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Abstract: Translocator protein 18 kDa (TSPO) is a transmembrane protein in the mitochondrial
membrane, which has been identified as a peripheral benzodiazepine receptor. TSPO is generally
present at high concentrations in steroid-producing cells and plays an important role in steroid
synthesis, apoptosis, and cell proliferation. In the central nervous system, TSPO expression is
relatively modest under normal physiological circumstances. However, some pathological disorders
can lead to changes in TSPO expression. Overexpression of TSPO is associated with several diseases,
such as neurodegenerative diseases, neuroinflammation, brain injury, and cancers. TSPO has therefore
become an effective biomarker of related diseases. Positron emission tomography (PET), a non-
invasive molecular imaging technique used for the clinical diagnosis of numerous diseases, can detect
diseases related to TSPO expression. Several radiolabeled TSPO ligands have been developed for PET.
In this review, we describe recent advances in the development of TSPO ligands, and 18F-radiolabeled
TSPO in particular, as PET tracers. This review covers pharmacokinetic studies, preclinical and
clinical trials of 18F-labeled TSPO PET ligands, and the synthesis of TSPO ligands.
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1. Introduction

Mitochondrial membrane proteins play a crucial role in maintaining mitochondrial
homeostasis, and errors in these proteins can lead to various diseases. Mitochondrial
membrane proteins have therefore become the subject of intense interest in the study of
disease diagnosis and treatment [1]. The peripheral benzodiazepine receptor (PBR), a
mitochondrial transmembrane protein first described in 1977 [2], plays a crucial role in
multiple complex physiological processes, including cholesterol translocation from the
cytoplasm to mitochondria and the synthesis of neurosteroids [3]. The protein is now
known as a translocator protein (TSPO).

TSPO comprises 169 amino acids and 5 transmembrane (TM) α-helices with a pocket
accepting a ligand in the middle [4]. The five α-helices are linked by extramitochondrial
and intramitochondrial loops with the N terminal at TM1 and the C-terminal at TM5. TSPO
can be found in contact positions between the outer and inner mitochondrial membranes
of steroidogenic tissues.

TSPO functions as a mitochondrial membrane transport channel for cholesterol [5], but
it plays a role in several other physiological functions, including immunomodulation [6],
cell proliferation and differentiation [3], apoptosis [7], protein import, and ion transport [8].
TSPO can be found all over the body, with large quantities in steroidogenic tissue, and it
is often overexpressed in the kidneys, adrenal glands, lungs, and heart. However, recent
studies evaluating TSPO function through genetics have raised questions about the true

Pharmaceutics 2022, 14, 2545. https://doi.org/10.3390/pharmaceutics14112545 https://www.mdpi.com/journal/pharmaceutics

https://doi.org/10.3390/pharmaceutics14112545
https://doi.org/10.3390/pharmaceutics14112545
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0001-7612-7049
https://doi.org/10.3390/pharmaceutics14112545
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics14112545?type=check_update&version=2


Pharmaceutics 2022, 14, 2545 2 of 35

role of TSPO in steroidogenesis, as well as several other functions [9–11]. Therefore, these
TSPO functions need to be carefully re-evaluated.

TSPO overexpression is reportedly associated with diseases such as brain ischemia
damage [12]. In addition, TSPO is related to various diseases of the central nervous system
(CNS) [13,14]. TSPO overexpression is found in activated microglia, and upregulation of
TPSO has been observed in astrocytes. Because microglia activation is related to various
CNS-related diseases, TSPO overexpression in activated microglia and astrocytes can be
used as an indicator of neuroinflammation and neurodegenerative disorders, such as
Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), Huntington’s
disease (HD), and others [15]. TSPO overexpression is also associated with several tumors,
including breast and colon cancers, and it is considered a cancer biomarker [16].

Positron emission tomography (PET) is a powerful tool for monitoring biochemical
phenomena [17–20]. It is a non-invasive medical imaging technique, which uses radioactive
isotopes of pharmaceuticals (tracers) that provide quantitative information on biological
processes in the form of high-resolution, real-time imagery [21–23]. PET is widely used in
the diagnosis of cancers, brain and cardiovascular diseases, the evaluation of therapy, and
the development of medication [24].

Several studies have demonstrated that PET imaging can be useful in studying CNS-
related diseases [25–27], and a variety of TSPO ligands have been developed [15]. TSPO
ligands bearing 11C and 18F radioisotopes are now widely employed in PET. Although
several TSPO ligands bearing the 11C radioisotope, which meets the requirements of PET
imaging, are used clinically, they suffer from intrinsic limitations, such as a short half-life
(t1/2) of 20.4 min, which prevents wide-scale utilization in PET.

TSPO ligands with the 18F radioisotope have therefore received significant research at-
tention. 18F offers advantages over 11C [24,28], including a longer half-life (t1/2 = 109.7 min),
making extended dynamic PET studies possible, and a lower positron energy (650 keV). In
addition, 18F can be stored for longer periods and can be sent to relatively distant facilities.
A variety of TSPO ligands radiolabeled by 18F have been developed and used for PET
imaging in the diagnosis of multiple diseases. In this review, we describe recent advances
in developing TSPO ligands bearing 18F.

2. TSPO as an Indicator for Neuroinflammation

Neuroinflammation is a CNS defense mechanism, which is triggered by pathogens,
such as toxic metabolites, infection, and traumatic brain injury [29]. The blood–brain barrier,
a specialized tissue made of astrocytes and endothelial cells, is normally considered an
armor that shields the CNS. If the barrier is breached, potentially dangerous agents can
enter the brain’s delicate environment [30]. In that event, innate immune mechanisms will
be activated to respond to these agents to enhance the expression of microglia cells and
cause inflammation. Neuroinflammation is a common symptom of diseases of the CNS,
such as AD, PD, and HD [31].

Microglia are neuroglia that represent 10–15% of all cells in the brain [32]. As resident
macrophage cells, they are the first and most important line of immune defense in the
CNS. Their primary role is to detect factors that can harm the CNS. When microglia change
from a resting state to an active phenotype, they exhibit a significant shift in morphology.
Microglia move to the damaged location and perform phagocytic functions, “eating” plaque,
damaged or superfluous neurons, synapses, and infectious pathogens [33]. The activation
of microglial cells in the CNS, particularly at inflammatory sites, is considered a biomarker
of neuroinflammation.

Although previous studies showed that high TSPO expression is closely related to the
activation of microglia [33], and many studies suggested that increased expression of TSPO
represents an activation of microglial cells or increased neuroinflammation [34], a few recent
studies showed that microglia activation is not necessarily associated with overexpression
of TSPO in individual microglial cells [35]. However, TSPO is still considered a useful
biomarker of neuroinflammation and related diseases.
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Assessment of activated microglia is important for the treatment of various disor-
ders associated with microglia. PET imaging using TSPO is effective because PET can
provide visual and numerical data on biological events and disease progression related
to neuroinflammation. PET using TSPO ligands has therefore been widely used to detect
neuroinflammation and related diseases.

3. Development of 18F-Radiolabeled TSPO Ligands

Various TSPO ligands with radioisotopes, which can bind strongly to TSPO, have
been developed for use in PET imaging studies. Among the developed TSPO ligands,
PK-11195 (1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide)
and Ro5-4864 (4′-chlorodiazepam) are considered first-generation ligands (Figure 1). These
first-generation ligands were radiolabeled with 11C and met the initial needs of PET
imaging studies.

PK11195 is a carboxamide isoquinoline, which was first reported in 1984 [36]. Many
studies have found that PK11195 demonstrates high affinity and selectivity to TSPO for
PET study [37]. Because the binding affinity of Ro5-4864 varies by temperature and
species [38,39], PK11195 is the best studied ligand, and it has been used as a reference
to validate other TSPO ligands in diagnostic studies of CNS-related diseases [40]. How-
ever, some disadvantages of PK11195, such as low brain uptake, poor penetration of the
blood–brain barrier, a short half-life, and highly variable kinetic behavior, have prevented
wide-scale utilization of this ligand [12] and encouraged scientists to develop the alternative,
second-generation TSPO ligands (Table 1).
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Figure 1. Structures of Ro5-4864 and PK11195.

Table 1. Summary of 18F-radiolabeled TSPO ligands.

Chemical Class TSPO Ligand Binding Affin-
ity/Lipophilicity

Stage of Research
(Preclinical/Clinical) Comments Ref.

Phenoxyary-
lacetamides

[18F]FEPPA Ki = 0.07 nM
Log P = 2.99

LPS mouse
PD patients
AD patients

Psychosis patients

High binding affinity
Suitable lipophilicity for brain

penetration
Effective in clinical application

[41–45]

[18F]Fluoromethyl-
PBR28

Ki = 1.85 nM
Log D = 2.85

LPS mouse
(EAM) rats

Ischemic stroke rat

Suitable lipophilicity
Effective in clinical application

Lack of clinical studies
[46,47]

[18F]FEMPA -

Atherosclerotic plaques
in mice

AD patients
Friedreich ataxia patients

Rapid blood clearance and
uptake

High binding sensitivity to the
human gene polymorphism

rs6971
Effective in clinical application

[48–50]

[18F]FEDAA1106 Ki = 0.078 nM
Log D = 3.81

Rats
MS patients
AD patients

High binding affinity
High lipophilicity

Ineffective in clinical
application

[51–55]

[18F]DAA1106 Ki = 0.043 nM
Log P = 3.65 Ischemic rats High lipophilicity

Lack of clinical studies [56–58]

[18F]PBR06 Ki = 0.997 nM
Log D = 4.05

Stroke mouse
HD mice

MCAO mice
AD mice
Monkey

MS patients

High lipophilicity
Effective in preclinical and

clinical studies
[59–65]
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Table 1. Cont.

Chemical Class TSPO Ligand Binding Affin-
ity/Lipophilicity

Stage of Research
(Preclinical/Clinical) Comments Ref.

Pyrazolopy-
rimidines

[18F]DPA-714 Ki = 7.0 nM
Log D = 2.44

Mice, Monkey,
Human

PACNS patients
AD patients

Stroke patients
MS patients
PD patients

ALS patients

Suitable lipophilicity
Rapid penetration and good

retention in the brain
Effective in monitoring and

diagnosis for many
neurological diseases

[66–77]

[18F]VUIIS-1008 Ki = 0.27 nM
Log D = 2.5 C6 Glioma-bearing rats

Suitable binding affinity and
lipophilicity

Effective in preclinical studies
Lack of clinical studies

[78,79]

[18F]DPA-C5yne Ki = 0.35 nM
Log P = 2.39 Rat

Suitable binding affinity and
lipophilicity

Effective in preclinical studies
Lack of clinical studies

[80,81]

[18F]F-DPA Ki = 1.7 nM
Log D = 2.34

Sprague Dawley Rat
Neuropathic

pain-induced rats
Cerebral ischemia mice

AD mice

Suitable lipophilicity
Effective in preclinical studies

Lack of clinical studies
[82–86]

Imidazopyridine
acetamides

[18F]PBR102 Ki = 5.8 ± 0.4
Log P = 2.7 ± 0.1

Rat
Excitotoxin

neuroinflammation mice
Non-human primates

Human

Suitable lipophilicity
Effective in preclinical studies

Good preclinical effect for many
species

[87–89]

[18F]PBR111 Ki= 3.2 ± 0.4 nM
Log P = 3.2 ± 0.1

Rat, Ops rat
Non-human primates

Human
Schizophrenia patients

Psychosis patients
MS patients

Suitable lipophilicity
Effective in preclinical studies

Good preclinical effect for many
species

Effective in clinical application

[87–92]

[18F]PBR316 Ki = 6.0 ± 1.4 nM
Log P = 2.16 ± 0.07 Rats Lack of preclinical and clinical

studies [93]

[18F]CB251 Ki = 0.27 ± 0.09 nM
Log D = 3.00 ± 0.03

Neuroinflammation rats
Human glioblastoma

High binding affinity [94–96]

[18F]BS224 Ki = 0.51 ± 0.03 nM
Log D = 2.78 ± 0.04

LPS rats
Ischemic stroke rats

Suitable binding affinity and
lipophilicity

Effective in preclinical studies
Lack of clinical studies

[97]

Oxopurine [18F]FEDAC Ki = 1.3 nM
Log D = 3.2

Collagen arthritis mice
Neuroinflammatory rat

Monkey
Atherosclerosis rabbit

Human liver cell
Acute myocardial
infarction patients

Effective in preclinical studies
with many species

Lack of clinical studies
[98–101]

Acetam-
idobenzoxa-

zolone

[18F]FEBMP Ki = 6.6 ± 0.7 nM
Log D = 3.4

Ischemic rats
MCAO rats

AD mice

Effective in preclinical studies
Lack of clinical studies [102–105]

[18F]FPBMP Ki = 16.7 ± 2.5 nM
Log D = 3.5 Ischemic rats Lack of preclinical and clinical

studies [102–105]

Pyri-
dazinoindoles [18F]SSR180575 Ki = 1.19 ± 0.05 nM Rat Lack of preclinical and clinical

studies [106,107]

Tricyclic indoles

[18F]GE180 Ki = 2.4 nM
Log D = 2.95

LPS-injected mouse
MCAO rats

AD mice
Pigs

Human
High-grade glioma

patient

Effective in preclinical studies
with many species

Poor brain penetration in
clinical study

Clinically effective for some
given diseases

[108–114]

[18F]GE387 Ki = 47.3 ± 7.0 nM
LPS rats
Monkeys
Humans

Low binding affinity
Low binding sensitivity to the
human gene polymorphism

rs6971

[115,116]
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Table 1. Cont.

Chemical Class TSPO Ligand Binding Affin-
ity/Lipophilicity

Stage of Research
(Preclinical/Clinical) Comments Ref.

Quinoline
carboxamide [18F]AB5186 Ki = 2.8 ± 0.8 nM

Rats
Glioma mice

Baboon

Effective in preclinical studies
Lack of clinical studies [117–120]

Isoquinoline
carboxamide

(R)- [18F]
NEBIQUINIDE

Ki = 5.3 ± 0.6 nM
Log P = 2.35 ± 0.14 Rats

Low binding sensitivity to the
human gene polymorphism

rs6971
Lack of preclinical and clinical

studies

[121]

Quinazoline
carboxamide [18F]ER176 Ki = 3,10 ± 0,30 nM

Log D = 3.55 ± 0.02 Rats
High lipophilicity

Lack of preclinical and clinical
studies

[122,123]

3.1. Phenoxyarylacetamides

In 2008, Pike and co-workers reported on [11C]PBR28 (N-(2-[11C]methoxybenzyl)-N-
(4-phenoxypyridin-3-yl)acetamide), a potential second-generation TSPO radioligand based
on a phenoxyarylacetamide structure. Basically, the ring opening of the diazepine ring of
Ro5-4864 will form high-affinity PBR ligands, including DAA1106. Then, with a pyridine
ring replacing one of the benzene rings of DAA1106, the derivatives of phenoxyarylac-
etamide PBR are generated. This method produced a series of compounds with reduced
lipophilicity but still retaining properties such as high affinity for PBR and blood–brain bar-
rier penetration ability [124]. Subsequent studies developed new 18F-radiolabeled ligands
by replacing the 11C on PBR28 with 18F (Figure 2).
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3.1.1. [18F]FEPPA

[18F]FEPPA (3) was synthesized by Wilson and co-workers in 2008. The initial investi-
gations showed that it has a Ki value of 0.07 nM for TSPO, a log P of 2.99 at a pH of 7.4,
and a standard uptake value (SUV) of 0.6 at 5 min, suggesting that it is suitable for use as a
PET tracer [41].

In 2018, Hosten and co-workers described an improved and automated method of syn-
thesizing [18F]FEPPA using the AllInOne module. After 55 min from end of bombardment
(EOB), [18F]FEPPA was obtained with 34% ± 2% radiochemical yield (non-decay-corrected
yield, n = 6) [42]. The prepared compound had a molar activity of 198 ± 125 GBq/mol. Its
radiochemical purity was >99% after completion of the synthesis process, and the purity
remained > 98% in a saline solution for 6 h. Biodistribution and metabolism studies using
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mice showed that [18F]FEPPA was quickly absorbed and excreted by the heart, lungs, and
kidney but poorly absorbed by the brain. However, brain absorption in an LPS-injected
mouse group was substantially higher (2.2-fold) compared with that in the control animals,
and the metabolism of [18F]FEPPA in the brain was 4% to 23%, respectively, at 15 and
120 min after injection, which was less than in the plasma. This was a positive sign for PET
brain imaging studies of TSPO.

A series of clinical studies have been performed to evaluate the actual effectiveness of
[18F]FEPPA in various neurological conditions, including PD, AD, and first-episode psy-
chosis [41,42,124]. The studies agreed that the total distribution volume (Vt) of [18F]FEPPA
in every brain area was significantly affected by the genotype of the rs6791 polymorphism.
The Vt value of high-affinity binders (HABs) was higher than that of mixed-affinity binders
(MABs) in most brain regions. However, the effectiveness of [18F]FEPPA at detecting
markers of neurological diseases differed by disease. [18F]FEPPA was effective for AD [43],
with significant differences in Vt values in many regions of the brain when comparing
healthy control and disease groups. However, Strafella and co-workers found no clear
association between factors of PD, such as disease duration and disease status, and the
Vt value of [18F]FEPPA [44]. For first-episode psychosis, similar results were reported by
Romina Mizrahi and co-workers [45].

3.1.2. [18F]Fluoromethyl-PBR28

[18F]Fluoromethyl-PBR28 (4), (N-(2-[18F]fluoromethoxybenzyl)-N-(4-phenoxypyridine)-
3-yl)acetamide) is a derivative similar to [18F]FEPPA in which the -(CH2)2-18F group is
replaced by the -(CH2)18F group. In 2014, Lee and co-workers reported a two-step reaction
to prepare [18F]fluoromethyl-PBR28 (Scheme 1). In this study, the -CH2-18F group was
substituted for the 11CH3 group in [11C]PBR28 to yield [18F]fluoromethyl-PBR28 [125].
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Scheme 1. Synthesis of [18F]-fluoromethyl-PBR28.

Alkylation of desmethyl PBR28 (9) with 1-(chloromethyl)-3-methyl-4-phenyl-1H-1,2,3-
triazol-3-ium triflate successfully produced triazolium triflate-PBR28 (10). Fluoromethyl-
PBR28 (4) was prepared by reactions between tetra-n-butylammonium fluoride (TBAF)-3H2O
and triazolium triflate-PBR (10) (Scheme 1). Overall, the reaction had a decay-corrected
radiochemical yield of 35.8 ± 3.2% (n = 11), and the radioactivity of [18F]fluoromethyl-PBR28
varied from 220 to 340 GBq/µmol.
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The biological activity of fluoromethyl-PBR28 was also evaluated. The results showed
that the binding affinity of fluoromethyl-PBR28 (measured by the half-maximal inhibitory
concentration [IC50]) in the membranes of human leukocytes was 8.28± 1.79 nM, and the par-
tition coefficient (log D) was 2.85 ± 0.05, which was the same as that of [11C]PBR28. In vitro
sustainability in human serum was up to 99% after 4 h, indicating that [18F]fluoromethyl-
PBR28 is sufficiently stable for use in vivo. In a PET study, the uptake of [18F]fluoromethyl-
PBR28 reached the climax point at approximately 4.5 min post-injection. After 35 min, the
contrast ratio of [18F]fluoromethyl-PBR28 between the ipsilateral and the contralateral areas
had reached 3.4, which was faster than what has been seen for [11C]PBR.

Later, Lee and co-workers carried out a comparison study between [18F]fluoromethyl-
PBR28 and its 2H derivates ([18F]fluoromethyl-PBR28-d2) [126]. The results showed that
the properties of [18F]fluoromethyl-PBR28-d2 were similar to those of [18F]fluoromethyl-
PBR28 in terms of in vitro binding affinity and lipophilicity. However, the uptake of
[18F]fluoromethyl-PBR28-d2 was reduced in the skull and femur compared with [18F]
fluoromethyl-PBR28 (1.5% ± 1.2% versus 4.1% ± 1.7% of injected dose (ID)/g at 2 h
post-injection) and cleared more rapidly in the contralateral area, indicating an improved
target-to-background ratio (approximately 3.8-fold for [18F]fluoromethyl-PBR28-d2 versus
3.0-fold for [18F]fluoromethyl-PBR28 at 30 min post-injection). Several other preclinical
studies also concluded that the radiotracer [18F]fluoromethyl-PBR28 is a sensitive tool for
diagnosing neurological diseases in animal models [46,127–129].

3.1.3. [18F]FEMPA

In 2015, N-{2-[2-18F-Fluoroethoxy]-5-metoxybenzyl}-N-[2-(4 metoxyphenoxy) pyri-
din-3-yl]axetamit ([18F]FEMPA) (5) was used as a PET tracer of TSPO in AD patients [47].
[18F]FEMPA underwent rapid metabolism at 20 min post-injection, and more than 20% of
the tracer was detectable in the plasma, and this number decreased to 10% at 90 min. The
binding affinity ratio of [18F]FEMPA to TSPO between HABs (2.26 ± 0.18 nM) and MABs
(1.93 ± 0.75 nM and 189.8 ± 14.4 nM) was similar to that of [11C]PBR28. Furthermore,
[18F]FEMPA binding to TSPO in HABs increased by an average 19.5% ± 3.0 % in AD
patients when compared with controls, suggesting that [18F]FEMPA can detect microglial
activation in patients with AD. Recently, Harding and co-workers reported on the results of
a PET study using [18F]FEMPA to assess neuroinflammation in the cerebellum and brain-
stem in patients with Friedreich ataxia (FRDA) [48]. The SUV data at various positions of
the brain, such as the dentate nuclei and midbrain regions, revealed an increased expression
of TSPO in FRDA patients compared with healthy controls. This study also found that
chronic neuroinflammation may be a critical initial pathological sign in FRDA, as shown by
greater [18F]FEMPA uptake in patients with premature symptoms and disease stages.

3.1.4. [18F]FEDAA1106

In 1999, Tomisawa and co-workers reported on N-(2,5-dimethoxybenzyl)-N-(5-fluoro-
2-phenoxyphenyl)acetamide (DAA1106), a potential and selective TSPO radioligand [49].
[11C]DAA1106 was synthesized and employed as a PET radioligand [50]. Subsequent
studies developed new 18F-radiolabeled TSPO ligands, including [18F]FEDAA1106 (6) and
[18F] DAA1106 (7), by replacing the 11C on DAA1106 with 18F.

In 2003, Suzuki and co-workers reported that the synthesis of N-(5-fluoro-2-phenoxyphenyl)-
N-(2-[18F]fluoroethyl-5-methoxybenzyl)acetamide ([18F]FEDAA1106) (6) could be achieved
through a reaction between a desmethyl substrate N-(5-fluoro-2-phenoxyphenyl)-N-(2-hydroxy-
5-methoxybenzyl) acetamide (DAA1123) (11) and the respective fluoroethylated intermediates,
which were synthesized by treating [18F]F− with CH2I2 or 2-bromoethyl triflate (BrCH2Ch2OTf)
with 75% yield (Scheme 2) [51]. After high-performance liquid chromatography (HPLC) pu-
rification, the radiochemical purity of the 18F-radiolabeled ligand was >98%, and the activ-
ity was >120 GBq/µmol. After maintaining it at 25 ◦C for 4 h, the radiochemical purities of
[18F]FEDAA1106 were still >95% [51].
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When Zhang and co-workers used [18F]FEDAA1106 for an in vivo study, they discov-
ered the properties of [18F]FEDAA1106, including its binding affinity (Ki = 0.078 ± 0.01 nM)
and lipophilicity (logD = 3.81). In this study, high radioactivity levels (2.2%−4.9% of ID/g)
were found in the mouse brain, which were approximately 1.3–1.6 times greater than
those of [11C]DAA1106 and 2–3 times greater than those of [11C](R)–PK 11,195 [52]. The
radioactivity of [18F]FEDAA1106 was the highest in the olfactory bulb region, followed by
the cerebellum, while the frontal cortex showed low uptake [51]. Subsequent attempts have
been made to develop simpler and more efficient methods of synthesizing [18F]FEDAA1106,
as well as preclinical and clinical studies.

In 2014, Cuhlmann and co-workers reported that [18F]FEDAA1106 could be used
in an in vivo study for the detection and mapping of vascular inflammation using PET
imaging [53]. This finding suggests that [18F]FEDAA1106 can bind at high specificity to
TSPO tissues.

Several clinical studies using [18F]FEDAA1106 have been carried out to investigate
neurological diseases. Takano and co-workers found no major differences in the distribution
volumes of [18F]FEDAA1106 between MS patients and healthy controls [54]. No increased
binding in AD occurred in an in vivo PET study of TSPO with [18F]FEDAA1106 [55].
However, these studies involved a small number of patients and did not consider other
factors, including TSPO genotype polymorphisms. More detailed and larger scale clinical
studies are therefore needed.

3.1.5. [18F]DAA1106

Historically, it has proven difficult to produce TSPO ligands with radioisotopes directly
attached to a benzene ring, and the process often results in poor synthesis efficiency and
radioactivity, making TSPO ligands unsuitable for PET imaging.

In 2007, Zhang and co-workers proposed a new synthetic method using intermediate
diphenyl iodonium salt to produce a new TSPO ligand, N-(2,5-dimethoxybenzyl)-N-(5-
[18F]fluoro-2-phenoxyphenyl)acetamide ([18F]DAA1106) (7). However, [18F]DAA1106
could not be prepared through this procedure for clinical use due to the instability of the
diphenyl iodonium precursor and its unsuitability for automated manufacturing [56].

Later, Zhang and co-workers reported a novel method for the synthesis of [18F]DAA1106
from N-(2,5-dimethoxybenzyl)-N-(5-iodo-2-phenoxyphenyl)acetamide, which was prepared
according to a previous procedure [57]. 4-Bromo-1-flouro-2-nitrobenzene (12) was trans-
formed to N-(2,5-dimethoxybenzyl)-N-(5-iodo-2- phenoxyphenyl)acetamide (13) in six steps,
and then, N-(2,5-dimethoxybenzyl)-N-(5-iodo-2- phenoxyphenyl)acetamide (13) was con-
verted to a precursor with spirocyclic iodonium ylide (SCIDY) (14) through two steps. The
SCIDY was then radiofluorinated with [18F]F− to give [18F]DAA1106 (7) (Scheme 3) [58].
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The molar activity of [18F]DAA1106 was 60–100 GBq/µmol, and the radiochemical
purity was > 98%. After being kept at room temperature for 120 min, the radiochemical
purity of [18F]DAA1106 remained above 95% [58].

When preclinical evaluation studies using [18F]DAA1106 were performed, [18F]DAA1106
showed considerable absorption in the brain (> 1.5% ID/g) but low uptake in bone. PET
imaging studies in ischemic rat brains indicated that the uptake of [18F]DAA1106 on the
ipsilateral side was higher than on the contralateral side. The ischemia regions could be seen
clearly, and the uptake ratio between the ipsilateral and contralateral sides was 1.9 ± 0.3.
A PET study validated the distribution of [18F]DAA1106 in the ischemic rat brain and its
remarkable selectivity for TSPO [58].

3.1.6. [18F]PBR06
18F-N-fluoroacetyl-N-(2,5-dimethoxybenzyl)-2-phenoxyaniline ([18F]PBR06) (8) is an-

other potent PET tracer. [18F]PBR06 (8) was synthesized from 2,5-dimethoxybenzaldehyde
as a starting material by Pike and co-workers in 2009 [130]. A bromo precursor (16) was
synthesized from 2,5-dimethoxybenzaldehyde (15) in three synthetic steps and then radio-
labeled with 18F to yield [18F]PBR06 (8) (Scheme 4).

The prepared [18F]PBR06 had high radiochemical purity (100%), and the molar activity
was 3.4 to 9.0 Ci/µmol. Preclinical studies showed that the affinities (Ki) of PBR-06 for
TSPO in the brains of rats, monkeys, and humans were 0.180 ± 0.007, 0.318 ± 0.018, and
0.997 ± 0.070, respectively, similar to those of [3H]PK11195. The measured log D value
was 4.05 ± 0.02, and [18F]PBR06 exhibited long-term stability in monkey whole blood and
plasma, as well as in a sodium phosphate buffer (0.15 M, pH 7.4).

[18F]PBR06 has been used to examine neurological diseases associated with neuroin-
flammation [59,60]. Billy and co-workers evaluated [18F]PBR06 in a mouse model of
stroke-induced neuroinflammation, and their PET study suggested that infarct areas had
greater [18F]PBR06 uptake. The buildup of [18F]PBR06 in infarct regions was more gradual
than in non-infarct regions, peaking at 10 min and then decreasing slowly to the point
where it was greater than in the non-infarct regions after 15 min. By 60 min, the uptake
increase in infarct regions had gradually stabilized and peaked at a level, which was 65%
greater than in non-infarct regions. A displacement and pre-blocking study of unlabeled
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PK11195 competitively inhibited [18F]PBR06, demonstrating that [18F]PBR06 specifically
binds to TSPO [59].
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A PET study using [18F]PBR06 to measure treatment response in HD reported by Sim-
mons and co-workers [60] demonstrated that [18F]PBR06 was sensitive enough to detect
increased TSPO, which is a symptom of HD in mouse models. In particular, [18F]PBR06
could detect an increased TSPO status at two disease phases, including the early symp-
tomatic phase, in mice with HD, as well as the ameliorative effects of LM11A-31 chemother-
apy. These findings indicate that [18F]PBR06 can be an effective PET tracer in clinical
HD investigations.

3.2. Pyrazolopyrimidines

Pyrazolopyrimidine compounds were developed based on the basic pyrazolo [1,5-a]
pyrimidine skeleton, including a hetero bicyclic compound containing a pyrazole fused to a
pyrimidine ring. This structure has been shown to interact with a wide variety of biological
targets, making it a privileged scaffold in pharmaceutical chemistry [131]. Compounds
with a pyrazolopyrimidine moiety have proven to have strong affinity for TSPO. N,N-
Diethyl-2-[2-(4-methoxyphenyl)-5,7-dimethyl-pyrazolo [1,5-a]pyrimidin-3-yl]-acetamide
(DPA-713) is a potential TSPO ligand [132]. DPA-713 has a greater affinity (Ki = 4.7 nM) for
TSPO compared with PK11195 (Ki = 9.3 nM) and is significantly more selective for TSPO
when compared with the central benzodiazepine receptor (CBR), which has a Ki > 10,000
nM. Subsequent studies of 11C-radiolabeling of DPA-713 produced a useful PET tracer,
which has been used in several preclinical and clinical studies [132,133]. Based on positive
results, new 18F-radiolabeled TSPO ligands, including [18F]DPA714 and [18F]DPA, were
developed (Figure 3).
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3.2.1. [18F]DPA-714

[18F]DPA-714 (17) is a 18F-labeled compound with a pyrazolopyrimidine group, as
reported in 2008 by Kassiou and co-workers. [18F]DPA-714 (17) was synthesized by a
seven-step process (Scheme 5) [66]. First, desmethyl DPA713 (22) was prepared in five steps
from methyl 4-methoxylbenzoate (21) [133]. The treatment of desmethyl DPA713 (22) with
toluene-4-sulfonic acid 2-hydroxy-ethyl ester and triphenylphosphine then gave a tosylate
precursor (23). Finally, after 18F-radiolabeling process, [18F]DPA-714 (17) was generated
with a 16% radiochemical yield and a specific activity of 270 GBq/µmol. DPA-714 displayed
an affinity for TSPO of Ki = 7.0 nM, which was higher than that of PK11195 (Ki = 9.3 nM).
The log D value for DPA-714 was 2.44, which was similar to that for DPA713 and less
than that for PK11195 (3.35). A PET study using rats with quinolinic acid lesions reported
increased uptake in lesion-containing areas of the brain, indicating that [18F]DPA-714 can
cross the blood–brain barrier. Biodistribution and specificity studies of baboons confirmed
that PK11195 also inhibited binding of [18F]DPA-714 to TSPO in baboon brains, indicating
that [18F]DPA-714 can bind specifically to TSPO [66].
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A study of the pharmacological properties of [18F]DPA-714 in the brains of monkeys
was carried out by Lavisse and co-workers in 2015 [67]. The results showed that [18F]DPA-
714 was widely distributed in the brain but concentrated mainly in the hippocampus,
occipital cortex, and, to a lesser extent, the cerebellum. The degree of association of [18F]DPA-
714 with TSPO in the brain was approximately 73%, demonstrating the high specificity of
[18F]DPA-714 to TSPO in both normal and neurodegeneration-induced models.

Ribeiro and co-workers used [18F]DPA-714 in PET imaging to evaluate post-stroke
neuroinflammation. They found that enhanced uptake of [18F]DPA-714 co-localized with
infarct tissue. The injured tissue exhibited different [18F]DPA-714 kinetics compared with
healthy tissue, suggesting that [18F]DPA-714 can be used to determine the degree of neu-
roinflammation in acute strokes [68].

Remy and co-workers reported that the Vt value of [18F]DPA-714 in the brain was
higher in HABs (45.9% ± 4.8%) than in MABs, suggesting that the genotyping polymor-
phism of TSPO affects [18F]DPA-714 binding [69].

However, clinical studies in AD patients using [18F]DPA-714 did not yield verifiably
positive results [70]. The results of an analysis of brain areas indicated that there are no
statistically significant differences between the volume of distribution Vt and the binding
potential (BP) between the subjects with and without the disease, demonstrating that
[18F]DPA-714 may not be useful for early detection of AD.

In 2020, Backhaus and co-workers, who chose [18F]DPA-714 to carry out a clinical
study of primary angiitis of the central nervous system (PACNS), found that reduced
[18F]DPA-714 uptake was observed after anti-inflammatory treatment in patients with
PACNS [71]. This confirmed that [18F]DPA-714 is suitable for the diagnosis and treatment
monitoring of PACNS.

3.2.2. [18F]VUIIS-1008

In an attempt to identify pyrazolopyrimidine derivatives that produce more effective
TSPO ligands with higher affinity to TSPO, 2-(5,7-diethyl-2-(4-(2-[18F]fluoroethoxy)phenyl)-
pyrazolo [1,5-a]pyrimidin-3-yl)-N,N-diethylacetamide (18F-VUISS1008) (18), a novel TSPO
ligand, was created by Manning and co-workers in 2013 [78].

[18F]VUIIS1008 (18) was prepared using a microwave-assisted organic synthesis
method. 3-(4-Methoxyphenyl)-3-oxopropanenitrile (24) was used as a starting material
to yield pyrazole skeleton, followed by condensation with substituted diones to give the
tosylate precursor (25). 18F-radiolabeling of the tosylate precursor produced [18F]VUIIS1008
(18) (Scheme 6).
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Molecularly, VUIIS1008 is structurally similar to DPA714, with only a slight structural
change, in which the two dimethyl groups on the pyrazolo [1,5-a]pyrimidine framework are
replaced by two diethyl groups. The introduction of the ethyl groups increases lipophilicity.
The value for lipophilicity (at pH = 7.5) of VUISS-1008 is 2.50, indicating that VUISS-
1008 can penetrate membranes and bind intracellular targets, such as TSPO. Ethyl group
modification led to a surprising improvement in affinity. The Ki value of VUISS-1008
to TSPO is subnanomolar (0.27 nM), which is significantly superior to that of DPA714
(9.73 nM) and PBR28 (4.0 nM). VUISS-1008 also has a low affinity for CBR (Ki > 10,000 nM),
suggesting strong selectivity for TSPO. Preclinical imaging and distribution studies have
demonstrated that the uptake of [18F]VUIIS1008 in the brain is largely confined to the
tumor, with only minor accumulation in neighboring tissues. The tumor-to-normal brain
distribution volume ratio (Vt) is reportedly 6.0, providing effective contrast between tumor
and normal tissue images.

Continuing their efforts to develop novel TSPO ligands based on a DPA714 structure
in 2017, Manning and co-workers reported two new TSPO ligands, [18F]VUIIS1009A and
[18F]VUIIS1009B [79]. Each one is a regioisomer of the other, in which the methyl group
and ethyl group positions on the pyrazolo [1,5-a]pyrimidine framework are exchanged.
Both VUIIS1009A and VUIIS1009B have high TSPO binding affinity, with measured IC50
values 1/500th that of DPA-714 (IC50 = 14.4 pM for VUIIS1009A and IC50 = 19.4 pM
for VUIIS1009B). In a PET study using rats with C6 gliomas, both [18F]VUIIS1009A and
[18F]VUIIS1009B accumulated in higher concentrations in the tumor tissue compared with
[18F]DPA-714. [18F]VUIIS1009B in particular exhibited considerably high tumor uptake (Vt)
compared with that of [18F]VUIIS1009A.

3.2.3. [18F]DPA-C5yne

DPA-C5yne (N,N-diethyl-2-(2-(4-(3-fluoropent-1-yn-1-yl)phenyl)-5,7 dimethylpyra-
zolo [1,5-a]pyrimidin-3-yl)acetamide) (19) is another prominent derivative of DPA-714,
in which a fluoroalkyn-1-yl group had been substituted for the fluoroethoxy group to
connect to a phenylpyrazolopyrimidine skeleton. The preparation of [18F]DPA-C5yne (19)
was achieved through the 18F-labeling process from tosylate (6-(4-(3-(2-(diethylamino)-2-
oxoethyl)-5,7-dimethylpyrazolo [1,5-a]pyrimidin-2-yl)phenyl)pent-4-yn-1-yl) 4- methyl-
benzenesulfonate) (27), which was produced from methyl 4-iodobenzoate (26) in a six-step
process (Scheme 7) [80].
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[18F]DPA-C5yne has a high affinity for TSPO (Ki = 0.35 nM) and strong lipophilicity
(Log P = 2.39). Moreover, [18F]DPA-C5yne is stable in plasma for at least 90 min at 37 ◦C,
making it a promising PET tracer for targeting TSPO [80].

In 2014, Damont and co-workers used [18F]DPA-C5yne in a PET study. [18F]DPA-
C5yne could clearly detect a lesion in a rat’s brain, with strong differences visible between
the lesioned site and the contralateral hemisphere’s equivalent site [81]. Although the
uptake of [18F]DPA-C5yne in the lesioned area was less than that of [18F]DPA-714 (0.24 %
ID/mL for [18F]DPA-C5yne and 0.30 % ID/mL for [18F]DPA-714), the uptake of [18F]DPA-
C5yne in the background area was only 0.05% ID/mL, which was considerably lower
compared with the 0.08% ID/mL of [18F]DPA-714. The contrast ratio of [18F]DPA-C5yne
was therefore significantly more influential than that of [18F]DPA-714.

3.2.4. [18F]F-DPA

N,N-Diethyl-2-(2-(4-fluorophenyl)-5.7-dimethylpyrazolo [1,5-a]pyrimidine-3-yl)acetamide
([18F]F-DPA) (20) is another promising TSPO PET ligand containing pyrazolopyrimidine moiety.
Although [18F]F-DPA (20) has a molecular structure that closely resembles [18F]DPA-714, the
fluorine atom in [18F]F-DPA (20) is bonded directly to the phenyl ring without an intermediate
alkyl or alkoxy group, which improves the metabolic stability of the radiotracer.

[18F]F-DPA (20) was developed by Annelaure and co-workers [82]. Initially, [18F]F-
DPA (20) was prepared using radiofluorination reactions and aryltrimethylammonium salt
and diaryliodomium salt as precursors. However, this protocol provided a low radiochemi-
cal yield (<3%), even though [18F]F-DPA (20) showed strong affinity for TSPO (Ki = 1.7 nM)
and high selectivity with the CBR (Ki > 1 µM).

In 2017, Solin and co-workers reported that [18F]Selectfluor could be employed to
radiolabel F-DPA (20). First, methyl 4-iodobenzoate (26) was converted to N,N-Diethyl-2-(2-
(4-(tributylstannyl)phenyl)-5,7-dimethylpyrazolo [1,5-α]pyrimidin-3-yl)acetamide (28) in a
five-step process. Then, N,N-Diethyl-2-(2-(4-(tributylstannyl)phenyl)-5,7-dimethylpyrazolo
[1,5-α]pyrimidin-3-yl)acetamide (28) was radiolabeled by [18F]Selectfluor-bis(triflate) to
produce [18F]F-DPA (20) (Scheme 8). In this radiofluorination, [18F]F-DPA was gener-
ated with a 15% ± 3% decay-corrected radiochemical yield and a low specific activity
(7.8 ± 0.4 GBq/µmol). The radiochemical purity was greater than 99% [83].
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levels of [18F]F-DPA in the plasma and brain were 28.3± 6.4 % and 93.5± 2.8 %, respectively.
These findings indicate that [18F]F-DPA is a promising TSPO radiotracer [83].

In 2022, a study to evaluate the ability of [18F]F-DPA PET to detect microglial activation
of neuropathic pain was carried out by Lida and co-workers. In this study, [18F]F-DPA was
superior to [11C]PK11195 in aiding the imaging of spinal cord inflammatory locations in
model rats on ex vivo autoradiography. The [18F]F-DPA uptake of the vertebral body was
twice that of bone from the skull. However, PET scanners were not able to detect enhanced
absorption of [18F]F-DPA at the inflammation site in this model [84].

3.3. Imidazopyridine Acetamides

Alpidem is an anxiolytic drug, which has been identified as a potential and selective
TSPO ligand [134]. [11C]CLINME was prepared from alpidem and employed as a PET
tracer [134–138]. These two classes of compounds are structurally similar and are classified
as imidazopyridine acetamides. This group of substances has the basic skeleton of imidazo
[1,2-a]pyridines, which contain nitrogen heterocycles. Nitrogen heterocycles have been
shown to meet most of the major criteria when developing new drugs with pharmacological
promise, including biological activity, solubility, and other properties [139]. Subsequent
studies developed new 18F-radiolabeled imidazopyridine acetamides by replacing 11C on
alpidem and CLINME with 18F (Figure 4).
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3.3.1. PBR102 and PBR111

In 2008, Greguric and co-workers developed new and selective 18F-radiolabeled lig-
ands based on imidazo [1,2-a]pyridineacetamides [87]. In this study, fluoroethoxy and
fluoropropoxy substituents were attached to the 4′-position of a 2-phenyl ring, generating
PBR compounds (fluoroethoxy for [18F]PBR102 (29) and fluoropropoxy for [18F]PBR111
(30)) with superior characteristics for PET.

A p-toluenesulfonyl precursor (35) of [18F]PBR102 and [18F]PBR111 was synthesized
in a nine-step process using 5-chloropyridin-2-amine (34) as a starting material. Radioflu-
orination was conducted using a substitution reaction of the p-toluenesulfonyl group
by the [18F]fluoride group in the precursors in the presence of K2.2.2 and K2CO3 to give
[18F]PBR102 (29) and [18F]PBR111 (30) (Scheme 9). The products were obtained with a
55–75% radiochemical yield after HPLC purification and were >95% pure.
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Subsequent studies of biological properties showed that imidazopyridineacetamide
derivative ligands had high selectivity and binding affinity for TSPO. The binding affinities
of PBR102 and PBR111 were 5.8 ± 0.4 nM and 3.7 ± 0.4 nM, respectively. Their lipophilic-
ities were appropriate for brain uptake (log P = 2.7 ± 0.1 for PBR102 and 3.2 ± 0.1 for
PBR111). The highest brain uptake was 0.2% ID/g for [18F]PBR102 and 0.4% ID/g for
[18F]PBR111 for the first hour. Biodistribution studies showed that radioactive concen-
trations in the brain had kinetics similar to that of blood, indicating a balance between
brain and blood. Preclinical studies showed that [18F]PBR102 had a binding affinity of
Ki = 15.5 ± 5.3 nM for HABs and a binding affinity of Ki = 56.3 ± 6.5 nM for LABs (in
human platelets), such that a LAB/HAB ratio of 3.6 was similar to the ratio for [18F]PBR111
(R = 4.0). However, the Ki values for LABs were large enough to quantify TSPO binding
with both radiotracers, regardless of the TSPO polymorphism [88].

Later, Hobson and co-workers used [18F]PBR111 to evaluate neuroinflammation status
by diisopropylfluorophosphate poisoning in rats [89]. A significant difference in PET im-
ages using [18F]PBR111 was observed before and after 3, 7, 14, 21, and 28 days of toxicity. At
days after exposure, the SUV data exhibited a marked change. In comparison with the con-
trol group, [18F]PBR111 uptake in the piriform cortex, hippocampus, thalamus, and amyg-
dala was enhanced. The neuroinflammation observed by PET using [18F]PBR111 was signif-
icantly associated with seizure severity over the first 4 h post-diisopropylfluorophosphate
intoxication. [18F]PBR111 was shown to be a reliable, non-invasive technique for monitoring
neuroinflammation by organophosphates intoxication.

3.3.2. PBR316

Recently, it has been reported that [18F]PBR316 (31) can advantageously image target
proteins [93]. Structurally, the [18F]PBR316 (31) skeleton is similar to that of [18F]PBR102
and [18F]PBR111. However, the methylene group of the 3-acetamide chain is replaced by a
carbonyl group, and the N,N′-diethyl group is changed to an N,N′-dimethyl group.

The precursor (37) of [18F]PBR316, a tosylate derivative, was prepared using 4-acetylphenethyl
acetate (36) as a starting material in a nine-step process (Scheme 10). The tosylate pre-
cursor (37) was then radioflourinated to produce [18F]PBR316 (31) in a radiochemical
yield of 20 ± 5% (n = 9), with high radiochemical purity (>99%) and 400 GBq/µmol of
molar activity.
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Scheme 10. Synthesis of PBR316.

The results of an in vitro study indicate that PBR316 had high affinity and selectivity
with TSPO (Ki = 6.0 ± 1.4 nM). PBR316 was proven to outperform other imidazopyridine
ligands, including PBR111 and PBR102, in terms of binding selectivity between TSPO and
CBR. Furthermore, the lipophilicity value (log P) was 2.16 ± 0.07, which was suitable for
brain uptake. A PET study indicated that [18F]PBR316 showed good uptake in the heart,
endocrine tissue, and kidneys (in rats), and [18F]PBR316 could cross the brain–blood barrier
and be absorbed by the brain and in the area of the olfactory bulb (6.9 ± 0.4% ID/g at 4 h).
This ratio was larger than those of both [18F]FEDAA1106 and [18F]PBR111.

3.3.3. [18F]CB251

In 2016, Perrone and co-workers developed a novel 18F-labeled TPSO ligand ([18F]CB251)
(32) from a 6,8-di-substituted imidazo [1,2-a]pyridine-N,N-dipropylacetamide structure [94].

The starting material was 4-(4-methulxyphenyl)-4-oxobutanoic acid (38). Using seven
reaction steps, it was converted to a tosylate precursor (39) of [18F]CBR251 [95]. Finally,
radiosynthesis was conducted to give the desired product, [18F]CB251 (32) (Scheme 11).
After HPLC purification, [18F]CB251 with a radiochemical yield of 11.1% ± 3.5% (n = 14)
was obtained, and the radioactivity was 104 to 154 GBq/µmol.
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The evaluation of the biological activity of [18F]CBR251 indicates that [18F]CBR251 has
high binding affinity and selectivity for TSPO (Ki = 0.27 ± 0.09 nM), which is better than
those of PK 11,195 and PBR28. Furthermore, the partition coefficient (log D) of [18F]CBR251
was 3.00 ± 0.03, which suggests that it can easily cross the blood–brain barrier. At 5 min
post-injection, the brain uptake of [18F]CB251 was 2.89 ± 0.23 %ID/g.

Recently, Youn and co-workers proved the usefulness of [18F]CBR251 for visualizing
neuroinflammation, regardless of the polymorphism of TSPO [96]. The study confirmed
that [18F]CB251 is selective for TSPO and absorbed by immune cells, which are activated
by high TSPO expression. These results show that [18F]CB251 can be used to image
TSPO-related neuroinflammation. A PET study demonstrated that [18F]CB251 can be used
to examine the treatment effect of anti-inflammatory medicine in a lipopolysaccharide-
induced neuroinflammation mouse model.

3.3.4. [18F]BS224

The rs6971 polymorphism on TSPO causes an amino acid substitution (Ala147Thr) in
the protein’s fifth transmembrane loop. TSPO polymorphisms reportedly affect binding
to TSPO ligands, limiting their application as biomarkers in PET. In 2021, Kim and co-
workers successfully developed a new TSPO PET ligand, 2-(-2-(4-[18F] fluorophenyl)-6,8-
dichloro-imidazo [1,2-a] pyridin-3-yl)-N, N-dipropylacetamide ([18F]BS224) (33), which
was insensitive to rs6971 polymorphisms [97].

[18F]BS224 was synthesized using aromatic 18F-fluorination. The precursors were
synthesized from methyl-4-iodobenzoate (40) in a four-step pathway using a boronic acid
pinacol ester derivative (41) or a six-step process with iodotoluene tosylate derivatives
(42). The precursors were then treated with 18-Crown-6 and Cs18F to produce [18F]BS224
(33) (Scheme 12). After the purification process, the [18F]BS224 ligand was obtained at a
decay-corrected radiochemical yield of 39% ± 6.8% (n = 8) and a radiochemical purity
of >99%.
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The biological characteristics of CB251 may still exist in BS224. For example, in vivo ex-
periments demonstrated that BS224 has a strong affinity and specificity for TSPO compared
with CBR (Ki = 0.51 ± 0.03 nM for TSPO and Ki > 105 for CBR), which were similar to those
of the CB251 ligand. The partition coefficient value (log D) of [18F]BS224 was 2.78 ± 0.04,
and a stability test of [18F]BS224 showed that >99% of the initial compound remained intact
for 120 min in serum. [18F]BS224 was also stable in the brain, heart, kidneys, and lungs.
The ratio of the binding affinity of the ligand (LAB/HAB) was 0.76, demonstrating that
BS224 is not sensitive to the polymorphism of TSPO. Furthermore, in PET studies using
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lipopolysaccharide-induced inflammation and ischemic-stroke rat models, [18F]BS224 pro-
duced clear images of inflammatory lesions with a good contrast ratio between damaged
tissue and background without skull uptake.

3.4. Oxopurine

AC-5216, an antianxiety and antidepressant-like drug, was found to be a potential
selective TSPO ligand in 2004 [140]. [11C]AC-5216 was synthesized and demonstrated to
be a useful PET radioligand [141]. Subsequent studies developed a new 18F-radiolabeled
TSPO ligand ([18F]FEDAC) based on the structure of AC-5216 by modifying the substitute
groups and replacing 11C with 18F (Figure 5).
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Figure 5. Structures of TSPO ligands containing oxopurine.

In 2009, N-benzyl-N-methyl-2-[7,8-dihydro-7-(2-18F-fluoroethyl)-8-oxo-2-phenyl-9H-
purin-9-yl]acetamide (18F-FEDAC) (43) was developed as a new TSPO ligand by Zhang
and co-workers [98]. [18F]FEDAC (43) was synthesized in a four-step process (Scheme 13).
The precursors (45) for radiosynthesis were synthesized from a glycine derivative (44) in
three steps. A radiolabeling procedure using reactions of the radioactive intermediate
[18F]FCH2CH2Br and a precursor (45) gave [18F]FEDAC (43) with a yield of 69%. The
radiochemical purity was >98%, and the specific activity was 30–95 GBq/µmol.
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Scheme 13. Synthesis of [18F]FEDAC.

Several preclinical and clinical studies have been performed to evaluate the properties
and potential applications of [18F]FEDAC. The studies reported that [18F]FEDAC exhibits
suitable properties for a PET tracer, such as an inhibition constant (Ki) of 1.3 nM and a
powerful binding affinity for TSPO with high selectivity (Ki = 8.700 nM for CBR). In a PET
study using a neuroinflammatory rat model, [18F]FEDAC absorbed substantial amounts of
radioactivity in the kainic acid-infused striatum, an area of the brain associated with high
levels of TSPO expression.
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Later, [18F]FEDAC was used as PET imaging agent for activated macrophages. In a
study conducted by Cheon and co-workers in 2018, PET imaging with 18F-FEDAC was
employed to predict the therapeutic benefits of biological disease-modifying anti-rheumatic
medications with anti-inflammatory properties to suppress active macrophages [99]. Simi-
larly, Yamashita and co-workers demonstrated that [18F]FEDAC could effectively visualize
atherosclerotic lesions in rabbits and humans. The results showed that, in wounded arteries,
the SUV of [18F]FEDAC was 0.574± 0.24, which was greater than that reported in uninjured
arteries (0.277 ± 0.13) or the myocardium (0.189 ± 0.07) [100].

3.5. Acetamidobenzoxazolone

[11C]MBMP was synthesized as a potential and selective TSPO ligand and employed
in a PET study [102]. Subsequent studies developed new 18F-radiolabeled TSPO ligands,
such as [18F]FEBMP and [18F]FPBMP (Figure 6).
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[18F]FEBMP and [18F]FPBMP

In 2014, 2-[5-(4-[18F]fluoroethoxyphenyl)- ([18F]FEBMP) and 2-[5-(4-[18F]fluoropropyloxyphenyl)-
([18F]FPBMP) -2-oxo-1,3-benzoxazol-3(2H)-yl]-N-methyl-N-phenylacetamide were reported
by Zhang and co-workers [103]. [18F] FEBMP (46) and [18F]FPBMP (47) were both synthe-
sized from 2-nitro-4-bromophenol (48). During the six-step procedure, 2-nitro-4-bromophenol
(48) was converted to 2-[5-(4-Hydroxyphenyl)-2-oxo-1,3-benzoxazol-3(2H)-yl]-N-methyl-
N-phenylacetamide (49), which reacted with 1-bromo-2-[18F]fluoroethane or 1-bromo-
3-[18F]fluoropropane to yield [18F]FEBMP (46) and [18F]FPBMP (47) (Scheme 14). The
radiochemical yields of [18F]FEBMP and [18F]FPBMP were 22 ± 4% (n = 8) and 5 ± 2%
(n = 5), respectively. The radiochemical purities for [18F]FEBMP and [18F]FPBMP were both
found to be 98%, and the specific activity ranged from 98 to 364 GBq/mol.
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Three-dimensional pharmacophore assessment and docking studies indicated that both
molecules had a high affinity for TSPO. In vitro binding experiments with TSPO revealed
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that the binding affinities for FEBMP and FPBMP were 6.6 ± 0.7 nM and 16.7 ± 2.5 nM,
respectively.

An ischemic rat brain image obtained from in vitro autoradiography exhibited much
more binding on the ipsilateral side compared with the contralateral side. In a dynamic
PET imaging study, the biodistribution of both compounds in mice suggested that re-
gional radioactivity in the brain peaked at 0–4 min for both ligands, comparable to (R)-
[11C]PK11195. These results suggest that both [18F]FEBMP and [18F]FPBMP are potentially
useful PET ligands.

3.6. Pyridazinoindoles

[18F]SSR180575

SSR180575 was identified as a treatment to promote neuronal survival [142], an
anti-apoptotic agent [143], and later, a potential and selective TSPO ligand [144–146].
[11C]SSR180575 was synthesized and employed as a PET radioligand [147–149]. Subse-
quent studies developed new 18F-radiolabeled TSPO ligands, such as [18F]SSR180575]
(Figure 7).
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Manning and co-workers developed 7-chloro-N,N-5-trimethyl-4-oxo-3(6-[18F]fluoropyridin-
2-yl)-3,5-dihydro-4H-pyridazino [4,5-b]indole-1-acetamide, or [18F]SSR180575 (50), as a potential
TSPO ligand [106].

Using ethyl 6-chloroindoline-2-carboxylate (53) as a starting material, [18F]SSR180575
precursors (54) were prepared in four steps to introduce potential substituents onto a
benzene ring, which would enable radiolabeling with 18F. The radiolabeling process was
then conducted to produce the final product (50) (Scheme 15). The radiochemical purity
was greater than 99%, and the decay-corrected radiochemical yield ranged from 9.3 to
19.3% (n = 9), with specific activities up to 5559 Ci/mmol (206 TBq/mmol).

[18F]SSR180575 was evaluated in a PET study using glioma-bearing male Wistar rats.
The results showed that the majority of [18F]-SSR180575 accumulates in tumor sites in the
brain, with little accumulation in non-tumor areas. The uptake ratio between the tumor
areas and non-tumor areas was greater than 10:1.

The specificity of [18F]SSR180575 for TSPO was investigated, and the addition of non-
radioactive SSR180575 decreased [18F]SSR180575 uptake in tumors by 40% by comparison.
This result indicates that [18F]SSR180575 has a high selective binding and reversibility to
TSPO at the injury site.
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In 2015, Damont and co-workers prepared and characterized various fluorinated
derivatives of SSR180575 (51 and 52) (Figure 7) [107]. All of them had pyridazino [4,5-
b]indole-1-acetamides moiety with minor structural modifications. Two series of com-
pounds have been synthesized. In series 1, the substituent of the phenyl group (p-position)
was modified to form eight alkyl ethers, including one methoxy derivative and seven
fluorinated compounds. In series 2, the N-indole position of SSR180575 was examined with
different fluoroalkyl groups replacing the methyl group, resulting in the creation of seven
novel compounds.

In vitro evaluations of the binding affinities of all the prepared compounds with TSPO
were carried out and compared with the SSR180575 parent compound. Eleven of the
fifteen compounds exhibited similar or higher binding affinities for TSPO compared with
SSR180575. The Ki values were in the nanomolar to subnanomolar range (0.30–8.1 nM).
The selectivity of compounds to CBR was also examined. The Ki(CBR)/Ki(TSPO) ratio
of all compounds was greater than 1000, indicating no suppression of [3H]flunitrazepam
binding to CBR at 1 µM and suggesting that these compounds have high selectivity over
CBR. The lipophilic property (log D) values ranged from 3.01 to 3.75. Although slightly
higher than that of SSR180575, they were still suitable for biodistribution and brain uptake.

3.7. Tricyclic Indoles

3.7.1. [18F]GE180

A tetracyclic indole structure was employed to identify novel TSPO ligands with
improved properties. In 2012, Trigg and co-workers succeeded in introducing a fluoroethyl
group onto indole nitrogen to create a novel TSPO ligand, [18F]GE180 (55), which retained
affinity for TSPO and increased resistance to oxidation (Figure 8) [108].
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For the synthesis of [18F]GE180 (55), a mesylate precursor (58) was prepared in a
five-step process from ethyl 3-nromo-2-hydroxycyclohex-1-ene-1-carboxylate (57), and
radiolabeling was carried out in the presence of K2.2.2 in MeCN at 100 ◦C for 10 min to
produce [18F]GE180 (55) (Scheme 16). The non-decay-corrected radiosynthesis yields were
25–35%.
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In a rat model, [18F]GE180 showed high affinity for TSPO (Ki = 2.4 nmol/L), and
metabolic studies revealed that 94% of [18F]GE180 in the brain was intact at 60 min
post-injection.

A study comparing the effectiveness of [18F]GE180 and [11C]-(R)-PK11195 in detecting
microglial activation in an acute model of neuroinflammation was carried out by Dickens
and co-workers, who reported that [18F]GE180 could detect activated microglia in the
brain [109].

In 2015, Trigg and co-workers used [18F]GE180 in a preclinical model of strokes.
The result indicated that uptake of [18F]GE180 was 24% greater in ischemic lesions and
inferior by 18% in the contralateral healthy site compared with [11C]-(R)-PK11195. The
signal-to-noise ratio was 1.5-fold greater than that of [11C]-(R)-PK11195. A blocking study
demonstrated that [18F]GE180 has a high binding affinity to TSPO; after 20 min [18F]GE180
post-injection, unlabeled GE-180 and (R)-PK11195 induced decreases in [18F]GE180 uptake
of 69 ± 5% and 63 ± 4%, respectively. A metabolite investigation revealed that the blood
pharmacokinetics of [18F]GE180 were comparable to those of other TSPO tracers, such as
[11C]DPA-713 and [18F]DPA-714 [110].

[18F]GE180 was subsequently used in a PET study of an AD mouse model. López-
Picón and co-workers reported increased uptake and specific binding of [18F]GE180 in the
whole brain and hippocampus, demonstrating the potential of [18F]GE180 in PET to track
neuroinflammation in the course of treating AD and possibly other neurodegenerative
illnesses [111].

3.7.2. [18F]GE387

In 2019, Sephton and co-workers developed another tetracyclic indole compound,
[18F]GE387 (56), as a potent PET radiotracer with minimal binding sensitivity to TSPO
polymorphisms [115]. The structure of [18F]GE387 was nearly identical to that of GE180,
but an N-ethyl group was replaced by a benzyl group.

In this study, a tosylate precursor (60) was synthesized in a six-step process from
2-chloro-5-methoxyaniline (59). The 18F-radiolabeling process was carried out using
[18F]fluoride in the presence of K2.2.2 to give [18F]GE387 (56) (Scheme 17). Supercritical
fluid chromatography was used to achieve chiral separation between the two enantiomers.
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After the 18F-labeling process, the R and S enantiomers of [18F]GE387 were obtained with
decay-corrected radiochemical yields of 21.3% ± 16.7% (n = 9) and 25.6% ± 7.1% (n = 9),
respectively, and molar activities of 55.8 ± 35.6 and 63.5 ± 39.5 GBq/µmol. A PET study
using [18F]GE387 in male Wistar rats demonstrated that racemic [18F]GE387 can enter
the brain.
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Scheme 17. Synthesis of [18F]GE387.

In 2021, Ramakrishnan and co-workers reported a preclinical evaluation of two enan-
tiomers of [18F]GE387 [116]. PET studies using lipopolysaccharide neuroinflammation rat
and monkey models indicated that the (S)-[18F]GE387 isomer was more efficient than the
(R)-[18F]GE387 isomer, with rapid brain uptake. A competitive binding experiment utiliz-
ing unlabeled (S)-GE387 against [3H]PK11195 produced Ki values of 5.48 ± 0.68 nM for
HABs and 9.83 ± 1.28 nM for LABs, for a LAB/HAB ratio of 1.8. PET using (S)-[18F]GE387
can therefore distinguish between inflamed and normal brain tissue, outperforming other
popular TSPO ligands.

3.8. Quinoline/Isoquinoline/Quinazoline Carboxamides

[11C]PK11195, a first-generation TSPO ligand, has been employed for PET studies.
Subsequent studies developed new 18F-radiolabeled TSPO ligands (Figure 9).

Pharmaceutics 2022, 14, x FOR PEER REVIEW 26 of 37 
 

 

 

Scheme 17. Synthesis of [18F]GE387. 

In 2021, Ramakrishnan and co-workers reported a preclinical evaluation of two en-

antiomers of [18F]GE387 [116]. PET studies using lipopolysaccharide neuroinflammation 

rat and monkey models indicated that the (S)-[18F]GE387 isomer was more efficient than 

the (R)-[18F]GE387 isomer, with rapid brain uptake. A competitive binding experiment 

utilizing unlabeled (S)-GE387 against [3H]PK11195 produced Ki values of 5.48 ± 0.68 nM 

for HABs and 9.83 ± 1.28 nM for LABs, for a LAB/HAB ratio of 1.8. PET using 

(S)-[18F]GE387 can therefore distinguish between inflamed and normal brain tissue, out-

performing other popular TSPO ligands. 

3.8. Quinoline/Isoquinoline/Quinazoline Carboxamides 

[11C]PK11195, a first-generation TSPO ligand, has been employed for PET studies. 

Subsequent studies developed new 18F-radiolabeled TSPO ligands (Figure 9). 

 

Figure 9. Structures of TSPO ligands containing quinoline/isoquinoline/quinazoline carboxamide. 

3.8.1. Quinoline Carboxamide 

In 2010 and 2013, Andrew and co-workers, who were working on developing 

SPECT imaging agents, created quinoline-2-carboxamide derivatives containing iodine 

atoms that are structurally similar to PK11195. They found that the derivatives had 

strong affinity to TSPO but high lipophilic properties [117,118]. In 2015, Andrew and 

Figure 9. Structures of TSPO ligands containing quinoline/isoquinoline/quinazoline carboxamide.



Pharmaceutics 2022, 14, 2545 25 of 35

3.8.1. Quinoline Carboxamide

In 2010 and 2013, Andrew and co-workers, who were working on developing SPECT
imaging agents, created quinoline-2-carboxamide derivatives containing iodine atoms that
are structurally similar to PK11195. They found that the derivatives had strong affinity to
TSPO but high lipophilic properties [117,118]. In 2015, Andrew and co-workers developed a
novel 18F-radiolabeled TSPO ligand, 3-fluoromethylquinoline-2-carboxamide ([18F]AB5186)
(61), for PET studies. The addition of a less lipophilic fluorine atom was expected to be
effective in PET [119].

[18F]AB5186 (61) was synthesized in a six-step process from (2-aminophenyl)(phenyl)
methanone (64). The final step in the production of [18F]AB5186 was radiofluorination of a
precursor (65) by replacing the chloride atom with 18F. The 18F-radiolabeling process was
achieved by using [18F]-potassium fluoride in the presence of Kryptofix-222 (Scheme 18).
[18F]AB5186 (61) was obtained with a 38% ± 19% (n = 7) decay-corrected radiochemi-
cal yield. The radiochemical purity was greater than 99%, and the specific activity was
0.6 ± 0.2 Ci/µmol.
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Competition-binding experiments demonstrated that the binding affinity of AB5186 to
TSPO was in the nanomolar range (Ki = 2.8 nM), which was similar to that of PK11195. The
major physicochemical properties of AB5186 suggested that it may be a useful PET imaging
tracer. AB5186 had a permeability (Pm) of 0.5 and a plasma protein binding capacity of
89.7%, suggesting that AB5186 can cross the blood–brain barrier.

A PET study on mouse bearing an intracranial U87MG-Luc2 tumor demonstrated
that [18F]AB5186 was clearly binding to tumors, and its location was consistent with that
reported by histology. These findings demonstrate the capacity of [18F]AB5186 to detect
TSPO in vivo under pathological circumstances.

3.8.2. Isoquinoline Carboxamide

In humans, an rs6971 polymorphism results in three TSPO phenotypic binding pro-
files. LABs frequently respond poorly to second-generation tracers, resulting in their
removal from clinical investigations. In 2019, Neydher and co-workers reported (R)-
[18F]NEBIQUINIDE (62), a novel pyridinyl isoquinoline derivative for TSPO PET imaging,
to improve this situation [121].

A chloride precursor (67) of (R)-[18F]NEBIFQUINIDE was synthesized from methyl
1-bromoisoquiniline-3-carboxylate (66) in four steps. The precursor (65) was then radiola-
beled by [18F]KF/Kryptofix-222 to produce the target product (62) (Scheme 19).
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The efficacy of this PET tracer was examined in a preclinical evaluation study. The
measured inhibition constant (Ki) showed that (R)-[18F]NEBIQUINIDE had a higher affinity
for TSPO in a low nanomolar range. Moreover, the binding ratio of [18F]NEBIQUINIDE
with HABs and LABs was 0.93, indicating that (R)-[18F]NEBIQUINIDE was less affected by
the polymorphism of TSPO.

When the log P value of (R)-[18F]NEBIQUINIDE was measured and compared to
that of other tracers, it was found to be in the same range. The metabolic stability of (R)-
[18F]NEBIQUINIDE was also screened, and, at 60 min post-injection, a very small portion
of (R)-[18F]NEBIQUINIDE was metabolized, while 98.5 ± 0.6% of the initial tracer was still
present. This indicates that (R)-[18F]NEBIQUINIDE was more stable than [18F]PBR102 and
[18F]PBR111.

PET imaging showed that the heart and lungs, which are TSPO-rich organs, exhibit
the greatest uptake of (R)-[18F]NEBIQUINIDE (12 ± 4% and 11 ± 4 % ID/cc, respec-
tively). The brain showed modest absorption (1.8 ± 0.3 ID/cc). Given these results, (R)-
[18F]NEBIQUINIDE was proposed as a potential TSPO ligand to detect neuroinflammatory
diseases and tumors.

3.8.3. Quinazoline Carboxamide

[11C]ER176 (11C-(R)-N-sec-butyl-4-(2-chlorophenyl)-N-methylquinazoline-2-carboxamide),
a novel derivative of [11C]-(R)-PK11195, was discovered in 2017, demonstrating potential
TSPO ligand properties for PET studies [122]. Although [11C]ER176 is recognized as an
effective TSPO ligand in humans, subsequent studies have developed new 18F-radiolabeled
TSPO ligands by replacing 11C on ER176 with 18F.

In 2021, Victor and co-workers developed a procedure to 18F-radiolabel ER176 (63) [123].
First, (R)-N-(sec-butyl)-N-methyl-4-oxo-3,4-dihydroquinazoline-2-carboxamide (68) was
transformed to an aryl(mesityl)iodonium salt precursor (69) in a four-step process. In the
radiolabeling of [18F]ER176, the precursor (69) in dimethylformamide was treated with a
solution of tetrakis(acetonitrile)-copper(I) triflate, and the resulting solution was heated by
microwave irradiation with a combination of [18F]fluoride ions and K2.2.2/K2CO3 solution
to generate [18F]ER176 (63) (Scheme 20). [18F]ER176 had a 21% (n = 3) radiochemical yield
and a radiochemical purity of >95%.

A blocking study using pretreatment of PK11195 indicated that the inhibitory effect
of [18F]ER176 was 82%, which is similar to that of [11C]ER176. These results suggest that
[18F]ER176 with a longer radioisotopic half-life could be a potential TSPO ligand.
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A PET study using mice was carried out to evaluate [18F]ER176 and compare it to
[11C]ER176. In the brain, radioactivity absorption by [18F]ER176 peaked at 17 min, with
approximately 0.8–0.9 SUV, followed by a slow, steady drop in radioactivity.

4. Conclusions

Positron emission tomography is a useful imaging method for diagnosis and therapy.
Because PET provides non-invasive, real-time imaging and multi-level observation of cells,
tissues, and organs, it has received great attention from both clinicians and researchers.

One of the TSPO-PET imaging method’s drawbacks is that there are still few clinical
studies and in-depth investigations into the cell types accountable for the TSPO response
in several brain diseases. The research works regarding TSPO in humans are often ex-
trapolated from rodent studies. However, many recent research works suggested that the
expression of TSPO in animal models (preclinical investigations) may not be the same
as the outcomes obtained in humans [34,150]. The sensitivity of most second-generation
radioligands to the TSPO polymorphism (rs6971), which changes the TSPO affinity for the
tracers, is another potential limitation of TSPO-PET neuroimaging investigations. Moreover,
several recent studies have demonstrated that the expression of TSPO is caused not only by
microglia or the inflammatory response, but it is also involved in many other biological
activities in the cell, such as cellular metabolism, energy homeostasis, or oxidative stress
during inflammation [151].

Scientists have made efforts to develop new high affinity and selectivity TSPO ligands
for PET studies of neuroinflammation and neurodegenerative illnesses because overex-
pression of TSPO at the site of neuropathic processes is a clear and valuable marker for
diagnosis of the disease state.

Several TSPO ligands radiolabeled with 11C and 18F have met the requirements of
PET studies. However, the short half-life of 11C (20.4 min) causes major limitations in
both preclinical and clinical applications. Compared with 11C-labeled ligands, TSPO
ligands radiolabeled with 18F, which has a longer half-life (109.8 min), are favored as a PET
tracer. Dozens of 18F-labeled TSPO ligands have been generated and achieved superior
performance as PET tracers for imaging of diseases related to TSPO expression.

TSPO ligands in PET studies must meet a series of requirements, including high
binding affinity and high selectivity. Candidate TSPO ligands should be of moderate
molecular weight (<500 Da) and suitable lipophilicity, which helps the ligands cross the
blood–brain barrier and enhances brain uptake. Ease of handling in the radiolabeling
process should also be considered.
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Despite meeting these requirements, some candidate TSPO ligands face other chal-
lenges, including the effects of TSPO polymorphisms. Next-generation TSPO-PET tracers,
such as [18F]FEBMP, [18F]PBR316, (R,S)-[18F]GE387, and (R)-[18F]NEBIFQUINIDE, which
have been described as being insensitive to the single genetic polymorphism rs6971, have
been discovered. However, each one faces challenges with respect to pharmacokinetics,
bioavailability, and safety. More preclinical and clinical studies on various models are
needed to confirm their effectiveness.

More specific and highly selective TSPO ligands that can enhance clinical study results
should be developed for widespread application. The synthetic steps should be simple
and more easily applied, and the 18F-radiolabeling method should also be more effective to
give 18F-radiolabeled TSPO ligands high radiochemical yields and high purity.

In conclusion, 18F-radiolabeled TSPO ligands have shown great potential for PET
imaging. Future investigations should focus on generating novel structures, simplified
synthesis, and highly efficient radiolabeling. Preclinical and clinical studies should be
undertaken to determine the effectiveness of these TSPO ligands.
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