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A B S T R A C T

Background: Tendinopathy is a common motor system disease that leads to pain and reduced function. Despite its
prevalence, our mechanistic understanding is incomplete, leading to limited efficacy of treatment options. Animal
models contribute significantly to our understanding of tendinopathy and some therapeutic options. However, the
inadequacies of animal models are also evident, largely due to differences in anatomical structure and the
complexity of human tendinopathy. Different animal models reproduce different aspects of human tendinopathy
and are therefore suitable for different scenarios. This review aims to summarize the existing animal models of
tendinopathy and to determine the situations in which each model is appropriate for use, including exploring
disease mechanisms and evaluating therapeutic effects.
Methods:We reviewed relevant literature in the PubMed database from January 2000 to December 2022 using the
specific terms ((tendinopathy) OR (tendinitis)) AND (model) AND ((mice) OR (rat) OR (rabbit) OR (lapin) OR
(dog) OR (canine) OR (sheep) OR (goat) OR (horse) OR (equine) OR (pig) OR (swine) OR (primate)). This review
summarized different methods for establishing animal models of tendinopathy and classified them according to
the pathogenesis they simulate. We then discussed the advantages and disadvantages of each model, and based on
this, identified the situations in which each model was suitable for application.
Results: For studies that aim to study the pathophysiology of tendinopathy, naturally occurring models, treadmill
models, subacromial impingement models and metabolic models are ideal. They are closest to the natural process
of tendinopathy in humans. For studies that aim to evaluate the efficacy of possible treatments, the selection
should be made according to the pathogenesis simulated by the modeling method. Existing tendinopathy models
can be classified into six types according to the pathogenesis they simulate: extracellular matrix synthesis-
decomposition imbalance, inflammation, oxidative stress, metabolic disorder, traumatism and mechanical load.
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Conclusions: The critical factor affecting the translational value of research results is whether the selected model is
matched with the research purpose. There is no single optimal model for inducing tendinopathy, and researchers
must select the model that is most appropriate for the study they are conducting.
The translational potential of this article: The critical factor affecting the translational value of research results is
whether the animal model used is compatible with the research purpose. This paper provides a rationale and
practical guide for the establishment and selection of animal models of tendinopathy, which is helpful to improve
the clinical transformation ability of existing models and develop new models.
1. Introduction

Tendinopathy presents as pain and restricted motion. In the upper
and lower extremities, tendons with higher mechanical loading, such as
the rotator cuff and Achilles tendons, are more prone to tendinopathy
[1]. Although the pathological model of tendinopathy has been gradually
improved in recent decades, the understanding of the underlying
mechanism of its occurrence and development is still limited, which
hinders development of tendinopathy treatments.

Animal models are essential in elucidating pathological mechanisms
and developing therapeutic approaches. The critical factor affecting the
translational ability of animal models is whether the purpose of the
research is matched with the model itself. Although multiple tendinop-
athy models have been reported, we still know very little about the
scenarios in which each model is suitable for application, resulting in
many models being infrequently applied to pre-clinical studies. One
important reason is our lack of understanding of the characteristics of
existing models. In addition, we should recognize that the primary pur-
pose of animal models is to provide information, translating basic sci-
entific information into human clinical practice. Therefore, establishing
associations between animal models and human tendinopathy are
important to enhance the clinical translational value of animal models.

Our aim is to summarize the different animal models used to simulate
tendinopathy and to clarify the research purposes appropriate to each
animal model, including exploring the pathological mechanisms of the
disease and testing the efficacy of therapeutic approaches. We will
examine the advantages and disadvantages of each model and classify
them according to the human tendinopathy pathogenesis simulated by
the modeling method to determine their utility in studying the patho-
physiology of tendinopathy and evaluating treatments.

2. Methodological consideration

We reviewed relevant literature in the PubMed database from
January 2000 to December 2022 using the specific terms ((tendinopathy)
OR (tendinitis)) AND (model) AND ((mice) OR (rat) OR (rabbit) OR
(lapin) OR (dog) OR (canine) OR (sheep) OR (goat) OR (horse) OR
(equine) OR (pig) OR (swine) OR (primate)). Included studies were an-
imal studies of tendinopathy. There were no restrictions on animal spe-
cies, modeling methods, intervention methods, and control measures.
Reviews, conferences, and letters were excluded. We used predesigned
data extraction table to extract required information. The extracted
contents included first author, year, animal species, gender, age, initial
weight, tendon type, simple size, modeling methods, and follow-up time.
Study quality was assessed by a modified 10-point-item checklist,
adapted from the Collaborative Approach to Meta-Analysis and Review
of Animal Data from Experimental studies [2]. The checklist comprises
items of study methodology: randomized allocation to experimental
group (1); publication in a peer-reviewed journal with its impact factor
(2); blinding of the group allocation during the experiment (3); a state-
ment of sample size calculation (4); a statement of compliance with
regulatory requirements (5); a statement on possible conflicts of interest
(6); blinded assessment of outcome (7); (semi) quantitative scoring based
on HE staining (8); (semi) quantitative scoring based on SO staining (9),
and clear data presentation (10). The results of information extraction
and quality assessment are presented in Supplemental material 1. Risk of
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bias was assessed by Systematic Review Centre for Laboratory Animal
Experimentation (SYRCLE) [3]. (Supplemental material 2)

3. How to select appropriate tendinopathy models?

3.1. Classification based on human tendinopathy pathogenesis

Extrinsic and intrinsic factors contribute together to the development
of tendinopathy. Among them, overload (overuse) is the primary stim-
ulus driving the progression of tendinopathy. Most tendinopathies occur
in relation to high-load and/or repetitive activities. Damage-associated
molecular patterns (DAMPs) refer to endogenous molecules produced
by cell damage or tissue degradation that can activate immune responses,
including alarmins, collagen (Col) fragments, nucleic acids and so forth
[4]. DAMPs produced by overload may be recognized by Toll-like re-
ceptors (TLRs) on tendon cells, vascular endothelial cells, macrophages
and mast cells, promoting the production of pro-inflammatory cytokines
(e.g., interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α)), che-
mokines, lipid mediators and reactive oxygen species (ROS) through
myeloid differentiation primary response88 (MyD88) -dependent and
MyD88-independent pathway [5,6]. Furthermore, peripheral nerves
located in the paratenon and endotenon produce a variety of neuro-
transmitters in response to tendon damage, such as substance P, gluta-
mine and calcitonin gene-related peptide, which activate mast cells and
cause neurogenic inflammation [7]. Mechanosensors, such as integrin,
voltage-gated calcium channel and focal adhension kinase, can directly
sense mechanical stress [8,9]. In addition, cytoskeletal dynamics are
involved in mechanical signal transduction too. Overload can stimulate
the shift of tendon cells and macrophages to pro-inflammatory pheno-
types [8,10]. Besides, overload also promotes the production of growth
factors (e.g., transforming growth factor-β (TGF-β)) and extracellular
matrix (ECM) by tendon cells [11]. Inflammatory microenvironment
induces angiogenesis and nerve ingrowth. Tendon cells shifted from
producing Col 1 to producing Col 3. Furthermore, production of matrix
metalloproteinases (MMPs) increased in tendon cells and macrophages.
These factors cause the imbalance of ECM synthesis and decomposition.
Finally, the inflammatory response becomes chronic and continues to
cause tissue damage.

Other common extrinsic factors include acute injury, lack of adequate
recovery and use of toxic medications (fluoroquinolones, corticosteroid,
and statins). Intrinsic factors include aging and metabolic disorders
(diabetes mellitus (DM) and hypercholesterolemia) [12–16]. These fac-
tors amplify the effect of overload by regulating the status of tendon cells
and immune cells. Animal models should recreate perturbations reflec-
tive of the key risk factors for the condition in humans, so we examined
the available tendinopathy models according to mechanisms [Fig. 1].

3.2. Establishment of associations between human continuum pathological
model and pathological patterns for each animal model

Cook et al. proposed the continuum pathology model in 2008, which
has been widely recognized [17,18]. This model suggested that man-
agement may be optimized by tailoring interventions to the stage of
pathology. They suggested that overload is the core factor driving ten-
dinopathy and divided tendinopathy into three stages: reactive tendin-
opathy, tendon dysrepair and degenerative tendinopathy. In the reactive



Figure 1. Human tendinopathy mechanisms and corresponding animal models. Grey box: The mechanisms of human tendinopathy. Green box: The methods of
establishing tendinopathy models. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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tendinopathy, overload induced non-tendinogenic differentiation and
proliferation of tendon cells [19]. The production of large proteoglycans
(e.g., aggrecan, versican and hyaluronan), which have a strong ability to
bind water, increases. At this stage, Col arrangement and vascularization
do not change significantly. Patients may complain of pain and tendon
swelling associated with acute overload, which can be completely
relieved with adequate rest. The rounded and enlarged tendon cells,
increased ECM, and confined space lead to increased intratendinous
resting pressure [20]. The accumulation of hydrophilic glycoproteins and
proteoglycans reduces matrix permeability, which increases the intra-
tendinous dynamic pressure [21]. Persistent overload leads to further
increase of proteoglycan production as well as Col structure destruction
and Col arrangement disorder. The inflammatory response caused by
overload induces angiogenesis [22]. This stage is called tendon dysre-
pair. Soreness and stiffness may occur in the morning or after being still
for a longer period of time. Imaging may reveal focal structural abnor-
malities (e.g., thicking) with or without increased vascularization. If the
load is optimized, this stage is still considered reversible. If not opti-
mized, overload may impair vascularization and cause hypoxia, which
led to leaking vessel and negative feedback increased intratendinous
pressure [21]. Finally, the transformation of tendon tissue into scar-like
tissue, accompanied by tendon cells exhaustion and significant matrix
abnormalities, marks the stage of degenerative tendinopathy. The tendon
may have one or more focal nodules, with or without diffuse thickening.
If the tendon is under high load or the lesion is extensive enough, it may
rupture.

The ultimate goal of animal models is to reproduce the pathological
processes of human tendinopathy, so we try to explain the pathological
processes of each animal model in the context of human tendinopathy.
Histological scores provide a good bridge. Although different studies may
have used different histological scoring systems, the major parameters of
these scoring systems are the same. We developed a new scoring system
based on these major parameters, which allowed us to compare the re-
sults of different studies under a uniform standard. The specific param-
eters included cell morphology, cellularity, vascularization, ground
substance and Col arrangement. (score 0–3 for each item) See Supple-
mental material 3 for details. We included studies that provided scores
for parameters or clear representative pictures (Shown in Supplemental
marterial 1 with bold). For studies that provided scores for parameters,
we calculated the absolute mean difference in the scores, which were the
difference between themeans in the control andmodeling groups, as well
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as the estimated standard error [23]. For studies that provided clear
representative pictures, we scored the parameters according to the new
scoring system and calculated the absolute mean difference in scores too.
Then, we used the random effects method of meta-analysis to calculate
the pooled effect size for the same parameter at the same follow-up time.
Finally, the total score of each follow-up time point was calculated. We
defined a histopathological score of less than 4 as stage 1, corresponding
to reactive tendinopathy; a score of 4–7 as stage 2, corresponding to
tendon dysrepair; a score of more than 7 as stage 3, corresponding to
degenerative tendinopathy [Fig. 2].
3.3. Know the characteristics of each animal

A wide range of species, such as horses, sheep, goats, dogs, rabbits,
rats, and mice have been used for establishing tendinopathy model. We
should recognize that different species differ in their ability to reproduce
characteristics of specific tendon and their surroundings. In addition,
large animals have a natural advantage in diagnosing and treating dis-
eases using clinically relevant methodological approaches. Non-human
primates, such as the baboon, may be the most desirable specie for ten-
dinopathy research because their anatomical characteristics are most
similar to humans, yet they are rarely used due to high cost. The multiple
bundle structure of the horses’ superficial digital flexor tendon (SDFT)
and deep digital flexor tendon (DDFT) are similar to the human Achilles
tendon and thus can simulate slip between bundles [24]. In addition,
these tendons carry a high load, which means they can spontaneously
develop lesions. In sheep and goats, supraspinatus, infraspinatus, Achil-
les, and DDFTs are the tendons most commonly used to establish ten-
dinopathy model [25,26]. Similar to humans, their infraspinatus tendon
is inside the joint and the supraspinatus tendon is outside the joint but on
a bursa, thus reproducing an environment containing synovial fluid [27].
The shoulder joint of dogs shows flattened humeral head and the
prominent greater tuberosity. Their movement patterns and anatomical
characteristics together determine that their supraspinatus tendons bear
a high load, and are therefore prone to lesions [28].

As for rabbits, their subscapularis tendon passes under the tuberc-
ulum supraglenoidale and coracoid process, similar to the supraspinatus
tendon passing under the acromion in humans [29]. Their supraspinatus,
subscapularis, patellar, and Achilles tendons are often used to establish
tendinopathy model [30,31]. In rodents, supraspinatus, patellar, Achil-
les, and flexor digitorum longus tendons are most commonly used in



Figure 2. The bridge between human continuum
pathological model and pathological patterns for each
animal model. Histopathological scores are used to
establish associations between human continuum
pathological model and pathological processes of each
animal model. Histological scores less than 4 are cor-
responded with reactive tendinopathy, histological
scores 4–7 are corresponded with tendon dysrepair,
and histological scores greater than 7 corresponded
with degenerative tendinopathy.
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tendinopathy studies [32–34]. The shoulder anatomy of rats is most
similar to that of humans (except primates), with the acromion attached
to the clavicle in front of the humerus head, forming a closed arch over
the supraspinatus and infraspinatus tendons [35]. Mice shared similar
shoulder joint structure.

4. Animal models corresponding to extracellular matrix
synthesis - decomposition imbalance

ECM changes throughout different stages of continuum pathological
model. Tendon cells play a key role in maintaining the balance between
ECM synthesis and decomposition through synthesizing Col, pro-
teoglycans and elastic proteins or producing matrix MMPs and elastases
[36]. Immune cells (e.g., neutrophils and macrophages) are also involved
in this process by producing degrading enzymes [37]. ECM, in turn,
regulates the function of tendon and immune cells. For example, random
fiber arrangement is sufficient to drive macrophages to transform to M1
type [38]. Tendinopathy models that disrupt the balance of ECM syn-
thesis and decomposition can be classified into two categories: One that
directly degrades ECM and the other indirectly affects the synthesis and
decomposition of ECM by regulating cell function. The methods of local
injection to induce tendinopathy are shown in Table 1.

4.1. Extracellular matrix-degrading enzyme injection

Intratendinous or peritendinous injection of Type 1 collagenase is the
most commonly used method. Few studies adopt other enzymes, such as
Type 2 collagenase and elastase [59,69].

Tendinopathy models in rats have been extensively studied. Naterstad
Table 1
The methods of local injection to induce tendinopathy.

Drug Volume (μl) Concentration (%)

Type 1 collagenase 20–30 1
Type 1 collagenase 20–40 0.0015–1
Type 1 collagenase 20–100 0.0015–10
Type 1 collagenase 10–150 1
Type 1 collagenase 1000 —

Elastase 20 —

TGF-β1 6 1.7
PGE1 500 0.16
PGE2 — —

Substance P 50 —

Carrageenan 100 2
H2O2 25 0.0017
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et al. [70] reported that after injection with 100 μg collagenase in the
Achilles tendon, recruitment of neutrophils peaked in the first 24 h and
gradually disappeared within 2 weeks. Orfei et al. [71] compared the
differences between low (1 mg/ml, 30 μl) and high (3 mg/ml, 30 μl) dose
collagenase injections in Achilles tendons. Low doses reached the worst
total score at 3 days (9.7 � 0.4). The presence of a high number of
rounded cells was the most distinctive feature in this group. High does
reach the maximum score at 15 days (16.5 � 2.1). Histological analysis
showed moderate or more disordered structure and arrangement of Col
fibers at 7 and 15 days. The number of vascular cells increased between 3
and 15 days, followed by a decrease from 15 to 45 days. Compared with
low doses, fatty deposits are more common in high doses. Besides, Orfei
et al. reported up-regulation of chondrogenic genes at 4 weeks. In
another study, Chen et al. [42] also found increased expression of oste-
ogenic (osteocalcin, OCN) and chondrogenic (sex determining region
Y-box 9, SOX9)-related genes and calcium deposition at 4 weeks. After
the injection of collagenase, the tendon tissue rapidly underwent reactive
changes, corresponding to reactive tendinopathy. At about 1 week, the
pathological changes of the tendon tissue were similar to those of tendon
dysrepair [50,72]. The tendinopathy model later entered degenerative
tendinopathy, with the most severe pathological changes at 3–4 week
[Fig. 3A].

The results from rats can be generalized to other species. Kokubu et al.
showed that Bonar scores were 4, 6.67 and 9.5 on 9, 14 and 28 days after
local injection of collagenase in mice Achilles tendon [33]. Rabbit ten-
dinopathy models have been widely used in preclinical studies, and most
of their study endpoints are set at week 3, 4 and 6 [30,31,53,54]. Netto
et al. [55] compared the differences between a single 300 μg injection of
collagenase and three 100 μg injections of collagenase (at 14-day
Does (U/μg) Animal Tendon References

50–250 U mouse Achilles [33,39–42]
0.3–600 μg rat Patellar [43–46]
0.3–250 μg rat Achilles [33,47–52]
0.1–1.5 μg rabbit Achilles [30,31,53–55]
400–500 U sheep Achilles [25,26,56–58]
1 U rat Achilles [59]
0.1 μg mouse Achilles [60–62]
0.8 μg rat Achilles [63]
0.05–0.5 μg rabbit Achilles [64,65]
0.67–6.7 μg rat Patellar [66]
2 μg rat Patellar [67]
0.04 μg mouse Achilles [68]



Figure 3. Comparison of different animal models used for tendinopathy research.
Selected characteristics of animal models used for tendinopathy research including applicable species, damages to animals caused by modeling operations, time costs,
features (A, B and D), mechanisms (C), changes in gene expression (E), and pathological patterns. Clocks are used to represent time costs, with levels 1, 2 and 3
indicating that the animal model needed less than 4 weeks, less than 8 weeks, and more than 8 weeks to enter stage 2 tendinopathy, respectively. Thumb-up/down is
used to represent damages, with levels 1, 2 and 3 indicating non-damage, relatively minor damage, and relatively severe damage, respectively.
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intervals). The Bonar scores for the two groups were 12.8, 4.5, 5.6, and
11.6, 8, and 11.8 at 10, 12, and 16 weeks, respectively. This suggested
that for studies with long periods, the continuous injection method may
be more appropriate. As for large animals, such as sheep, most of their
study endpoints were set at weeks 3,4, 6, and 8 [25,26,56–58].
4.2. Cytokines injection

From the standpoint of tissue repair, the three stages of continuum
pathological model correspond to proliferation, consolidation and
maturation respectively [73]. Myofibroblasts play an important role in
the consolidation and maturation stages, participating in the synthesis of
47
Col 3 and the contraction of scar-like tendon tissue [74]. TGF-β is part of a
superfamily of related growth factors, which includes three isoforms:
TGF-β1, TGF-β2 and TGF-β3. All isomers bind to TGF-β receptor 2 and
recruit TGF-β receptor 1 to activate downstream pathways [75]. TGF-β1
promotes the transformation of fibroblasts and macrophages into myo-
fibroblasts through canonical (smad-based) and non-canonical (non--
smad-based) signaling pathways [76]. This process may involve
activation of HIF-1α signaling pathways and glycolytic reprogramming
[61].

The TGF-β1 injection model was established by injecting 100 ng of
TGF-β1 into the mice Achilles tendon on days 0 and 2 [60,61]. Rezvani
et al. showed that increased cellularity and rounded nucleus on day 6
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[60]. Then, cartilage metaplasia and hyaluronan accumulation occurred
in the tendon tissue on days 9 and 25. Combining TGF-β1 injection with
treadmill has been studied [62,77]. After 24 h of TGF-β1 injection, the
mice were forced to uphill (17�) treadmill running at 32 cm/s, 20
min/day, 5 days per week for 2 or 4 weeks.

4.3. Summary

Type 1 collagenase model is the most used tendinopathy model. The
advantage of all chemical injection models is that they induce tendin-
opathy rapidly and with less additional damage. Their disadvantage is
that they induce tendinopathy from the intermediate link. The type 1
collagenase model and TGF-β1 model are characterized by low cell
density, relatively little vascularization and significant chondrogenesis,
similar to the environment in which blood supply is severely disrupted in
the late stage of degenerative tendinopathy in humans. In addition, such
models may be suitable for the study of calcifying tendinopathy [78].

5. Animal models corresponding to inflammation

Inflammation is an essential process for tissue repair. In the resting
state, macrophages and mast cells are the major immune cells in tendon
tissue [79]. After activation, they release inflammatory cytokines and
chemokines to recruit neutrophils and monocytes [80]. Immune cells
release both pro-inflammatory cytokines (i.e., IL-1β, TNF-α, IL-6, etc.)
and anti-inflammatory cytokines (i.e., IL-4 and IL-10), pro-inflammatory
lipids (i.e., prostaglandin E2) and anti-inflammatory lipids (i.e., lipoxins),
matrix degrading enzymes (i.e., MMPs, proteases, tryptases, etc.) and
inhibitors of matrix degradation enzymes, thus they regulate the repair
process of the tendon [22,81].

5.1. Pro-inflammatory lipid injection

Prostaglandins (PGs) are key lipid mediators in the regulation of in-
flammatory response. Due to the effect of cyclooxygenases, arachidonic
acid is synthesized into PGH2, which is further processed by terminal
synthases and generates the major PGs, including prostacyclin, PGE2,
PGD2, and PGF2 [82]. PGE2 promotes macrophage production of IL-10
and polarizes into M2 type [83,84]. In stromal cell compartments,
PGE2 can inhibit the proliferation of tendon stem cells and promote
adipogenic and osteogenic differentiation [83].

Khan et al. [64] compared the effects of local injection with low (50
ng) and high dose (500 ng) PGE2 (days 0, 7, 14, and 21) on the patellar
tendon of rabbits. There was no significant difference in Col fiber
diameter between the two groups. Fatty infiltration was noted in the
highly disorganized region.

Another important lipid mediator is PGE1. This compound is syn-
thesized by cyclooxygenase using dihomo-gamma-linolenic acid as sub-
strate, which had the ability to bind to PGE2 receptors EP2 and EP4 [85].
PGE1 may have potential anti-inflammatory effects, such as the inhibi-
tion of macrophage infiltration [86].

Continuous injection of PGE1 is often used to establish tendinopathy
models. Sullo et al. [63] showed that after injection of PGE1 (800 ng) in
rats Achilles tendon, the pathological scores at weeks 1, 3, and 5 were
8.9, 13.5, and 17.3, respectively. As for rabbits, Gunes et al. [87] reported
after injection of PGE1 (1600 ng) for 4 weeks, Movin scores at weeks 4, 6,
and 12 were 13.38, 9.83, and 8.59, respectively. These results suggest
that about 1 week after PGE1 injection, tendon tissue entered degener-
ative tendinopathy [Fig. 3B].

5.2. Neurogenic inflammatory mediator injection

Tendon injury promotes the growth of peripheral nerve fibers in the
tendon sheath into the tendon parenchyma, which produces neuropep-
tides (e.g., substance P (SP) and calcitonin gene-related peptide (CGRP))
to regulate the function of immune and stromal cells [88–90]. Mast cells
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express a variety of neuropeptide receptors, such as neurokinin 1 re-
ceptors (bound with SP), calcitonin receptor-like receptors, and gluta-
mate receptors, and upon binding to ligands, inflammatory pathways are
activated, causing the release of cytokines (e.g., TNF-α and IL-8) and
chemokines [79,91–93]. Mast cell-derived neurotransmitters, such as
histamine and dopamine, also in turn act on neurons [94]. SP promotes
proliferation of tendon cells and synthesis of Col 3, while negative
feedback inhibits infiltration of peripheral nerves [95,96].

Zhou et al. [66] compared differences between low dose (0.5 nmol)
and high dose (5 nmol) SP local injections in rat patellar tendons. They
found that low and high doses SP significantly enhanced the proliferation
ability of tendon stem cells. However, low does induced the expression of
tendon related genes and high does induced the expression of non-tendon
related genes, especially PPARγ and Col 2. Oh et al. reported the method
combining SP injection and treadmill running and set the study endpoint
at 2 weeks [97].

5.3. Damage-associated molecular patterns and damage-associated
molecular patterns analogue injection

TLRs play an important role in the initiation of inflammatory re-
sponses caused by infection and injury. TLR-1/2/4/5/6/11 that localize
on cell surfaces recognize lipids, proteins, and lipoproteins, while TLR-3/
7/8/9 that localize on endosomes recognize nucleic acids [98]. After
binding to DAMPs, the downstream nuclear factor κ-light-chain en-
hancers of activated B cells (NF-κB) and mitogen-activated protein kinase
(MAPK) pathways are activated, causing the release of pro-inflammatory
cytokines, such as IL-1β and TNF-α [99]. These receptors have been re-
ported in macrophages, mast cells, dendritic cells, and tendon cells [100,
101]. DAMPs and DAMP analogues injection methods have been used to
establish tendinopathy model.

Carrageenan is a sulphated linear polysaccharide of D-galactose and 3,
6-anhydro-D-galactose derived from red seaweeds, which may activate
TLR-4 [102,103]. As early as 2001, Tillander et al. [104] evaluated the
effects of carrageenan on rat supraspinatus tendon. They found that in-
jection of 5 μl of carrageenan (3%) per 2 weeks only increased macro-
phage infiltration without other pathological changes. Double does (10
μl) induced disordered Col fibers and fibrocartilaginous metaplasia at 18
weeks. Berkoff et al. [67] applied the carrageenan model to preclinical
studies with weekly injections of 100 μl carrageenan (3%). They set the
endpoint at 3 weeks.

5.4. Summary

Inflammation-related models are less commonly used than collage-
nase models. They are characterized by high cell density and incon-
spicuous chondrogenesis, similar to the stages of reactive tendinopathy
and tendon dysrepair in humans. Different inflammatory mediators
simulate tendinopathy dominated by different types of inflammation,
which provides the possibility to accurately evaluate the efficacy of
drugs.

6. Animal models corresponding to oxidative stress

Oxidative stress refers to the process by which oxidants damage
biological macromolecules. In tendinopathy, oxidative stress promote
inflammation by oxidize Col protein, membrane lipids and nucleic acids,
but the source of the oxidant is unclear [14,105,106]. One possible
reason is that the tendon undergoes a transient ischemia during tensile
stress, and the production of ROS increases during subsequent reperfu-
sion. Overuse disrupts the balance between ROS production and
clearance.

The production of endogenous oxidants begins with the leakage of the
electron transport chain. Which leads to the reduction of oxygen mole-
cules (O2) to superoxide (O2

�-) by single electrons. Then, the weak oxidant
O2
�- acts as a precursor contributing to the production of hydrogen
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peroxide (H2O2) and peroxynitrite (ONOO�), and is further transformed
into strong oxidants hydroxyl radical (�OH) and nitrogen dioxide (�NO2).
Therefore, the rate of H2O2 production largely determines whether
oxidative stress occurs [107]. Liu et al. induced tendinopathy by injecting
hydrogen peroxide into the Achilles tendon for purpose of evaluating the
antioxidant effect of drugs [68].

Another approach is to simulate the process of ischemia/reperfusion.
Simonin et al. released the suture 2 h after ligating both sides of the
Achilles tendon and found that after 3 days the expression of Col 1 and
Col 3 decreased and the expression of vascular endothelial growth factor
increased in the tendon cells [108].

6.1. Summary

There is still a lot of room for development of oxidative stress-related
animal models. Ischemia/reperfusion model induces tendinopathy from
the initial link, while H2O2 model started from the intermediate link. The
pathological changes caused by these modeling methods are similar to
the stages of reactive tendinopathy and tendon dysrepair in humans.

7. Animal models corresponding to metabolic disorders

7.1. Diabetes mellitus

Diabetes mellitus (DM) typically triggers hyperglycaemia [109]. Type
1 DM is characterized by insulin deficiency, while type 2 is characterized
by insulin resistance. High glucose condition promotes the expression of
IL-6, MMP-2, Col 3, and NADPH oxidase (Nox) in tendon cells, while
inhibiting the expression of scleraxis (Scx), mohawk (Mkx), and Col 1
[110,111]. In addition, high glucose condition promotes the adipogenic
and chondrogenic differentiation of tendon stem cells and increase the
expression of myofibroblast marker α-SMA [112–114]. Advanced gly-
cation end products (AGEs) are formed by nonenzymatically glycated
and oxidized proteins and lipids after exposure to sugar. In vivo, AGEs
can interact with AGE receptors expressed in tendon cells and immune
cells to trigger oxidative and inflammatory events via NF-kB signaling
[115]. Common modelling strategies include chemical induction (e.g.
streptozotocin and alloxan), diet (high fat and high glucose) and genetic
modification [116–118].

Studentsova et al. [113] investigated the effects of hyperglycemia on
the Achilles tendon in mice with type 2 diabetes induced by a high fat
diet. The increase in stiffness occurred firstly at week 24, followed by an
increase in gliding resistance and a decrease in metatarsophalangeal
flexion angle at week 40 and a reduction in failure load at week 48. The
pathological changes of tendon tissue were similar to reactive tendin-
opathy at week 40, and the diameter of Col fibers was reduced compared
to the control group (180.4 nm vs. 200.1 nm).

The Achilles tendon of leptin deficient mice at 12 weeks showed
rounded nucleus, variation in cellularity, and the appearance of
chondrocyte-like tendon cells [119]. Col fibers showed unequal and
irregular crimping, loosening, and increased waviness.

As for rats, intravenous or intraperitoneal injection with streptozo-
tocin (STZ) diluted in 10 mM sodium citrate buffer at pH 4.5 (60–65 mg/
kg) to induce type 1 DM is most commonmethods in preclinical studies of
tendinopathy [120,121]. Volper et al. showed that 2 and 10 weeks after
STZ intraperitoneal injection, mechanical properties (stiffness, failure
load, deformation, stress, strain and Young's modulus) and histopatho-
logical results (fiber structure, fiber arrangement and cellularity) in the
Achilles tendon were not different across groups [122]. Similar results
were reported by Ueda et al., 6 weeks after STZ injection, fiber structure,
fiber arrangement, rounding of the nucleus, and regional variations in
cellularity were not significantly altered, but the expression of NOX1,
MMP-2, TIMP-2 and IL-6 had significantly increased [110]. However,
there was also evidence of increased mast cell density and capillary
infiltration, mild Col fiber disorder in some areas, and increased nitric
oxide production in the Achilles tendon 24 days after STZ injection
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[123]. [Fig. 3C].

7.2. Hypercholesterolemia

Tendinopathy is closely related to hypercholesterolemia. High serum
cholesterol allows the accumulation of low-density lipoproteins (LDL),
which are oxidized later in the interstitial compartment by pro-oxidants
[124]. Then, oxidized LDL (oxLDL) is engulfed by tissue macrophages
and stored as cholesterylester in cytoplasmic-neutral lipid droplets [125].
The balance between cholesterylester storage and the efflux of free
cholesterol determines the inflammatory phenotype of macrophages.
Cholesterol inhibits the proliferation of tendon cells and promotes
apoptosis [16]. In addition, cholesterol promotes ROS generation [16,
126]. Common modelling strategies include diet and genetic modifica-
tion [127,128]. Apolipoprotein E (ApoE) knock-out, which acts as a
ligand mediating the uptake of apoB-containing lipoproteins, and
low-density lipoprotein receptor (LDLr) knock-out, which acts as a re-
ceptor to recognize apoB-containing lipoproteins, are common geneti-
cally modified models [129].

Grewal et al. [130] compared the effects of a high-fat diet on tail,
patellar, and Achilles tendons in wild-type and ApoE �/� mice. They
started themice on a high-fat diet (21.2% fat) when they reached 7weeks
and sacrificed the mice at 30 weeks. A high-fat diet causes tendons to fail
at lower loads, especially in ApoE �/� mice, and increased oxLDL
accumulation. The average cross-sectional area of patellar tendons of
ApoE�/�mice was larger than that of wild-type mice (0.97� 0.03 mm2

vs. 0.82 � 0.03 mm2). Surprisingly, the positivity ratio of oil red O
staining was higher in the wild-type mice. Finally, a high fat diet
decreased the expression of Col 1, especially in ApoE �/� mice, and
increased the expression of MMP-2 [Fig. 3D].

7.3. Summary

The advantage of the metabolic disorder related models are that they
reproduce tendinopathy process for specific pathological conditions.
Furthermore, they do not produce additional surgical damage. The major
limitation of these models is longer modeling time, which may be why
they are rarely used in large animals. Combined with other methods,
such as treadmill running, it can effectively reduce the time it takes for
tendinopathy to develop. Finally, more methods may be needed to
evaluate the role of metabolic changes in tendinopathy, such as ligation
of both sides of tendon to simulate anoxic conditions.

8. Animal models corresponding to traumatism

The mechanism by which chronic and acute injuries cause tendin-
opathy involves the production of DAMPs and changes in mechanical
loading.

8.1. Microdamage

Due to differences in anatomical structure, only rodents are used as
subacromial impingement animal models. A common surgical approach
is to make a 5-mm incision above the acromioclavicular joint with blunt
dissection of the deltoid and trapezius muscles, exposing the acromion
[131,132]. Implants are then placed under the acromion to simulate
acromion hyperplasia, leading to supraspinatus and infraspinatus tendon
changes. Implants reported include microvascular clip, bone plates,
polymer (e.g., polyether-ether-ketone), and allograft Achilles tendon, of
which microvascular clip is the most common [133–136]. The expression
of alarmins, such as IL-33, HMGB1, and S100A9, was significantly
up-regulated by the first week after implantation [137]. Extensive
cellular infiltration surrounding the surgical clip can be seen at this stage
[138]. After 2 weeks, tendon tissues revealed hazy discoloration. Genes
involved in tissue repair (aggrecan and Col 1/3) peak at this stage [134].
Furthermore, the biomechanical properties of tendon tissue are altered,
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such as decreased tendon failure load and stiffness [134]. Several studies
have reported a decrease in SOD activity at week 4 [139,140]. Between
weeks 4 and 12, there was a significant increase in the expression of
genes involved in matrix synthesis-degradation, including
MMP-3/13/14, SOX9 and TGF-β [138,141]. Fatty infiltration also
increased significantly [131]. Eliasberg et al. [141] showed that the
failure load (5.20 vs. 1.50 N) and stiffness (4.95 vs. 1.47 N/mm) of the
tendon tissue were still lower at week 12 compared with the sham group
[Fig. 3E].

The needle puncture model is used mainly in small and medium sizes,
such as mice, rats and rabbits. The effect of needle puncture in the tendon
was influenced by the number and proportion of Col fibers injured [142].
In humans, needle puncture (acupuncture) promotes the repair of
diseased tendons by promoting tendon cell proliferation and local blood
circulation [143–146]. Needles of size 18–27 G are used to build the
model [147]. The tendon microtear with reference to the rabbit cyclic
loading model is approximately 650–1788 tears/mm2 [148]. In the case
of a 23 G needle with a diameter of 641.4 μm, for rats with a fibre
diameter of 5–30 μm, a single puncture induces approximately 65–397
tears/mm2, thus 3–8 times punctures may be necessary [142].

The common modelling strategy is to perform 3 to 9 punctures in the
proximal, medial, and distal parts of the patellar or Achilles tendon [142,
149]. The expression of COX2 and PGE2 has been shown to increase in
the Achilles tendon 30 min after needle puncture [150]. Riggin et al.
[151] compared the effects of mild single needling session (3 penetra-
tions using a 27 G 1/200 needle) and moderate single needling session (6
penetrations using a 27 G 1/2” needle) on the supraspinatus muscle of
rats. Moderate group significantly increased cellularity, cell roundness
and proteoglycan content at week 1, and returned to normal levels at
week 6. While the mild group qualitatively demonstrated increases in
these properties as well, there were not statistically significant compared
with control group. Furthermore, the production of Col 3, TNF-α and
IL-1β significantly increased at week 1 in both groups and recovered to
nearly normal levels at week 6. In another study, Diez et al. [152] re-
ported that mild consistent needling session (3 penetrations once per
week) only increased the expression of COX2, MMP2, Col 3, and Scx
genes at week 4, but did not induce substantial changes including
structure and arrangement of Col fibers and inflammatory cell infiltration
[151]. Kim et al. [142] showed that severe single needling session (9
penetrations using a 23G needle) induced significant tendon degenera-
tion at week 1 and 4. Bonar scores were 9.0 � 1.41 and 9.75 � 1.98,
respectively. In addition, needling puncture has also been found to pro-
mote tendon mineralization [153]. [Fig. 3F].

8.2. Non-microdamage

Longitudinal and transverse incision methods are used to establish
tendinopathy models. One longitudinal incision significantly increased
vessel count at weeks 1 (9.8 � 3.95 vs. 7.19 � 2.82) and 4 (15.5 � 4.51
vs. 13.1 � 4.49) and returned to normal levels at 6 weeks in rabbits’
Achilles tendon [154]. No change in the expression of Col 1 and Col 3,
Col fiber structure, and arrangement were seen. In another long-term
study, one longitudinal incision significantly increased tendon
cross-sectional area from day 0 (16� 2mm2) to day 84 (26� 6mm2) and
peaked at day 21 (36 � 12 mm2) [155]. Ultrasonography showed that
tendon lesions increased from 21increased form 21 days–84 days and
peaked at 42 days. Johnson et al. [156] created 16 longitudinal incisions
within the top third of the infraspinatus tendon thickness to replicate
tendon tears that induced chronic degeneration in sheep. The tendon
cross-sectional area increased at 6 and 12 weeks, and decreased at 18
weeks. Peak stress decreased at 6 and 12 weeks and increased at 18
weeks. This result suggests the formation of scar-like tissue after 12
weeks. Across 6, 12, and 18 week time points, tendon tissue showed
decreased fibroblast density, smaller, less frequent blood vessels, and
increased Col disorganization with decreased tinctorial intensity.
Compared with normal tendon tissue, Bonar scores were increased by
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173.7% (p < 0.001), 136.8% (p < 0.001), and 152.6% (p < 0.001) at 6,
12, and 18 weeks, respectively [Fig. 3G].

Depending on the depth of incision and the surgical region, the
transverse incision method simulates different types of tendon rupture.
Melrose et al. [157] showed that transverse incision in the middle region
of sheep infraspinatus tendon induced mild Col fiber disturbance and
changed ECM at 4 weeks. In rats, the method of complete transverse
incision near the bone insertion point of the Achilles tendon was used in
preclinical studies, and histological scores changed by more than 4 points
at 8 weeks [158,159]. In sheep, Johnson et al. [160] evaluated the effects
of incomplete transverse incision near the bone insertion point of the
supraspinatus tendon. The tendon cross-sectional area revealed increases
of 60.3%, 62.5%, and 58.8% at 6, 12, and 18 weeks, respectively. Peak
stress exhibited decreases of 50.0%, 69.1%, and 45.6%. Bonar scores
were 8.67, 8.83, and 9.38, respectively. The amount of organized Col
fibers exhibited decreases of 51.0%, 25.7%, and 4.4%. In another study,
complete transverse incision of the greater trochanter insertion of the
gluteus medius tendon resulted in Movin scores of 14.3� 1.6 and 12.9 �
1.4 at 6 and 16 weeks, respectively [161]. [Fig. 3H].

8.3. Summary

Microdamage tendinopathy models are mainly established in small
animals. The subacromial impingement model reproduces the natural
course of tendinopathy and is one of the most ideal tendinopathy models.
The disadvantage is the relatively large surgical damage. In additioon,
the hardness of the implant may affect the rate at which tendinopathy
progresses. The needle puncture model is often used for shallower ten-
dons such as the Achilles tendon and the patellar tendon. Puncture times
and needle diameter have great influence on the progression of tendin-
opathy. Mild single needling session may only induce reactive tendin-
opathy, while severe single needling session may induce tendon
dysrepair. Non-microdamage tendinopathy models are mainly estab-
lished in large animals. The longitudinal incision model simulates the
longitudinal tear of the tendon, while the transverse incision model
simulates the transverse tear and rupture of the tendon.

9. Animal models corresponding to mechanical load

Moderate mechanical loading is necessary to maintain the normal
function of tendon cells. The intratendinous pressure model proposed by
Pringels et al. [21] explains the role of overload in terms of cellular
response. Excessive mechanical loading promotes the production of Col
2, Col 3, glycosaminoglycans, and proteoglycans by tendon cells, leading
to the limitation of tendon internal space and the decrease of tendon
permeability [162–164]. Then, the increase of intratendinous pressure
impairs vascularization and leads to hypoxia, which in turn accelerates
the destruction of ECM. However, mechanical load deprivation also
promotes the production of Col 3, MMPs and osteogenic differentiation
of tendon cells, leading to the destruction of ECM [165–167].

9.1. Overloading

In rodents, treadmill running methods has been widely used. Com-
mon modelling strategies include moderate treadmill running (MTR) and
intensive treadmill running (ITR) following a training period of 1–2
weeks. The running frequency is set 5–7 days a week. The specific
methods are shown in Supplement 2. We recommend the relatively high
intensity MTR methods, such as 15 m/min for 50 min per day or 20 m/
min for 30 min per day for mice and 17–19.3 m/min for 60 min for rats
[168–174]. (Supplemental marterial 4)

MTR methods did not cause significant fiber structure changes within
8 weeks, but may be accompanied by a slight increase in cellularity and a
rounder nucleus [169,175,176]. Some studies showed increased
expression of Col 3, MMP-3/13, vascular endothelial growth factor and
SOX9, and production of ROS [168,169,177]. At week 12, the expression
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of chondrogenic genes (SOX9 and Col 2) and osteogenic genes (bone
morphogenetic protein-2) increased significantly [178]. The MTR
methods reproduced reactive tendinopathy within 8 weeks [170,171,
179]. At this stage, tendon cells may undergo adaptive responses, such as
increased production of Col 1 production and expression of tendon
related genes (e.g. tenomodulin) [178,180]. ITR methods increased
expression of adipogenic, chondrogenic and osteogenic genes and pro-
duction of PGE2 as early as 4 weeks [169,181].

A special type of over loading model is the spontaneous model, which
involves anatomical differences. Horses and dogs can spontaneously
develop tendinopathy [182,183].

The distal forelimb of horses consists of the upper and lower carpus,
third metacarpals and degenerated second and fourth metacarpals as well
as three phalanxes (proximal, middle, and distal). The carpal canal is
located on the palmar aspect of the carpus and contains superficial and
deep digital flexor tendons (SDFT and DDFT), which end in the middle
phalanx and distal phalanx, respectively [184]. The SDFT performs
similar functions as the human Achilles tendon, storing and releasing
energy by stretching and recoiling, which decreases the energetic cost of
locomotion [185]. Thus, approximately 75–95% of tendon injuries occur
in the forelimb SDFT [186].

The anatomical structure of the dog's shoulder joint is similar to
humans. The most notable differences are elongated humeral head, deep
glenoid, and prominent greater tuberosity [187]. The supraspinatus
tendons are exposed to high loading due to differences in locomotion
patterns and are therefore susceptible to tendinopathy [188–190].

Other methods of overloading model included electrical stimulation
of muscle contractions or direct stretching of tendons [148,191–193].
These methods save the time required to induce lesions, but given that
human tendinopathy is generally a chronic process, the conclusions
drawn from these models are of limited translational value.

9.2. Underloading

Botox intramuscular injection is used to reproduce the conditions of
muscle atrophy. Chen et al. [194] showed that 2 weeks after injection
with 10 μl botulinum toxin (3 unit/kg) into the vastus lateralis of
quadriceps muscles in mice, the volume of the patellar tendon had
decreased, and the tenogenic differentiation ability of isolated tendon
stem cells had decreased.

9.3. Destabilization loading

Destabilization loading models are established by destroying the
surrounding tendons with synergistic or antagonistic functions. Abraham
et al. [195] found decreased mechanical strength in rat supraspinatus
tendons 4 weeks after infraspinatus tendon transection. In another study,
sheep SDFT transection significantly increased expressions of Col 3,
versican, biglycan, lumican, and MMP1 in DDFT at 8 weeks [196].

9.4. Summary

In overloading models, treadmill running models and spontaneous
models are widely used to study tendinopathy. The advantage of them is
roughly reproducing the natural course of tendinopathy. The main
reason limiting the use of these models is the high time cost. For treadmill
running models, some studies have found that it may be difficult to force
animals to exercise at more than a voluntary level, so the final patho-
logical stage may be limited to reactive tendinopathy [197]. For spon-
taneous models, horses are the most commonly used species. Some
studies have suggested that goats may also develop spontaneous ten-
dinopathy, although they are rarely used as spontaneous models [198].

Destabilization loading-related animal models may be able to simu-
late the failure of adjacent auxiliary fixation structures, while under-
loading models may be able to simulate muscle atrophy, such as in
elderly patients.
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10. Future prospects

Animal studies have many advantages in elucidating the pathogenesis
of tendinopathy, such as the exploration of mechanisms of early ten-
dinopathy or allowing the assessment of single risk factor. A deep un-
derstanding of pathogenesis can help advance the management of
tendinopathy. A fundamental deficiency of most tendinopathy models is
an attempt to reproduce the chronic process using acute interventions,
which increases the difficulty of mapping human tendinopathy patho-
logical models to animal models. In addition, existing studies have
shortcomings in the management of postoperative mechanical load,
which may amplify variation among individuals.

Recently, Zhang et al. reviewed the application of large animal
models in tendinopathy regarding injuries to four tendons: rotator cuff,
patellar ligament, Achilles tendon, and flexor tendon [199]. In a sys-
tematic review of 409 animal studies on rotator cuff injury, Zhao et al.
summarized the research purposes, species, sites of injury and, modeling
methods of these studies [200]. However, these studies failed to answer
the question of the scenarios in which each model is suitable for appli-
cation, and how they correspond to pathological models of human ten-
dinopathy. There is no animal model can perfectly reproduce human
tendinopathy. As we have done in this review, we should identify the
achievable and relevant targets for each of tendinopathy models.
Different hypotheses should be tested with different animal models.
Furthermore, the establishment of correspondences between the patho-
logical patterns of animal models and the pathological models of human
tendinopathy allow us to evaluate the effects of interventions more
finely. The filling of these gaps not only enhances the clinical trans-
lational ability of the existing models, but also lays a foundation for the
development of new ones.

In future studies, we may consider incorporating imaging methods
such as magnetic resonance imaging, micro-computed tomography, and
ultrasound in tissue evaluation, which can not only provide longitudinal
assessment over time but also parallel to what is done in humans,
increasing clinical translation abilities. Mice have a variety of transgenic
strains that not only allow testing of the role of specific genes in the
development of tendinopathy, but also provide lineage tracing capabil-
ities. Non-microdamage models of tendinopathy appear to be rarely
established in small animals, possibly due to the complexity of micro-
surgical techniques. Compared with trying to manipulating genes in large
animals, developing microsurgical techniques in small animals may be
easier and cheaper.

With the development of technology, more and more methods can be
used to analyze the mechanism of disease or evaluate the effect of
treatment. Although still immature, tendon organoids allow for the
simulation of tendon development and pathology ‘in a dish’. Computer
models allow researchers to infinite repeat experiments without concerns
related to cost or the ethical considerations. Animal models bear the
responsibility for translating the data collected from these models into
clinical settings. It is necessary for us to increase the translation value by
identifying the scenarios in which each animal model is suitable for
application.

11. Concluding remarks

This study examines existing models of tendinopathy with the aim of
identifying scenarios in which each model is suitable for application and
thereby increasing its translational value. The pathogenesis of human
tendinopathy that the modeling method represented, the pathological
process that the model presented, and the anatomical characteristics of
the species determine the characteristics of the model.

For studies that aim to study the pathophysiology of tendinopathy,
naturally occurring models, treadmill models, subacromial impingement
models and metabolic models are ideal. They are closest to the natural
process of tendinopathy in humans. However, their common disadvan-
tage is time consuming.
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For studies that aim to evaluate the efficacy of possible treatments,
the selection should be made according to the pathogenesis simulated by
the modeling method. Existing tendinopathy models can be classified
into six types according to the pathogenesis they simulate: extracellular
matrix synthesis-decomposition imbalance, inflammation, oxidative
stress, metabolic disorder, traumatism, and mechanical load.
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