∂c(x, t)
∂t

= div(D∇c(x, t)) + f (c(x, t)), (1)

where c(x, t) is the tumor concentration in voxel x = (x, y, z)
at time t, D is the diffusion coefficient, ∇ and div are the
gradient and divergence operators respectively, and f (c) is
the net cell proliferation rate. Later, Swanson et al. [22]
altered this equation by taking into account the high velocity
of GBM in myelin sheaths by setting different diffusion
coefficients in white and gray matter (WM, GM). The new
equation was changed to

∂c(x, t)
∂t

= div(D(x)∇c(x, t)) + f (c(x, t)), (2)

where D(x) is the local diffusion coefficient, being either Dg

or Dw for x being in GM and WM respectively. In that model,
Dw is assumed to be five times larger than Dg for high grade
glioma, according to the clinical observations of Giese et al.
[32, 33].

The next change of the DRE equation was proposed by
Price et al. who used T2- and Diffusion Tensor Imaging
(DTI) MRIs to identify abnormalities caused by GBM [6, 34].
Therefore, Jbabdi et al. [23] introduced diffusion tensors
instead of gradient diffusion coefficients. The new advanced
equations for simulating anisotropic growth of GBM in WM
writes as follows:

∂c(x, t)
∂t

= div(D(x)∇c(x, t)) + f (c(x, t)), (3)

where D(x) is the local diffusion tensor which describes the
directional tumor cell diffusion, that is, a 3-by-3 symmetric
positive definite matrix. Continuing, Clatz et al. [25] used
biomechanics to simulate the deformation of brain struc-
tures caused by the development of GBM. In 2007, Hogea
et al. [27] introduced an advection term in (2), with a two-
way coupling with the underlying tissue elastic deformation.
Konukoglu et al. [26] adapted the model to successive
sessions of MRIs by using Eikonal Equations for coupling the
reaction-diffusion dynamics with tumor evolution.

The characteristics of GBM lead to aggressive treatment
strategies that most often include surgery, irradiation and
chemotherapy. The mathematical approaches that were used
for simulating GBM growth inevitably raised the need for
incorporating techniques for therapy simulation. Including
therapy parameters in GBM models could help the clinicians
optimize therapy schemes, as they could predict the response
of patients to different therapeutic plans.

Indeed, simulating therapy can be performed by adjust-
ing the proliferation term f (c) of the DRE, which reflects
the rate of proliferating cells (B(c)) minus the dead cells
due to treatment (T(c)). In order to simulate radiotherapy
and chemotherapy, someone should adjust the treatment
term T(t). Swanson et al. [35] predicted survival time after
resection by estimating the net rates of proliferation and
diffusion, and their ratio from pre-treatment gadolinium-
enhanced T1-weighted and T2-weighted MR images. Rockne
et al. [36] simulated radiotherapy by introducing the radio-
biology parameters α and β into T(t), which are interpreted

biologically as repairable single and lethal double-strand
breaks to the cell’s DNA, respectively [37]. Lastly, some
important works have been proposed for non diffusive mod-
els of glioma, taking into account the biological mechanisms
involved in tumor and normal tissue [38, 39].

The most commonly used formalisms of B(c) are either
the geometric law

B(c) = ρc (4a)

the logistic law:

B(c) = ρc
cm − c

cm
, (4b)

or the Gompertzian law:

B(c) = ρc ln
cm
c

, (4c)

where ρ is the geometrical growth parameter and cm is the
maximum tumor cell concentration parameter.

In 2011, Roniotis et al. [40, 41] used the proportions
of white and GM for calculating the diffusion coefficient
of the DRE, rather than using discrete diffusion coefficients
[42]. The proportions of white and GM, as well as the
diffusion tensor were extracted by the open SRI-24 brain
atlas, thus no DTI processing was needed. This study extends
our prior successes with in silico prediction of tumor growth
to incorporate the effects of radiotherapy in real clinical
datasets. We use the proportional model of Wahl et al.
and apply the linear quadratic model [43] for modeling
radiotherapy. Compared to previous publications dealing
with tumor growth modeling, our approach includes several
improvements:

(i) the use of proportional local diffusion coefficients
extracted from brain atlases, instead of discrete
diffusion coefficients,

(ii) the application of isotropic diffusion in GM and
anisotropic diffusion in WM on the proportional
diffusive model [40],

(iii) the application of the linear quadratic model on our
previous model [40] for simulating radiotherapy,

(iv) the simulation of radiotherapy in multiple fractions
by using the linear quadratic model,

(v) the evaluation of radiotherapy simulation by using
Jaccard, Dice, and Volume similarity metrics.

2. Materials and Methods

2.1. Diffusive Modeling Using Brain Matter Proportions.
This study makes use of the proportional diffusion model
presented in [40], which is an extended version of (3) with

D(x) = D(x)W(x), (5)
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Figure 1: (a) the 99th slice of the patient dataset after registration and interpolation, (b) the 99th slice of normal brain atlas, (c) the 99th
image after skull stripping and segmentation of tumor, (d) the 99th image of white matter, (e) gray matter proportion, and (f) the one
dominant eigenvector images extracted from SRI24 atlas.

where W(x) is a symmetric matrix that describes the
anisotropy of cell diffusion along the 3-dimensional direc-
tions for each position x and D(x) denotes the proportional
diffusion coefficient. In this case, W(x) writes as

W(x) =
⎡
⎢⎣
wx(x) 0 0

0 wy(x) 0
0 0 wz(x)

⎤
⎥⎦, (6)

where wi(x) ∈ [0, 1], i = x, y, z is the directional diffusion
weight, which denotes the contribution of the respective
direction to the anisotropic migration of GBM cells in
position x. Thus, W denotes the contribution of each axis
to the direction of white fibers, while D actually denotes
the velocity of cells along this direction. D and ρ can be
approximated by using the method of Harpold et al. [44].

In order to make a total use of the proportions Pg of WM
and Pw of GM that can be provided by brain atlases, such
as the STI-24 atlas [45, 46], D(x) does not take two discrete
values Dg and Dw [32]. Instead, the model uses a continuous
pattern of coefficients by computing D(x) as follows:

D(x) = Pg(x)Dg + Pw(x)Dw. (7)

This paper extends this idea by improving (5), so as to turn
off anisotropic migration in GM tissue. In order to apply

anisotropy only to WM tissues, the identity matrix I3 is used
for changing (5) to the following formalism:

D(x) = Pg(x)DgI3 + Pw(x)DwW(x) (8)

2.2. The SRI-24 Atlas. The SRI24 atlas [45, 46] is an MRI-
based atlas of normal adult human brain anatomy, generated
by registering images of 24 normal brains. This atlas provides
the proportions Pg of WM and Pw of GM in each position of
the brain, which can be registered to the clinical datasets of
the patients. The data is provided in 155 slices with 240×240
pixels, for both stripped and unstripped skull.

Apart from the matter proportions, the atlas provides
the dominant eigenvectors of the diffusion tensor. These
eigenvectors have been extracted from DTI, by computing
the covariance matrices of the distribution of the 3D
Gaussian probability which simulates the diffusion of water.
Thus, they can be directly used for simulating the anisotropic
migration of glioma cells along white matter fibers, as they
represent the directions towards which the water diffusion
extends mostly.

By mapping clinical MRI data to a brain matter atlas,
it is possible to approximate the required tissue informa-
tion/composition in the tumor area, since this is not possible
to extract from the real MRI. Hence, using local diffusion
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Figure 2: The curves depict the total number of GBM cells for
one patient for eight values of a ranging from 0 (no effect of
radiotherapy) to 0.021 Gy−1 after applying the diffusive model. The
same plot shows the three different points of real cell numbers,
estimated after segmenting the tumors on three MRI datasets on
the respective days. The optimal value of a lies around 0.006 Gy−1.

coefficients on real MRI images becomes possible, even if the
lesion “hides” the underlying tissue.

2.3. Simulating Radiotherapy Using the Linear Quadratic
Model. This paper investigates an extension of the preceding
proportional glioma model to include the effects of the
radiotherapy using the Linear Quadratic Model. According
to the model, the probability of cells surviving S following
a single dose of radiation R(x, t) was observed to follow this
relationship [47]:

S(R) = exp
(−aR− βR2), (9)

where linear α (Gy−1) and quadratic β (Gy−2) are the
radiobiology parameters, which are interpreted biologically
as repairable single and lethal double-strand breaks to the
cell’s DNA, respectively [37]. In our case, where the clinical
datasets have been extracted from patients with radiation in
a number of fractions with the same dose, (9) turns to the
following equation [48]:

S(R) = exp
(−aR− βRr

)
, (10)

where r is the dose per fraction and R = nr is the total
dose for n fractions. In general, fast-proliferating cells, like
GBM, have a high tissue response α/β. In our experiment,
we use a constant ratio α/β = 10 that is widely used in
clinical applications for highly developing cancer and has
been extracted from empirical dose response data [36]. Thus,

if (4b) is used for approximating cell proliferation, the overall
proliferation term f (c) for (3) turns out to be the following:

f (c)

=

⎧⎪⎪⎨
⎪⎪⎩

(
ρ−

(
1− e−aR(t)−βR(t)r(t)

))
c
cm − c

cm
, t ∈ therapy,

ρc
cm − c

cm
, t /∈ therapy.

(11)

2.4. Clinical Datasets. The model uses T1- and T2-MRIs
(255 × 255 pixel slices) taken from six patients diagnosed
with malignant glioblastoma multiforme and cured with
radiotherapy. The datasets were provided by Saarland Uni-
versity, Germany, for the needs of the ContraCancrum
project [49]. For each dataset there is information provided
for the dose and the fractions. Moreover, there are two or
more sessions taken on different dates for tracking glioma
development and evaluation simulation result.

2.5. The Workflow of Simulation. The collected MRI datasets
have different dimensions from the SRI-atlas. Thus, they
have to be firstly registered and interpolated to the atlas,
before applying the DRE equation. The Optimized Auto-
matic Registration 3D approach by MIPAV is used for
registering the clinical datasets to the atlas [50].

After registration, the datasets are delineated by expert
radiologists from the University of Saarland, by using Doc-
torEye. DoctorEye is a platform for annotating, segmenting
and visualizing MRI slices [51]. Figure 1(a) presents the
99th slice of one patient dataset after registration and
interpolation to the atlas. Figure 1(b) presents the 99th
slice of the SRI24 normal brain atlas. Respectively, Figures
1(d), 1(e), and 1(f) present the 99th image of white matter
proportion, gray matter proportion and the one dominant
eigenvector. Finally, Figure 1(c) presents the 99th slice of the
MRI set with the tumor area annotated by the clinician.

In order to solve the DRE, the mathematical framework
of Finite Differences that has been presented in [52] is used.
More specifically, the Crank Nikolson numerical scheme has
been implemented for solving the DRE in three dimensions.
Parameters Dw, ρ, and initial concentration of cells c0, have
been extracted from bibliography according to [41, 44].
Thus, we used ρ = 0.012 day−1, Dw = 0.010 mm2/day,
Dg = 0.002 mm2/day, c0 = 106 cells/mm3. For the solver
of finite differences, we used a grid with dimensions ΔX =
ΔY = ΔZ = 1 mm and a stable time step of ΔT = 1 h.

3. Results and Discussion

3.1. Radiobiology Parameters. Before applying the diffusive
model, it is appropriate to estimate the values of the
radiobiology parameters α and β. The method used is that of
Rockne et al. [36], by projecting the temporal tumor curves
for different values of a on the real datasets. Estimating
radius is ideal for spherical tumors however GBM has very
complex shape. Thus, instead of tumor radii, the estimated
total number of GBM cells is used for identifying the value



Journal of Biomedicine and Biotechnology 5

Figure 3: The simulated cell concentration (hot areas) projected on the real patient data on the 100th day after diagnosis and 21 days after
the last fraction of radiotherapy.

of a that minimizes the error between simulated and actual
target total GBM cells.

Figure 2 presents a set of simulated curves extracted for
one specific patient after applying 7 different values of a.
The real tumor total cells are marked on the curve for three
different MRI provided (the three green points on day 1, 15,
and 70). The patient was treated with a total dose of 60 Gy
at 2 Gy/fraction and 5 fractions/week for 6 weeks. Treatment
starts 21 days after the first MRI and finishes on day 56.
Each different curve is extracted by simulating radiotherapy
for 0.003 increments of a, starting from zero (no effect) and
reaching 0.021 Gy−1. One can see that the optimal value for a,
that minimizes the error from the total number of cells is a =
0.006 Gy−1. The same process is followed for approximating
the radiobiology parameters for the rest five patients. Table 1
presents the patient specific parameters for all the patients.

3.2. Simulation Result. After defining all simulation param-
eters, the diffusive model has been applied on the clinical

Table 1: Summary of model parameters for all six patients with
glioblastoma multiforme included in the study.

Patient Age a(Gy−1) R(Gy) r(Gy) n

1 47 0.114 60 2 30

2 64 0.003 48 3 16

3 52 0.006 60 2 30

4 41 0.211 58 2 29

5 73 0.000 42 3 14

6 56 0.013 60 2 30

datasets of MRIs. Figure 3 presents the simulated results
for the 4th patient 21 days after the end of radiotherapy
(100 days after diagnosis). The hot areas depict the resulting
simulated tumor projected on the real MRI dataset. The real
dataset has been extracted on the same day of simulation.

For this specific patient, radiotherapy caused shrinkage
of the tumor, which cannot be clearly seen on the simulation
results of Figure 3. In order to have a better understanding
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Figure 4: The graph presents the tumor cell concentration for the initial day (diagnosis day) and the 100th day after diagnosis (21th day
after the last fraction of radiotherapy). These values have been calculated along the yellow line shown on the left MRI slice, which comes
across the point with the maximum concentration value.
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Figure 5: Scatter plot of JC, DS, and VS (%) for six cases where the proportional, the discrete, and the uniform growth models have been
applied.

of the shrinkage effect of radiotherapy, we use a line inter-
secting the point with the maximum concentration. Then,
concentration is estimated along this line and presented on
a graph. This is applied both on the real initial MRIs (day 1)
and the simulated final result. Figure 4(a) shows the initial
MRI with the intersection line projected, while Figure 4(b)
presents the graph of the concentration of GBM along these
line. The red curve shows the initial estimated concentration
along this line, while the blue curve shows the simulated con-
centration of radiotherapy along the same line. In order to
have a better visualization of the shrinkage effect, we also

provide Figure 6 that depicts the change of the total number
of cells in time (for 100 days). It is obvious that the tumor
has shrunk considerably.

3.3. Evaluation of Model. We have made simulations on a
series of six datasets in order to compare the simulated tumor
with the final actual tumor, as annotated by the radiologists.
For evaluation, we used a scheme with solid metrics and
objective comparison. Therefore, the annotated final tumor
serves as a golden ground truth and the Jaccard (JC), Dice
(DS) and Volume Similarity (VS) metrics are adopted [53].
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Figure 6: The temporal change of the number of glioma cells for the
4th patient for 100 days. The last radiotherapy session was carried
on day 79.

The evaluation metrics are defined as:

JC = TP
(FP + TP + FN)

,

DS = 2TP
(FP + 2TP + FN)

,

VS = 1− |FP− FN|
(FP + 2TP + FN)

,

(12)

where TP (true positive) is the number of tumor voxels
belonging to both ground truth and simulated result, FP
(false positive) is the number of tumor voxels belonging to
simulated result and not belonging to ground truth, and FN
(false negative) is the number of tumor voxels belonging to
ground truth but not belonging to simulated tumor.

Figure 5 depicts the scatter plots of the three metrics for
each patient. The average resulting JC, DS, and VS values for
all patients are 95.21%, 98.09% and 99.62%. These values are
2.1%, 4.01%, and 1.89% higher than the respective results for
discrete diffusion coefficients and 6.45%, 8.49%, and 4.07%
than the uniform tumor growth model.

4. Conclusions

Despite the limited number of datasets, the evaluation results
indicate that there might be a slight improvement in using
the proposed model on glioblastoma multiforme. This is
expected due to the several improvements introduced.

By using the proportional diffusion coefficients, all
available information is fully exploited for characterizing
tissues, without needing to truncate tissue areas to either
white or gray matter.

Moreover, the use of atlases contributes to defining the
matter proportions on the areas underlying the tumor area.
This could not be true without the use of atlas, as the tumor
hides the tissue matter needed for defining the diffusion

coefficients at the tumor area. Also, by using anisotropy only
on the portions of white matter, instead of all type of tissue,
we better approximate the glioma migration along white
fibers.

Radiotherapy is usually applied in fractions and the
linear quadratic model has been adjusted to this, contrary to
previous diffusive models which use the quadratic model for
a single dose. By using the formalism of (10), the diffusive
model incorporates this idea.
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