
ARTICLE

Received 26 Apr 2016 | Accepted 19 Aug 2016 | Published 6 Oct 2016

Modelling proteins’ hidden conformations
to predict antibiotic resistance
Kathryn M. Hart1, Chris M.W. Ho1, Supratik Dutta2, Michael L. Gross2 & Gregory R. Bowman1,3

TEM b-lactamase confers bacteria with resistance to many antibiotics and rapidly evolves

activity against new drugs. However, functional changes are not easily explained by

differences in crystal structures. We employ Markov state models to identify hidden

conformations and explore their role in determining TEM’s specificity. We integrate these

models with existing drug-design tools to create a new technique, called Boltzmann docking,

which better predicts TEM specificity by accounting for conformational heterogeneity.

Using our MSMs, we identify hidden states whose populations correlate with activity

against cefotaxime. To experimentally detect our predicted hidden states, we use rapid mass

spectrometric footprinting and confirm our models’ prediction that increased cefotaxime

activity correlates with reduced O-loop flexibility. Finally, we design novel variants to stabilize

the hidden cefotaximase states, and find their populations predict activity against cefotaxime

in vitro and in vivo. Therefore, we expect this framework to have numerous applications in

drug and protein design.
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A
ntibiotic resistance is a global health threat that results in
millions of deaths and billions of dollars in health-care
costs every year1. Expression of the enzyme TEM

b-lactamase (TEM) is the predominant mechanism underlying
antibiotic resistance in pathogenic Gram-negative bacteria2.
TEM quickly evolves the ability to degrade new drugs as they
are introduced in the clinic, but how changes in sequence
alter this protein’s specificity remains a mystery despite decades
of structural and biochemical research3.

Unlike enzymes where conformational changes are known
to be important for function4, TEM is thought to be quite rigid5.
Therefore, many of the models proposed to explain how
mutations alter specificity focus on the possibility that the
substituted residues interact with the substrate6–8. However,
many of these substitutions are too far from the active site to be
involved in direct interactions3. Moreover, it is challenging to
explain the effects of many mutations in terms of structural
changes, as the differences between crystal structures of
TEM variants with dramatically different specificities are
extremely subtle (Fig. 1). For example, TEM-52 (E104K/G238S/
M182T) hydrolyzes a third-generation cephalosporin, cefotaxime,
2,300-fold more efficiently than TEM-1 (ref. 9). Although there
are some notable conformational changes in loops flanking the
active site (Supplementary Fig. 1)7,10, the active-site residues
themselves are essentially identical (Fig. 1 inset, r.m.s.d.¼ 0.33 Å).

We hypothesize that hidden conformations not yet captured by
traditional structural techniques are the missing ingredients
required to connect TEM’s structure with function and to
predict the effects of mutations. This hypothesis is supported
by computational models and room temperature crystals that
have revealed TEM adopts diverse structures11–14. A growing
body of work argues for the importance of conformational
heterogeneity in processes like allostery15–17, ligand binding18–22

and catalysis4,23,24. Unfortunately, it remains difficult to make a
direct link between conformational heterogeneity and function.

Here, we employ Markov state models (MSMs)25 to explore the
role of conformational heterogeneity in TEM b-lactamase
activity. An MSM is essentially a map of the ensemble of
structures that a protein adopts. These models are constructed
using atomically detailed molecular dynamics simulations to
identify the structural states a protein populates, their equilibrium
probabilities and the rates of transitioning between them.
MSMs have proven a powerful means to understand many
biomolecular processes26,27, and there are now powerful
methods for constructing these models28–30. The combination
of thermodynamic, kinetic and structural information from
MSMs can provide mechanistic insight and guide the
application of experimental techniques23,24,31 for identifying
hidden conformations. We reasoned MSMs could reveal hidden
conformations that determine TEM specificity but that are not
apparent from single ‘snap-shot’ structures. First, we integrate
our MSM with computational docking to develop a new approach
called Boltzmann docking. Then, we test the MSM’s predictions
of conformational heterogeneity using fast photochemical
oxidation of proteins (FPOP), a chemical-footprinting
technique. Finally, to determine the importance of hidden
states, we design new variants to control their populations and
then measure their activities in vitro and in vivo.

Results
Docking against one structure fails to predict activity. If the
ability of ground-state structures of TEM variants to bind
different substrates specifies their activities, then it should be
possible to make predictions by docking substrates against crystal
structures, when available, or homology models when structures
have not yet been solved. To test this hypothesis, we chose to
study a series of variants with differing activities against
cefotaxime, a substrate for which new activity evolved in the
clinic. First, we built homology models for the variants. Although
there are crystal structures for many different variants of TEM,
this is not true for other enzymes we might wish to study.
To preserve the generalizability of this method, we chose to build
all the homology models using TEM-1 (ref. 10) to mimic
situations where only one structure might be available. Then, we
docked cefotaxime against the active sites of each of these
variants. Because we use substrate docking as a proxy for activity,
we expect higher scores to predict greater activity against the
docked substrate.

Docking against single structures of each variant fails to predict
their abilities to degrade cefotaxime, as measured by their kcat/Km

values. In fact, we observe that the docking scores and activities
are anticorrelated (R¼ � 0.37±0.07, Fig. 2a). While it is
possible this anticorrelation suggests an alternative model for
TEM catalysis, it is more likely that it simply highlights the
limitations of docking against single structures. For example, this
model would incorrectly predict that compounds with no binding
affinity would be excellent substrates. Examining our homology
models of variants containing the substitution G238S revealed
that they do not capture a subtle shift in the 238-loop (residues
238–242) that has been observed in a number of crystal structures
of variants with this substitution. To check that failure to capture
this subtle shift is not responsible for the poor correlation in
Fig. 2a, we repeated the experiment using a TEM-52 crystal
structure7 (E104K/G238S/M182T) as the template for all variants
containing the G238S substitution. However, this alternative
protocol did little to improve the prediction, again showing an
anticorrelation between docking and activity (R¼ � 0.30±0.05).
These failed predictions could be due to shortcomings in the
force field, which describes the atomic interactions used
to produce a docking score. However, they could also be
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Figure 1 | Structural comparison of TEM b-lactamases with differing

substrate specificities. Overlay of TEM-1 (blue, PDB 1BTL) and TEM-52

(yellow, PDB 1HTZ) reveals subtle conformational differences (heavy atom

r.m.s.d.¼0.60 Å), particularly in the loops containing the mutations, but

very similar active-site architectures (inset, heavy atom r.m.s.d.¼0.33 Å).

Residues at positions 104 and 238 flank the active site and are shown in

pink spheres. See also Supplementary Fig. 1.
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interpreted as evidence for the inadequacy of focusing on single,
rigid structures when we know that proteins actually adopt a
distribution of different structures at thermal equilibrium. Indeed,
we have previously demonstrated that TEM b-lactamase adopts a
range of different conformations12,32. Therefore, we wanted to

explore whether inadequacies in the force field are really to blame
for the failures of docking, or if inadequate accounting for
proteins’ hidden states is responsible.

Boltzmann docking improves activity predictions. To test
whether considering proteins’ hidden states is crucial for
predicting their functions, we developed a technique called
Boltzmann docking that approximates compounds’ relative
binding affinities by calculating the ensemble-average score across
a set of structural states, weighting each state by its equilibrium
probability. Our approach differs from existing ensemble docking
methods, which dock compounds against a set of structures
sampled via molecular dynamics simulations and then rank the
compounds based on the highest score against any of the target
structures33–35. Boltzmann docking is more similar to methods
that dock compounds against multiple conformations from NMR
or crystal structures and weight the score against each structure
by their relative contribution to the experimental signal36.

To perform Boltzmann docking, we first built an MSM for each
variant based on 2.5 ms of atomically detailed molecular dynamics
simulations. Then we docked cefotaxime against a representative
structure from each state and calculated an average score,
weighting the contribution of each state by its equilibrium
probability according to the MSM. More details are given in
Methods section.

Boltzmann docking of cefotaxime against each of our variants
represents a vast improvement over docking against single
structures (Fig. 2b, R¼ 0.30±0.10 versus –0.37±0.07). For
comparison, we also performed classical ensemble docking, which
ranks compounds based on their highest score against any single
conformation from a set of structures. We find a correlation
coefficient between ensemble docking and experiments of
R¼ � 0.02±0.07, indicating no correlation. Thus, while ensemble
docking is superior to docking against single structures, which
shows an anticorrelation, population-based averaging with
Boltzmann docking is the only method that results in a physically
meaningful correlation with experiments. Interestingly, the highest
scoring docking poses for both wild type and E104K/G238S bind
to structures that closely resemble the ligand-free crystal structures
(Fig. 3). This observation stands in contrast to arguments that the
active site must open up to accommodate larger substrates, such as
cefotaxime7,11,37, as discussed in more detail below.

These results suggest Boltzmann docking has the potential to
predict activity against substrates based only on their chemical
structure, and thus anticipate resistance to new antibiotics. Our
results also suggest current force fields are better than many have
inferred from docking against single structures. However,
realizing the potential of current force fields requires a proper
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Figure 2 | An ensemble perspective predicts the effects of mutations on

TEM b-lactamase’s specificity better than single structures. (a) Docking

scores for cefotaxime against single-structure homology models of each

variant are anticorrelated (R¼ �0.37±0.07) with the measured catalytic

efficiencies (ln(kcat/Km)). (b) There is a correlation (R¼0.30±0.10)

between the Boltzmann docking scores for cefotaxime and the measured

catalytic efficiencies (ln(kcat/Km)). (c) There is a stronger correlation

(R¼0.79±0.03) between the natural logarithm of the populations of

cefotaximase states and the measured catalytic efficiencies (ln(kcat/Km)).

The correlation is robust to exclusion of E104K/G238S (R¼0.74±0.04).

Double mutants are shown in blue, and single mutants are shown in red.

Error bars are standard errors from the fit. Computational errors are less

than 3� 10� 3. The natural logarithms of MSM populations and

experimentally determined catalytic efficiencies are reported to put these

quantities on an energy scale, while docking scores are naturally on an

energy scale.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12965 ARTICLE

NATURE COMMUNICATIONS | 7:12965 | DOI: 10.1038/ncomms12965 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


accounting for proteins’ conformational heterogeneity. Future
efforts to account for how protein–ligand interactions redistribute
the equilibrium probabilities of different structures could lead
to even further improvements without requiring any alteration
of the underlying force field. Despite the apparent trend in
correlation coefficients as one moves from docking against single
structures, to ensemble docking, and then to Boltzmann docking,
we acknowledge that we cannot discount the possibility that
this trend is due to chance, given the number of data points
we have38. Furthermore, while Boltzmann docking appears to
outperform alternative methods, the absolute correlation between
Boltzmann docking and experiments is only moderate. It does
suggest, however, that our MSMs contain information that is not
encoded in single structures. We reasoned that our MSMs could
contain information about the catalytic cycle beyond just the
substrate-binding affinity, and next sought to learn what insights
further analysis of these models might provide.

MSMs identify hidden cefotaximase states. To determine which
conformational states are responsible for changes in substrate
specificity, we compared a cefotaxime-degrading variant,
E104K/G238S, with a wild-type reference, TEM-1. E104K/G238S
hydrolyzes cefotaxime 1,400-fold more efficiently than wild type,
and Escherichia coli expressing this variant have a 4500-fold
increase in their minimum inhibitory concentration (MIC)
(Table 1). It was suggested that the G238S substitution was
acquired first during evolution, because this single variant has an
MIC of 1.13 mM, whereas E104K alone has little effect39,40.
Numerous models have been proposed for how these
substitutions alter TEM’s specificity. Two proposals are that
they form direct interactions with the oxyimino group of
third-generation cephalosporins, and that G238S opens up the
active site to better accommodate the larger substrates3,6–8,37.
However, none of these models provides a quantitative means to
predict the activities of new variants, nor do they account for the

hidden states we have shown are important determinants of
TEM’s specificity.

To determine how the E104K/G238S substitutions alter the
specificity of TEM, we constructed MSMs for both wild type and
E104K/G238S. We used the crystal structure of wild type10 and a
homology model of E104K/G238S as starting points for 2.5 ms of
explicit solvent molecular dynamics simulations per sequence.
We pooled the two datasets together and used MSMBuilder28 to
cluster them based on the r.m.s.d. of shared residues in the active
site and then determined the equilibrium thermodynamics and
kinetics of each sequence independently in this shared state space.

To identify states that may be responsible for degrading
cefotaxime, which we call cefotaximase states, we queried the
MSMs for all states that are significantly more populated by the
E104K/G238S variant, which can degrade both cefotaxime and
benzylpenicillin, over wild type, which can only degrade
benzylpenicillin effectively. We also identified structures that
are more populated by wild type than E104K/G238S, which we
refer to as non-cefotaximase states. This analysis reveals that the
O-loop of wild type undergoes substantial rearrangements that
are absent in E104K/G238S (Fig. 4). The O-loop, comprising
residues 164–179 (ref. 41), is of known importance. It interacts
directly with the substrate3, helps to coordinate a water
required for catalysis42, and is extremely sensitive to
mutation41. In cefotaximase states, the O-loop conformation
closely resembles the crystal structures of TEM-1 and TEM-52
(Fig. 1), whereas in non-cefotaximase states, the O-loop extends
away from the active site (Fig. 4). This result contrasts with
crystallographic studies that claim widening the active site, via
motion in a different loop, is important for binding bulky
substrates like cefotaxime7,11. They observe movement of the
238-loop (residues 238–242) away from the O-loop and attribute
it to loss of a key hydrogen bond between the backbone amides of
Glu240 and Asn170 in cefotaximase variants. We do not observe
this motion in our most populated cefotaximase states (Fig. 4c),
as discussed in more detail below.
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Figure 3 | Bound states from Boltzmann docking. Highest ranking poses from Boltzmann docking of cefotaxime against (a) wild type (green) and

(b) E104K/G238S (orange). Both structures are shown overlaid with the crystal structure of TEM-1 (blue, PDB 1BTL) for reference. Cefotaxime is in cyan.

Insets depict key loops flanking the active site with the catalytic Ser70 shown in red.
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If the conformational preferences and amplitudes of the
O-loop’s fluctuations are key determinants of the different
specificities, then we should be able to predict the activities of
other variants based on the properties of their O-loops. Variants
that populate the cefotaximase states should have higher activities
against this substrate than variants that preferentially populate
the non-cefotaximase states. Because the single G238S substitu-
tion confers substantial resistance to cefotaxime but the E104K
substitution does not, we expect G238S to resemble E104K/
G238S, whereas E104K should more closely resemble wild type.
Consistent with our hypothesis, the G238S substitution populates
the cefotaximase states more than wild type and E104K but
less than E104K/G238S (Fig. 2c). E104K populates the
cefotaximase states to about the same extent as wild type,
consistent with the minimal impact this single substitution has on
cefotaxime activity.

Examining the distribution of structures reveals that each
substitution pins down the side of the O-loop to which it is
adjacent. G238S appears to do this by hydrogen bonding with
residues in the O-loop. For example, it forms a hydrogen bond
with the carbonyl of Asn170 in 70% of the population
(Supplementary Fig. 2b). E104K also increases interactions with
the O-loop, as shown by a decreased distance between position
104 and Pro167 relative to wild type (Supplementary Fig. 2a).
Interestingly, although the charge change has previously been
cited as the basis for rate enhancement8, our observation that
E104K packs against Pro167 suggests van der Waals contacts with
the O-loop also play a role. Pinning down both sides of the
O-loop leads to the large reduction in O-loop heterogeneity in
the double mutant and correlates with increased rates of
cefotaxime hydrolysis. This observation runs counter to a
common assumption that more promiscuous enzymes have
greater heterogeneity in their active sites43.

Both of these substitutions have been studied extensively, but
to our knowledge we are the first to present a model linking either
mutation to restricted motion in the O-loop. Crystal structures of
G238S-containing variants present conflicting models for how
the 238-loop and O-loop interact. The TEM-52 structure lacks

hydrogen bonds between the two loops7, but other structures
capturing multiple conformations of the Ser238 side chain show it
can hydrogen bond to the backbone carbonyls of Asn170 or
Glu171 (ref. 11). We also observe formation of a hydrogen bond
between Ser238 side chain and Asn170 backbone, but the precise
conformation of the 238-loop differs. The crystal structures show
that the 238-loop moves 2–4 Å away from the O-loop (measured
by the Ca positions of Glu240 in G238S-containing structures
versus TEM-1), which results in a small widening of the active
site. In contrast, we observe that both loops assume
conformations more similar to the wild-type crystal structure in
our most populated cefotaximase states (Fig. 4). Our model
suggests that rather than opening up the active site, G238S and
E104K maintain a closed active-site architecture by pinning down
the O-loop. In the absence of these substitutions, the O-loop
exhibits greater flexibility and accesses conformations that
increase its solvent exposure. This opening event in wild type is
a more dramatic change than the small widening caused by
movement of the 238-loop in G238S-containing crystal
structures. The models are not necessarily mutually exclusive,
but ours challenges the proposal that wild type cannot degrade
cefotaxime because it is simply too big to fit in the active site. Our
Boltzmann docking analysis supports our model because the
structures with the highest docking score against cefotaxime are
similar between wild type and E104K/G238S (Fig. 3).
Both docked structures have loop conformations resembling the
wild-type crystal structure (Fig. 3, insets). We do not observe
active-site opening when cefotaxime is bound, and the larger
substrate can, indeed, fit in the wild-type active site without steric
conflict. It is the fact that this binding-competent state is not
highly populated in wild type that underlies its low activity
against cefotaxime. Finally, kinetic analysis of cefotaximase
variants shows that higher catalytic efficiencies likely result
from lower Km values. Because acylation is the rate-limiting step,
Km approximates the substrate-binding affinity44. Cefotaximase
variants also have lower Kms for benzylpenicillin (Table 1), which
suggests restricting motion in the O-loop helps the enzyme bind
both substrates. The low kcat values observed for these variants

Table 1 | In vitro and in vivo activities of TEM b-lactamase variants*.

Benzylpenicillin Cefotaxime

kcat (s� 1) Km (lM) kcat/Km (lM� 1 s� 1) MIC (mM)w kcat (s� 1) Km (lM) kcat/Km (lM� 1 s� 1) MIC (lM)w

TEM-1 1,300±50 35±4 37±5 24 NDz NDz 2.0� 10� 3±0.5� 10�4 o0.035
M182T 780±40 21±4 38±7 ND NDz NDz 1.8� 10� 3±0.2� 10�4 0.07
G238S 66±1 4.3±0.4 16±2 12 50±3 190±20 0.26±0.03 1.13
E104K 1,200±60 39±6 30±5 24 NDz NDz 1.2� 10� 2±0.4� 10� 3 0.07
E104K/G238S 38±2 2.3±0.5 17±4 12 87±4 31±5 2.8±0.4 18
E104R 970±40 60±6 16±2 24 NDz NDz 7.6� 10� 3±0.1� 10�4 0.07
E104R/G238S 25±2 3.6±1.4 7.1±2.9 12 38±2 34±5 1.1±0.2 4.5
E014A 1,200±70 30±5 41±7 24 NDz NDz 6.0� 10� 3±0.4� 10� 3 o0.035
E104A/G238S 52±4 3.5±1.1 15±5 6 47±2 72±7 0.65±0.07 2.25
E104D 1,700±200 190±40 8.8±2.4 24 NDz NDz 2.9� 10� 3±0.5� 10�4 o0.035
E104D/G238S 45±1 2.9±0.6 15±3 6 57±5 200±30 0.28±0.04 0.56
E104M 1,100±40 14±2 78±11 24 4.8±0.5 230±30 2.1� 10� 2±0.4� 10� 2 0.07
E104M/G238S 110±8 15±4 7.1±1.9 12 78±2 53±4 1.5±0.1 9
E104I 1,200±70 28±4 45±8 24 NDz NDz 8.7� 10� 3±0.1� 10� 3 o0.035
E104I/G238S 66±3 5.9±1.5 11±3 12 89±4 56±7 1.6±0.2 18
E240K/E104K 1,300±50 57±6 24±3 24 NDz NDz 1.0� 10� 2±0.3� 10� 3 o0.035
R164E/G238S 3.5±0.1 36±4 0.10±0.01 0.19 0.7±0.1 66±13 9.9� 10� 3±2.1� 10� 3 o0.035
R164D/G238S 9.4±0.2 9.5±1.1 1.0±0.1 1.5 4.8±0.4 123±19 3.9� 10� 2±0.7� 10� 3 o0.035

MIC, minimum inhibitory concentration; ND, not determined.
*Standard error values from the fits are reported for kcat and Km. MIC determination was repeated at least three times. Values are most commonly observed concentration with an error of þ/� one well.
wThe E. coli strain used here (DH5a) has an intrinsic resistance of 0.05 mM for benzypenicillin and o0.035 mM for cefotaxime. MICs were also measured in BL21(DE3) cells, and similar trends were
observed.
zNot determined. Michaelis–Menten curve did not saturate. kcat/Km was determined by a linear fit.
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might indicate that O-loop flexibility is important for another
step in the catalytic cycle, such as product release. We propose
that the conformation captured by the wild-type crystal structure,
particularly of the O-loop, is the binding-competent state for a
diverse set of substrates, and that E104K/G238S stabilizes this
state to allow for more promiscuous binding.

Footprinting confirms X-loop rigidity in cefotaximases.
Because the O-loop mobility we observe in MSMs results in
significant changes in solvent accessibility (Fig. 4), we can
experimentally test our insights using the FPOP approach. This
technique is a chemical-footprinting method that reports on

structural fluctuations by labelling solvent-exposed side chains
with hydroxyl radicals and detecting the oxidized peptides with
mass spectrometry45. We previously found that FPOP labelling
distinguishes a flexible loop in ApoE, whose motions are invisible
to slower hydrogen deuterium exchange and GEE labelling46,
and have used it to follow fast folding of barstar protein on the
millisecond timescale47. Labelling with primary radicals occurs on
the microsecond timescale, which is much faster than TEM
unfolding48. This labelling rate is also similar to the timescale of
O-loop motions in wild type and faster than O-loop motions in
E104K/G238S. Therefore, labelling reports on the solvent
accessibility of conformations in the folded state, making FPOP
a powerful way to assess the MSM prediction that reduced O-loop
heterogeneity correlates with increased cefotaxime hydrolysis.

The effects of the E104K and G238S substitutions were
evaluated in the background of the well-characterized stabilizing
mutation M182T (ref. 49) to aid in data collection. The
M182T substitution alone stabilizes TEM but has little effect
on its activity (Table 1). The triple mutant E104K/G238S/M182T
is found clinically and, like the double mutant, exhibits
cefotaximase activity50. We compared the difference in labelling
between E104K/G238S/M182T and M182T and observe reduced
labelling at a number of sites in the triple mutant, particularly the
region preceding the O-loop and the O-loop itself (Fig. 5).
Interestingly, loss of mobility due to the E104K/G238S
substitutions propagates beyond the active site to the C-
terminus. However our primary observation is that E104K
and G238S result in restricted motion of the O-loop, in
agreement with our models, and we hypothesize that this
change in conformational heterogeneity underlies the observed
change in substrate specificity.

Populations of hidden states predict novel cefotaximases. To
definitively test the importance of O-loop heterogeneity, we chose
new variants designed to similarly restrict the O-loop
rearrangements, computationally checked that they populate
the cefotaximase states and experimentally measured their cefo-
taximase activities. To the best of our knowledge, none of these
variants have been observed in nature, and only one (E104A) has
been observed in directed evolution studies3. If the electrostatic
interactions between residue 104 and the acidic O-loop are a key
determinant of the populations of the O-loop’s hidden states,
then we reasoned E104D should mimic wild type, whereas E104R
should more closely resemble E104K. We also tested the
contribution of hydrophobic surface area by substituting
aliphatic residues at position 104, predicting that longer side
chains would form stronger interactions with the O-loop and
generate greater cefotaximase activity. In isolation many
substitutions at position 104 have only a modest effect
on activity51 and saturation mutagenesis at position 104
suggests no single substitution dramatically alters cefotaxime
activity52, so we also tested all variants in combination with
G238S to better assess their impact.

We first constructed MSMs for our designed variants and then
assessed the degree to which they populate the cefotaximase
states. We then experimentally measured their in vitro
activities against cefotaxime and the extent to which they confer
cefotaxime resistance to E. coli (Table 1). Given that similar
trends exist in the single and double mutants, we focus on the
variants containing the sensitizing G238S mutation. As predicted,
E104D/G238S has a similar probability of adopting cefotaximase
states as G238S alone and also has similar activity against
cefotaxime. E104R/G238S, E104M/G238S and E104A/G238S
all populate the cefotaximase states more than G238S alone,
as predicted. However, in contrast with expectations based on

b

a

c

Ω-Loop

104

238-loop

Ω-Loop

Ω-Loop

Figure 4 | Functionally relevant states from the MSMs. A crystal

structure of TEM-1 (blue, PDB 1BTL) is overlaid with the two most

populated structures taken from MSMs of the (a) non-cefotaximase states

(green), which are favoured by wild type and the (b) cefotaximase states

(orange), which are favoured by the E104K/G238S. (c) Large structural

rearrangements in the O-loop distinguish low-energy non-cefotaximase

states from cefotaximase states, which more closely resemble the

conformation captured by the crystallographic structure. Residues 104 and

238 are shown in spheres.
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charge arguments alone, E104R/G238S does not populate these
states as extensively as E104K/G238S (Fig. 2c). These results are
consistent with both in vitro and in vivo experiments, which show
E104R/G238S degrades cefotaxime better than G238S but not as
well as E104K/G238S (Table 1). Comparing the conformations
adopted by E104R/G238S to those of E104K/G238S reveals that
Arg104 interacts more strongly with residues 170 and 171 in the
O-loop, displacing key interactions with the catalytic water42 in
the active site and reducing activity against both benzylpenicillin
and cefotaxime (Supplementary Fig. 3). Consistent with our
hypothesis that van der Waals interactions play an important role
in pinning position 104 to the O-loop, E104M confers greater
cefotaximase activity than does E104A. In fact, in the wild-type
background E104M has greater activity than either of the
positively charged variants. Positive epistasis between G238S
and E104K, however, results in this double mutant surpassing all
others in cefotaximase efficiency. Taken together, these variants
imply that both charge and hydrophobic surface area contribute
to rate enhancement.

Our approach also tends to successfully identify variants that
do not have significant cefotaxime activity. Based on our intuition
about the importance of electrostatic interactions, we designed
three additional variants intended to favour the closed O-loop
conformations important for cefotaximase activity. For example,
we reasoned that introducing negatively-charged residues behind
the acidic O-loop at position 164 might increase cefotaxime
activity by favouring closed conformations through electrostatic
repulsion. However, the MSM for R164E/G238S predicts this
variant does not populate the cefotaximase states as much as
other known or predicted cefotaximases, and these predictions
are consistent with both in vitro and in vivo experiments
(Table 1). R164D/G238S is predicted to populate cefotaximase
states more than R164E/G238S but less than most cefotaximases,
which is consistent with its measured activity. We also tried
changing position 240 to a positively-charged residue with the
E104K/E240K variant in an attempt to favour closed O-loop
conformations through electrostatic attraction. In this case, our
MSM suggested this variant could have activity against
cefotaxime, but this prediction was not borne out experimentally
(Table 1). Despite this exception, the general agreement between
our models and experiments demonstrates the added power of
MSMs over biochemical intuition alone.

Impressively, the populations of our hidden cefotaximase states
provide the most accurate predictions of cefotaxime activity
(Fig. 2c, R¼ 0.79±0.03, compared with R¼ 0.30±0.10 for

Boltzmann docking and R¼ � 0.37±0.07 for docking against
single structures). Furthermore, the correlation is robust to
exclusion of the variant used to define cefotaximase states,
E104K/G238S (R¼ 0.74±0.04). This result supports our
conclusion that MSMs provide a reasonably accurate depiction
of TEM b-lactamases’ structural ensembles. Boltzmann docking
performed better than docking against single structures by
accounting for conformational heterogeneity, but any docking
approach is limited by using substrate binding as a proxy for
activity. Enzymes undergo conformational changes throughout a
catalytic cycle in concert with chemical transformations to the
substrate, so these states would not necessarily score well. MSMs,
on the other hand, may capture these catalytically-relevant states.
Therefore, a powerful approach to classify the activities of new
variants is to compare MSMs of their structural ensembles to
MSMs for variants with known functions.

Discussion
Our results demonstrate that accounting for proteins’ conforma-
tional heterogeneity dramatically improves the predictive power
of molecular modelling with common force fields. For example,
Boltzmann docking dramatically outperforms docking against
single structures by accounting for proteins’ hidden states. We
anticipate this method will be valuable for predicting resistance to
new compounds, especially when clinical variants have not yet
been identified. In cases where a set of variants with
different activities are known, MSMs can shed light on which
conformational states are relevant for different functions. Based
on these insights, MSMs can predict the activities of new variants
even more accurately than Boltzmann docking by quantifying
the populations of hidden states and assessing which of the
known variants populate these states most similarly. Both of these
approaches will be of great utility for other drug and protein
design applications.

Methods
Molecular dynamics simulations. Five 500 ns simulations were run for each
variant with Gromacs 4.6.5 (ref. 53) and the Amber03 force field54 using previously
reported settings12,13, which are reviewed below. Modeller55 was used to create a
homology model of each variant based on PDB 1BTL10 that was then used as the
starting point for simulations. Each of these starting structures was solvated
with TIP3P water56 in a dodecahedron box that extended one nm beyond the
protein in any dimension and sodium ions were added to neutralize the charge.
This system was energy minimized with the steepest descent algorithm until
the maximum force fell below 1,000 kJ mol� 1 min� 1 using a step size of 0.01 nm
and a cut-off distance of 1.2 nm for the neighbour list, Coulomb interactions and
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van der Waals interactions. The solvent was then equilibrated in a one ns
simulation with a position restraint on all protein heavy atoms (spring constant
1,000 kJ mol� 1 nm� 2). A long-range dispersion correction was employed for both
energy and pressure. All bonds were constrained with the LINCS algorithm57 and
virtual sites58 were used for all hydrogens to allow a 4 fs time step. Cut-offs of 1.1,
0.9 and 0.9 nm were used for the neighbour list, Coulomb interactions, and Van der
Waals interactions, respectively. The Verlet cut-off scheme was used for the
neighbour list and particle mesh Ewald59 was employed for the electrostatics (with
a grid spacing of 0.12 nm, PME order 4, and tolerance of 1e� 5). The v-rescale
thermostat60 (with a time constant of 0.1 ps) was used to hold the temperature at
300 K and the Berendsen barostat61 was used to bring the system to 1 bar
pressure. For the production runs, the position restraint was removed and the
Parrinello-Rahman barostat62 was employed. Snapshots were stored every 10 ps.
Structures were drawn with PyMOL63.

MSM construction and analysis. MSMs were constructed with MSMBuilder
(v2.8)28,29. MSMs for individual variants that were used for Boltzmann docking
were created by clustering the data for an individual variant with a hybrid
clustering method. First, we used a k-centres algorithm based on the r.m.s.d.
between heavy atoms in residues surrounding the active site (residues 69–73, 103,
105, 130–132, 165–173, 216, 234–237, and 244) until every cluster had a
radius—that is, maximum distance between any data point in the cluster and the
cluster centre—o1.0 Å. Then, three sweeps of a k-medoids update step were used
to centre the clusters on the densest regions of conformational space. This
procedure resulted in the following number of clusters for each variant: 2,046 for
wild type, 1,891 for G238S, 1,693 for E104K, 1,280 for E104K/G238S, 1,467 for
E104R, 942 for E104R/G238S, 1,338 for E104A, 1,206 for E104A/G238S, 1,530 for
E104D, 2,525 for E104D/G238S, 1,090 for E104M, 780 for E104M/G238S, 1,358 for
E240K/E104K, 2,113 for R164D/G238S, and 2,812 for R164E/G238S. We selected
the cluster centres for each state as representative structures. We used the
representative structures for each cluster as the basis for our Boltzmann docking
approach. Another alternative would be to coarse-grain the model by merging
clusters into macrostates. However, doing so could easily merge geometrically
distinct conformations and lead to inaccurate estimates of the total probability of
binding-competent conformations. Supplementary Fig. 4 shows these models
satisfy the Markov assumption for lag times as small as 1 ns. Consistent with past
work demonstrating that thermodynamics converge far more quickly than
kinetics64, the thermodynamics of our models are insensitive to varying the lag
time from 10 ps to 10 ns, so equilibrium populations of each state were determined
by calculating a matrix of transition probabilities between every pair of states
with the transpose method and a lag time of 10 ps and solving for the normalized
left eigenvector of this matrix.

MSMs for comparing the structural preferences of different variants were
constructed based on the same set of active-site residues. First, every 100th data
point from simulations of each variant were pooled together and clustered into
1,000 states with a k-medoids algorithm. Then the equilibrium probability of each
state for a given variant was calculated using the same approach described before
using just the data for that variant. Using a common set of states to describe the
thermodynamics and kinetics of each variant provides a basis for directly
comparing the probabilities that different variants will adopt a given conformation.
Of the 1,000 states in this combined state space, we found that 350 of these states
have higher populations in E104K/G238S than wild type. As explained in the text,
we designate these states as cefotaximase states and employ the sum of the
equilibrium populations of these states (with error bars from bootstrapping, as
explain below) as a surrogate for cefotaxime activity. Another 399 states are more
populated by wild type than E104K/G238S, which we designate as non-
cefotaximase states.

Error bars on the population of a subset of MSM states were obtained via
bootstrapping. That is, we drew 100 independent subsamples of the data
(with replacement) and reported the mean and standard deviation of the sum of
the equilibrium probabilities of the subset of states of interest. Correlation
coefficients between the populations of subsets of MSM states and experiments
were obtained by calculating the Pearson correlation coefficient between all n
possible subsets of n� 1 data points (where n is the number of TEM variants) and
reporting the mean and standard deviation of these correlation coefficients.
Implied timescales were also obtained by calculating the implied timescales of all n
possible subsets of n� 1 trajectories (where n is the number of independent
simulations) and reporting the mean and standard deviation of these timescales.

Inter-atomic distances were calculated with MDTraj65. Two atoms were assumed
to be in contact with one another if their centres were within 4 Å. The probability of
a contact was calculated by identifying all the states where a pair of residues is in
contact and then summing up the equilibrium populations of these states.

Docking. Docking against individual structures was performed with Surflex-dock66.
A TEM-1 crystal structure (PDB 1BTL10) was used for wild type, and Modeller55 was
used to create a homology model for each of the other variants based on this crystal
structure. The structures of benzylpenicillin and cefotaxime were generated using the
Concord module of SYBYL-X 2.1.1 and minimized using the Tripos force field.
Surflex-Dock receptor protomols were generated with a threshold of 0.5 and a bloat
of 3.0. These protomols were then used to screen various ligands for receptor

complementarity. The Hammerhead scoring function67 inherent to Surflex was used
to score the resulting poses. The default ‘-pgeom’ docking accuracy parameter set
was implemented. We also repeated this experiment using a structure with the
G238S substitution, PDB 1HTZ7, as the template for all variants containing the
G238S substitution to ensure that subtle differences between 1HTZ and 1BTL do not
make a significant difference in the results.

Boltzmann docking was performed using the same settings to dock the
substrates against the cluster centres from each state of the MSMs built for an
individual variant. The final score was then calculated as the weighted-average of
the scores for each state, using the equilibrium probabilities of each state as their
weights. Ensemble docking was conducted by taking the same set of scores against
cluster centres and ranking compounds based on their highest score against any of
the protein structures.

Correlation coefficients between different docking protocols and experiments
were calculated in the same manner as the correlations between the populations of
subsets of MSM states and experiments, except that we compare to the log of the
experimental enzyme efficiencies to put these measurements on an energy scale,
like the docking score.

Protein expression and purification. TEM-1 was subcloned using NdeI and XhoI
restriction sites into the multiple cloning site of a pET24 vector (Life Technologies),
and its native export signal sequence was replaced by the OmpA signal sequence
to maximize export efficiency68. Site-specific variants were constructed via
site-directed mutagenesis and verified by DNA sequencing. Plasmids were then
transformed into BL21(DE3) Gold cells (Agilent Technologies) for expression
under T7 promoter control.

Cells were induced with 1 mM IPTG at OD¼ 0.6 and grown at 18 �C for 15 h
before harvesting. TEM b-lactamases were isolated from the periplasmic fraction
using osmotic shock lysis: Cells were resuspended in 30 mM Tris pH 8, 20%
sucrose and stirred for 10 min at room temperature. After centrifugation, the pellet
was resuspended in ice-cold 5 mM MgSO4 and stirred for 10 min at 4 �C. After
centrifugation, the supernatant was dialyzed against 20 mM sodium acetate, pH 5.5
and purified using cation exchange chromatography (BioRad UNOsphere Rapid S
column) followed size exclusion chromatography (BioRad ENrich SEC 70 column)
into storage buffer (20 mM Tris, pH 8.0).

Fast photochemical oxidation of proteins. TEM variants were submitted to
FPOP by irradiating with an excimer laser pulse on the flowing mixture of protein
and H2O2, as described originally69. Briefly, 10mM of protein in PBS, pH 7.4, was
mixed with the 20 mM L-glutamine and 15 mM H2O2 at room temperature and
flowed in a 150mm i.d. capillary by a syringe pump (Harvard Apparatus, Holliston,
MA, USA) at a rate of 24ml min� 1 past a transparent laser window where the
flowing solution was irradiated by 248 nm KrF excimer laser (GAM Laser Inc.,
Orlando, FL, USA). The laser power was adjusted to B35 mJ pulse� 1 at a
frequency of 7 Hz, ensuring an exclusion volume fraction of 20% having no laser
irradiation. The laser-irradiated sample was collected in a vial containing 500 nM
catalase and 70 mM L-methionine to decompose excess H2O2. The sample was
frozen in liquid nitrogen and then stored in � 80 �C until further analysis.

For each mutant the labelling reaction was done in triplicate. The sample was
divided into two parts. One part was analysed using a Bruker Maxis Q-TOF mass
spectrometer (Billerica, MA, USA) under denaturing conditions to check for
hydroxyl radical labelling at the protein level. The other was treated with 20 mM
TCEP, PBS, pH 7.4 at 45 �C for 1 h to reduce the disulfide bond in PBS pH 8.0. The
alkylated protein sample was immediately purified using the 2-D clean-up kit
(GE Healthcare, NJ, USA), denatured in presence of 8 M urea and digested
overnight with trypsin in 100 mM TEAB, pH 7.8 at 37 �C. The resulting peptides
were separated by reversed-phase HPLC using a Dionex Ultimate 3,000 RSLCnano
system (Waltham, MA, USA) and introduced to a Thermo QExactive Plus mass
spectrometer (Waltham, MA, USA) via nano-ESI. Peptide ions were fragmented in
a data-dependent mode in which the 10 most abundant components were selected
by the spectrometer for fragmentation. Unmodified and modified peptides were
identified by Mascot (Matrix Science, Boston, MA, USA) and Byonic (Protein
Metrics, San Carlos, CA, USA) and confirmed by manual inspection.

Activity measurements. Enzyme activities against benzylpenicillin (BP) and
cefotaxime (CFX) substrates were measured in 50 mM potassium phosphate, 10%
glycerol (v:v) pH 7.0 at 25 �C using 2, 10 or 200 nM enzyme. The reaction was
monitored at 232 nm (eBP¼ � 1,096 M� 1 cm� 1) or 265 (eCFX¼ � 6,643 M� 1

cm� 1) using a Cary 100 UV–vis spectrophotometer (Agilent Technologies).
Velocities were plotted as a function of substrate concentration and fit by the
Michaelis–Menten equation to extract kcat and Km values. Enzymes that did not
exhibit saturation behaviour under the tested conditions were fit by a line, and the
slopes are reported as kcat/Km.

MIC measurements. Site-specific variants of TEM-1 were constructed via
site-directed mutagenesis of the pBR322 plasmid and verified by DNA sequencing.
Plasmids were then transformed into BL21(DE3) cells (Intact Genomics) and
DH5a cells (Life Technologies) to create strains in which b-lactamases are
expressed using a native promoter.
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Antibiotic resistance of the strains was determined by measuring their minimum
inhibitory concentrations (MIC90’s) using the broth microdilution method
according to the Clinical and Laboratory Standards Institute (CLSI, formerly the
NCCLS) guidelines70. Each well of a 96-well microtiter plate was filled with 75ml of
sterile Mueller Hinton II (MHII) media broth (Sigma). Each antibiotic was dissolved
in water making a 20 mM solution, then diluted with sterile MHII media broth to
192 mM (BP) or 288 mM (CFX). Exactly 75ml of the compound solution was added
to the first well of the microtiter plate, and twofold serial dilutions were made down
each row of the plate. Exactly 75ml of bacterial inoculum (5� 105 c.f.u. ml� 1) was
then added to each well giving a total volume of 150ml per well and compound
concentration gradients of 48 mM–23mM (BP) and 72–0.04mM (CFX). The plate
was incubated at 37 �C for 17 h, and then each well was examined for bacterial
growth. The MIC90 was recorded as the lowest compound concentration required to
inhibit 90% of bacterial growth as judged by turbidity of the culture media relative
to a row of wells filled with a water standard. Gentamicin was included in a control
row at a concentration gradient of 174–0.09mM.

Data availability. The experimental data supporting the findings of this study as
well as the computer code and simulations are available from the corresponding
author upon request.
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