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Abstract: A nanocomposite NiPt/5LSBA-160 catalyst comprised of highly dispersed Ni nanoparticles
contacting intimately with Pt over novel mesoporous LaFeO3-SBA-15-CTA support with a high
specific surface area (SSA) was successfully developed for the dry reforming of methane. Results
revealed that the high SSA mesoporous LaFeO3-SBA-15-CTA materials could first be synthesized
by an in situ growth hydrothermal process and used as an excellent carrier candidate of Ni-based
catalysts to achieve enhanced catalytic activity due to the strong interaction between LaFeO3 and Ni
species. Moreover, the introduction of Pt over a Ni/5LSBA-160 catalyst would further promote the
interaction between Ni and support, improve the dispersion of active Ni centers and obtain a higher
syngas formation rate as well as tolerance to carbon coking than that of a Pt-free Ni/5LSBA-160
catalyst sample. This finding uncovers a promising prospect for high SSA mesoporous perovskite
preparation and utilization in catalysis such as oxidation, hydrogenation, photocatalysis, energy
conversion and so on.

Keywords: LaFeO3-SBA-15-CTA; Ni; dry reforming; syngas; interaction

1. Introduction

The catalytic dry reforming of methane (DRM) process can convert both CH4 and
CO2 into synthesis gas (syngas, CO and H2), which is a classical building feed to produce
sulfur-free diesel fuels, oxygenated chemicals and other important high value-added chem-
icals [1–3]. However, the DRM reaction usually needs to be performed at a high reaction
temperature due to its intrinsic endothermic property (Equation (1)), which inevitably
generates some side reactions, such as Equations (2) and (3), and causes carbon deposition,
covering the active site of the catalysts [4–6]. On the other hand, the catalysts (e.g., Ni-based
catalysts) universally exhibit low thermal stability under harsh reaction conditions which
leads to sintering [7]. Therefore, to realize the industrialization of the DRM reaction with a
long lifetime and high efficiency, two major manipulators for catalysts must first be solved,
namely active phase (Ni) sintering and carbon deposition [8,9].

CH4 + CO2 
 2H2 + 2CO 4Hθ
298 = 247 KJ/mol (1)

2CO 
 C + CO2 4Hθ
298 = −172 KJ/mol (2)

2CO 
 C + CO2 4Hθ
298 = −172 KJ/mol (3)

It is accepted that the strong metal–support interaction can serve as an alternative
effective strategy to improve the dispersion of active phase nanoparticles and promote their
resistance to sintering and carbon deposition [10,11]. The key issue is to develop carriers
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or additives with high thermal stability that can strongly interact with the active phase.
Various materials such as Al2O3, ZrO2, MgO, CeO2, mesoporous silica and molecular
sieve are used as catalyst supports or additives and can enhance the catalytic activity
of active species such as Ni particles in DRM [12]. Recently, perovskite oxides (ABO3)
aroused much attention due to their outstanding virtues of abundant lattice defects, readily
heteroatomic substitution and high thermal stability for the DRM reaction [13,14]. Catherine
et al. reported that an LaNiO3 catalyst prepared using the auto-ignition process showed
high activity, stability and good tolerance to anti-coke for dry reforming [15]. Moradi
et al. studied the partial substitution of Mg, Sr and Ba on the A site and evaluated
the catalytic activity for DRM. It was found that the substitution of Ba showed higher
activity than that of Mg and Sr, and the optimized La0.9Ba0.1NiO3 catalyst possessed the
highest conversion of CH4 and CO2. Moreover, LaFeO3-based catalysts also performed
high catalytic activity and the selectivity of synthesis gas (CO and H2) [16,17]. Liao et al.
reported that the Ni nanoparticles were served as catalytically active sites self-generated
from nanoparticles/LaFeO3 heterogeneous structure, and can exhibit superior performance
for both methane conversion and the activation of C–O bonds [18].

Nevertheless, the preparation of perovskites should be performed under relatively
stringent conditions such as high temperature and long calcinations time; this would
cause the agglomeration of grain size and decrease of specific surface area, which would
discourage the exposure of active sites or loading center for heterogeneous catalysis [19].
To deal with this problem, some porous silica materials such as ordered cubic mesopores
(KIT-6) and ordered hexagonal mesoporous silica structures (SBA-15) were added during
the synthesis process as hard templates [20]. Mesoporous LaFeO3 catalyst was successfully
formed using KIT-6 as a hard template, and the specific surface area was up to138 m2/g,
which exhibited a higher adsorbed oxygen concentration and better low-temperature
reducibility as well as excellent oxidation activity [21]. Ruan et al. employed SBA-15 as a
templating agent to prepare a mesoporous LaAl0.25Ni0.75O3 perovskite catalyst, and the
catalyst process had higher activity and stability than that of the catalyst synthesized by the
commercial silica template, where the conversion for both CH4 and CO2 can be maintained
at more than 75% after 36 h of DRM reaction [20]. However, the subsequent removal process
of the templating agent is complicated as well as the discharge of wastewater. Therefore, it
is urgent to develop a new synthesis process to prepare perovskites-based catalysts with
large specific surface area and multiple active catalytic sites for DRM reaction.

In our previous study, high-quality SBA-15-CTA (CTA stands for citric acid) materials
were tailored under moderate polycarboxylic acid (citric acid), and the obtained SBA-15-
CTA-loaded Ni catalysts showed good potential for the dry reforming of methane (DRM)
reaction with much less coke formation at 700 ◦C [22]. Moreover, citric acid is widely used
as a complexing agent to promote intermetallic dispersion and reduce the crystallization
temperature in the preparation of the tunable perovskite materials [23]. The bridging
connection of citric acid spurs us to develop an SBA-15-CTA supported perovskites catalyst
with a large specific surface area using one-pot hydrothermal technology. In this contribu-
tion, a one-step in situ growth hydrothermal process was firstly employed to effectively
prepare a series of LaFeO3/SBA-15-CTA hybrid materials with a large specific surface area,
and these mesoporous perovskites were used as the carriers to synthesize Ni(Pt)/LaFeO3-
SBA hybrid catalysts for the DRM reaction. The obtained composite catalysts displayed
high activity and resistance to carbon deposition for the dry reforming process. It should be
noted that the preliminary study for the addition of Pt aims at investigating the interaction
among the metals and the support, and further investigations are needed.

2. Materials and Methods
2.1. Materials

All the reagents, including anhydrous citric acid, tetraethyl orthosilicate (≥98%,
TEOS), poly (ethylene glycol)-block-poly (propylene glycol)-block-poly (ethylene gly-
col) (P123), lanthanum nitrate hexahydrate (La(NO3)3·6H2O), ferric nitrate nonahydrate
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(Fe(NO3)3·9H2O), chloroplatinic acid hexahydrate (H2PtCl6·6H2O) and nickel nitrate hex-
ahydrate (Ni(NO3)2·6H2O) were provided by Aldrich. It is worthy to point out that all the
chemicals were of analytical grade and carried out without any pretreatment.

2.2. Catalysts Preparation
2.2.1. Preparation of LaFeO3-SBA-15-CTA Supports

The preparation of LaFeO3-SBA-15-CTA supports was carried out using a one-pot
in situ growth hydrothermal process. The precursor solution was produced by mixing
stoichiometric amounts of La(NO3)3·6H2O and Fe(NO3)3·9H2O into citric acid-deionized
water solution (citric/(La + Fe) molar ratio = 1.1) at room temperature (RT), and then the
surfactant of P123 was added to the solution and stirred to form a homogeneous solution.
After that, TEOS was slowly added to the above mixture. Subsequently, the mixture was
loaded into a PTFE-lined stainless-steel autoclave and heated at various temperatures (120
◦C, 140 ◦C, 160 ◦C) for 24 h (please refer to Table 1 for the detailed experimental factors).
After cooling down to room temperature, the crystallized product was filtered, washed
and dried at 100 ◦C for 24 h. Finally, the powder product was calcined at 750 ◦C for 6 h
to achieve mesoporous xLaFeO3-SBA-15-CTA support, which was labeled as xLSBA-T (x
means the content of LaFeO3, T stands for the hydrothermal temperature).

Table 1. Preparation conditions and physicochemical properties of the synthesized hierarchical
structure silica.

Sample Name LaFeO3 Content
(wt.%)

Hydrothermal
Temperature (◦C)

SBET
(m2/g)

Volume
(cm3/g)

Pore Size
(nm)

NiO/3LSBA-140 30 140 314 0.6 8.2
NiO/5LSBA-140 50 140 187 0.4 8.7
NiO/7LSBA-140 70 140 124 0.3 9.1
NiO/5LSBA-120 50 120 219 0.4 6.8
NiO/5LSBA-160 50 160 180 0.5 11.7

NiOPtOx/5LSBA-160 50 160 176 0.5 11.4

2.2.2. Preparation of NiO(PtOx)/yLSBA-T Catalysts

NiO(PtOx)/yLSBA-T catalysts were prepared via the wet impregnation method using
an aqueous solution containing Ni(NO3)2·6H2O and H2PtCl6·6H2O. All impregnated
samples were sequentially stirred, rotary evaporated, dried and calcinated at 750 ◦C for 6 h,
as in our previous report [24]. It was noted that the Ni and Pt components were settled at
5 wt.% and 0.5 wt.%, respectively.

2.3. Catalysts Characterization

X-ray diffraction (XRD, 2θ = 5–80◦) and small-angle XRD (2θ = 0–6◦) were carried out
on an X-ray diffractometer (Bruker D8 Advance) using Cu Kα1 irradiation (λ = 0.15418 nm).
N2 adsorption–desorption experiments were performed on a Micromeritics ASAP 2420 au-
tomatic analyzer to achieve the specific surface area and pore volume. Prior to testing, the
samples were pretreated at 200 ◦C for 12 h to remove impurities. The microstructure of
samples was analyzed via scanning electron microscopy (SEM, JEOL, JEM-2100F, Tokyo,
Japan) and transmission electron microscopy (TEM, FEI Tecnai G2 F20, Waltham, MA, USA)
at 200 kV. An AutoChem II 2920 (Thermo Scientific, Waltham, MA, USA) was engaged
to study the reduction behavior of the NiO(PtOx)/yLSBA-T catalysts. A 30 mg sample
was used, which was pretreated under Ar flow (30 mL/min) at 300 ◦C for 1 h. After
that, the sample was heated in a 30 mL/min 10% H2/Ar flow with a ramping rate of
10 ◦C /min ranging from 50 ◦C to 800 ◦C. A thermal conductivity detector (TCD) was used
to record the hydrogen consumption, which was calibrated using a 99.99% CuO reference.
Ni K-edge X-ray absorption near edge structure (XANES) investigations were carried out
using XAFCA beamline in the transmission mode (Shiga, Japan), and Ni K-edge spectra of
pre-reduced catalysts (reduced at 700 ◦C for 1 h under 10% H2/He mixed gases and cooled
down to 30 ◦C under He) were calibrated with respect to the spectrum of a Ni foil and NiO
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references. Weight loss curves were obtained on a TGA Discovery SDT-650 instrument to
evaluate the carbon deposition amount for the spent samples.

2.4. Catalytic Activity Testing

The dry reforming of methane (DRM) reaction was performed in a fixed-bed quartz re-
actor (ID: 7 mm) at atmospheric pressure. Specifically, catalysts (0.15 g, 40–60 mesh)
were added to the central reactor tube under the support of quartz wool. The cata-
lyst was pretreated in 10 vol% H2/ He (50 mL/min) at 700 ◦C for 1 h. Then, the re-
action gas (CO2/CH4/Ar/N2 = 3:3:3:1) with a total flow rate of 50 mL/min (GHSV =
20,000 mL·gcat

−1·h −1) was introduced to the reactor. The exhausted products were ana-
lyzed via a Gas Chromatograph (GC6890, NYSE: A, Palo Alto, CA, USA) equipped with a
TCD detector (an HP-Plot capillary column combined with a Carbon-Plot) online.

Temperature-programmed surface reaction-mass spectrometry (TPSR-MS) was em-
ployed to evaluate the catalytic activity. An 0.15 g catalyst was pre-reduced as mentioned
above. After that, it was cooled down to 300 ◦C under helium gas with a flow of 45 mL/min.
The TPSR-MS analysis was engaged under the mixture gas (CO2:CH4:Ar = 6/4/15) at
50 mL/min from 300 ◦C to 850 ◦C with a heating rate of 10 ◦C/min. The changes in concen-
tration for CH4, CO2, H2 and CO gases were recorded on a PerkinElmer mass spectrometer.

3. Results
3.1. XRD Analysis

From the normal XRD patterns (Figure 1), it can be seen that the location of 2θ is
labeled at 22.5, 32.1, 39.4, 46.0, 57.2, 67.3 and 76.5◦, which are separately ascribed to the
(101), (121), (220), (202), (240), (242), and (204) lattice planes of the LaFeO3 perovskite with
orthorhombic structure (JCPDS PDF# 37-1493), and the peak position remained unchanged
despite introducing an active component of NiO (PtOx) [25,26]. Moreover, the diffraction
peaks located at 37.2, 43.2 and 62.8 should be ascribed to the (111), (200) and (220) planes
of cubic NiO [27], and their intensities vary with the content of LaFeO3 (from 30 wt.% to
70 wt.%) and hydrothermal temperature (from 120 to 160 ◦C). The high concentration of
LaFeO3 combined with the high hydrothermal temperature improved the dispersion of NiO
nanoparticles, as displayed in Figure 1a,b. The crystallite sizes of NiO active nanoparticles
calculated by Scherrer’s equation were ca. 13 nm (Table S1). However, no diffraction peak
of platinum oxide could be observed due to the detection limit of X-ray diffraction, as
indicated in Figure 1b. According to our previous reports, the grain size of NiO deposited
on the CeO2 (≤5 wt.%) doped SBA-15-CTA could be reduced to ca. 13 nm, and the obtained
catalysts exhibit high DRM catalytic activity [24]. Herein, the optimized LaFeO3 doping
content on the SBA-15-CTA carriers can also enhance the dispersion of the active phase of
NiO and lead to high DRM catalytic performance.
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Figure 1. XRD patterns of the NiO(PtOx)/yLSBA-T (y means the content of LaFeO3, T stands for the
reaction temperature) catalysts by varying LaFeO3 loading (a) and hydrothermal temperature (b).
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3.2. N2-BET and Morphology Studies

It is generally accepted that the catalyst’s physicochemical properties, such as specific
surface area, microstructure, grains size, redox capability and valence states, are closely
related to the catalytic activity [28,29]. Figure 2a–c present the N2 adsorption–desorption
isotherms of the synthesized NiO(PtOx)/yLSBA-T catalysts with y value ranges from
30–70 wt.% displaying a type of IV isotherm with H1-type hysteresis loop under the wide
hydrothermal condition, revealing their mesoporous characteristic. In addition, the pore
size distribution centered at ca. 7 nm for all the catalysts is in good agreement with the
hysteresis loops shape (Figure 2a). However, an increase in hydrothermal temperature
will result in larger pore size, as depicted in Figure 2b. It is reported that increasing
hydrothermal temperature could lead to thinner walls and could broaden mesostructure
pore size to some extent [22]. When it comes to the value of the specific surface area (SSA)
for the prepared catalysts, the high LaFeO3 content coupled with the high in situ growth
hydrothermal temperature will cause a decrease in specific surface area. Typically, the
SSA of the NiO/3LSBA-140 catalyst was 314.4 m2/g, while it was decreased to 123.7 m2/g
for the high LaFeO3 content doped sample (NiO/7LSBA-140) (Figure 2a). On the other
hand, the SSA of the NiO/5LSBA-120 catalyst was 219.5 m2/g, but the SSA of NiO/5LSBA-
160 was reduced to 180.0 m2/g (Figure 2b). However, the descending mechanism of
SSA was indeed different. The decrease in SSA was caused by the pore blockage for high
LaFeO3 content modified catalysts, while the decrease in SSA for hydrothermal temperature
should be attributed to the enlarged pore diameter, though a 2D-hexagonal mesostructure
(Supplementary Material Figure S1) can be formed under a wide range of hydrothermal
temperature from 120 to 160 ◦C.
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Figure 2. N2-BET profiles of the NiO(PtOx)/yLSBA-T catalysts by varying LaFeO3 loading (a),
hydrothermal temperature (b) and Pt modification (c); SEM image of Ni/5LSBA-160 (d).

3.3. TEM Measurements

Regarding the introduction of platinum noble metal, it was noted that the pore struc-
ture and the value of SSA for the NiOPtOx/5LSBA-160 catalyst were almost unchanged
compared to the parent catalyst of NiO/5LSBA-160, as shown in Figure 2c and Table 1.
Moreover, all the prepared NiO(PtOx)/yLSBA-T catalysts showed a rod shape morphology
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(Figure 2d), and the basic morphology was mainly derived from hydrothermal conditions,
which corresponds to our previous reports [22]. In order to investigate the relationship
between the catalytic activity and particle size of the catalysts, TEM was employed on the
outstanding catalysts, namely reduced NiO/5LSBA-160 (Figure 3a) and NiOPtOx/5LSBA-
160 (Figure 3b) catalysts. It was inferred that introducing Pt could target a higher dispersion
of active Ni nanoparticles than that of single LaFeO3-doped Ni/5LSBA-160 catalysts. This
is due to the stronger interaction of Ni-Pt [30].
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3.4. H2-TPR for Catalysts

To understand the impact of the high SSA LaFeO3 carrier on the reductivity of large
amounts of active O species of catalysts under various conditions (hydrothermal tempera-
ture, concentration and Pt additive), H2-TPR experiments were performed, and the reflected
results are shown in Figure 4. It was found that the reduction peak can be effectively lagged
by inducing the LaFeO3 owing to the strong interaction between NiO and LaFeO3; the high
LaFeO3 was more conducive to the formation of a stronger NiO–support interaction under
the same hydrothermal temperature. Two reduction peaks appeared at approximately
415 and 480 ◦C for NiO/1LSBA-140, while significantly higher positions (460 and 669 ◦C)
were observed for NiO/5LSBA-140. Moreover, the interaction of the NiO–support can
be further enhanced via the adjustment of hydrothermal temperature. The peak position
of NiO/5LSBA-160 is located at 484 and 644 ◦C, which should be attributed to the reduc-
tion peaks of amorphous NiO species having stronger interaction with the LaFeO3 which
can be retained as highly dispersed active Ni centers after reduction [23]. However, the
reduction peak temperature was significantly reduced to 423 ◦C after the addition of Pt
precious metal, which was assignable to a stronger interaction of Ni-O-Pt than that of the
NiO–supports [31].
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3.5. XANES Spectra for Catalysts

According to the above discussion on the dispersion as well as reducibility of NiO
loaded on the high SSA LaFeO3-SBA-15-CTA catalysts, it was found that the introduction
of high SSA LaFeO3-SBA-15-CTA with the optimized content (50 wt.%) under the adjusted
hydrothermal environment (160 ◦C) could enhance the interaction of NiO–supports, and
improve the dispersion of Ni active species, leading to better activity and sintering re-
sistance during the DRM reaction. XANES is an effective tool for analyzing the valence
state of metal elements [32]. As presented in Figure 5, the metallic state of Ni can be well
retained by introducing the optimized content of LaFeO3 and alloying of Pt-Ni compared
to the XANES spectra of Ni foil and NiO, being consistent with what is studied in the
literature [33,34]. It was confirmed that the addition of both LaFeO3 and Pt plays a key
role in stabilizing the metallic state of active Ni species, most probably through the strong
interaction between Ni and high SSA mesoporous LaFeO3-silica (LSBA) matrix. However,
the Ni-Pt nanoparticles present a stronger interaction than that of the Ni-LaFeO3 species
due to their intrinsic properties, which are proven by numerous studies [35,36]. Therefore,
it was inferred that the alloying of Ni-Pt could enhance their tolerance to carbon coking
more than that of a Pt-free Ni/5LSBA-160 catalyst.
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Figure 5. Ni-K-edge XANES spectra of the reduced catalysts and reference standards (NiO and
Ni foil).

3.6. Catalytic Activity in DRM Reaction

Figure 6a–c depict the catalytic activity of the series of Ni/yLSBA-140 catalysts. It was
found that the most optimized doping content of LaFeO3 was listed as 50 wt.%, and corre-
sponding catalysts (Ni/5LSBA-140) exhibited higher catalytic performance and thermal
stability (48 h) compared to the undoped 5Ni/SBA-15-CTA catalyst [24], where the CO2
conversion (Figure 6a), CH4 conversion (Figure 6b), H2/CO molar ratio (Supplementary
Material Figure S2a) and H2 selectivity (Figure 6c) were increased to 70.4%, 66.0%, 87.5%
and 86.5%, respectively. Moreover, their catalytic activity was further promoted by control-
ling the hydrothermal temperature, as Figure 6d–f displays. Notably, the corresponding
activity values were increased to 72.1%, 65.5%, 91.4% and 92.0% over the Ni/5LSBA-160
catalyst. This indicates that the catalytic performance and thermal stability, namely CH4
conversion (Figure 6d), CO2 conversion (Figure 6e), H2/CO molar ratio (Supplementary
Material Figure S2b) and H2 selectivity (Figure 6f), was significantly enhanced by LaFeO3
addition as well as the adjustment of the hydrothermal conditions.
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Figure 6. The enhanced catalytic performance on Ni(Pt)/yLSBA-T catalysts by adjusting the
LaFeO3 loading (a–c) and hydrothermal temperature (d–f) as well as the Pt modification (g–i).
(GHSV = 20,000 mL·gcat
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3.7. Temperature Programmed Reaction

It was confirmed that the dispersion or the particle sizes of active Ni nanospecies
could determine the catalytic activity of Ni-based catalysts for DRM. The well-dispersion
Ni particles lead to high catalytic activity [37]. The introduction of the noble metal of Pt
improves the dispersion of nickel due to a stronger interaction of Ni-Pt alloy compared
to that of the Ni-LaFeO3 [30]. In this contribution, it can be observed that the conversion
of CO2 (Figure 6g) and CH4 (Figure 6h), H2/CO molar ratio (Supplementary Material
Figure S2c) and H2 selectivity (Figure 6i) over the Pt-decorated Ni/LaFeO3-SBA-CTA
(PtNi/5LSBA-160) catalyst exhibited higher catalytic activity and maintained better stable
catalytic activity than that of the Pt-free Ni/LaFeO3-SBA-CTA (Ni/5LSBA-160) sample.
Moreover, Temperature Programmed Surface Reactions (TPSR-MS) were performed to
illustrate the alloying effects of Pt on catalytic performance, as depicted in Figure 7. On the
one hand, it was found that there exists a lower temperature for the DRM reaction being
initiated over the Pt-doped 5Ni/5LSBA-160 catalyst with a higher reaction rate than the un-
doped 5Ni/5LSBA-160 sample from the MS signals of the species detected, suggesting that
the alloying of the Ni-Pt/5LSBA-160 catalyst process has a stronger capability for activating
CO2 and CH4 than that of the undoped Ni/5LSBA-160 catalyst. On the other hand, the ini-
tial temperature for CO2 conversion was obviously lower than that of the CH4 conversion
over both catalysts, which corresponds well to the catalytic activity. This should mainly be
attributed to the reversed water gas shift (RWGS) side reaction (Equation (4)), co-existing
with DRM [38]. However, it can be inferred that the alloying Pt-Ni nanoparticles improve
their interaction to receive better activity, stability and resistance to carbon deposition.

CO2 + H2 
 CO + H2O (4)
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Figure 7. The catalytic activity of 0.5 wt.% Pt co-doped and bare Ni/5LSBA-160 catalysts as a function
of temperature (note: the MS signals stand for the content of the detected species), (a) stands for the
conversion of CO2 and CH4, (b) is the production of H2 and CO.

3.8. TG for Spent Catalysts

TGA analysis was proved as an effective technique to evaluate the tolerance capacity
to carbon-coking for DRM catalysts. As displayed in Figure 8a, it was found that the weight
loss profiles of the spent catalysts showed an inverted volcanic shape (inserted image
of Figure 8a) with the increase of LaFeO3 contents up to 70 wt.%. Over the Ni/5LSBA-
140 catalyst (spent for 12 h), only 8.1% weight loss was detected, which might be closely
associated with the enhanced interaction of Ni-LaFeO3. From a practical point of view,
having higher activity and thermal stability for catalysts is urgently needed. Figure 8b show
the weight loss curves of the spent Ni (Pt)/5LSBA-T (T = 120, 140 and 160 ◦C) catalysts
for 48 h. It can be seen that the weight loss increased with the increase of hydrothermal
temperature up to 160 ◦C and the introduction of noble Pt, which might be related to
enhanced catalytic performance. The weight loss for the spent Ni/5LSBA-140 catalyst
for 48 h was 10.2%, slightly higher than the spent catalyst for 12 h (8.1%), while the
weight loss over the NiPt/5LSBA-160 catalyst was increased to 35.8%. However, the
types of carbonaceous species deposited on the spent Pt-doped Ni/5LSBA-160 and Pt-
free Ni/5LSBA-160 catalysts are evidently different, as shown in the inserted picture of
Figure 8b. The DTA peak (643 ◦C) for the Pt-doped Ni/5LSBA-160 catalyst was lower than
that of the Pt-free Ni/5LSBA-160 sample (655 ◦C), indicating the carbon deposits on the
NiPt/5LSBA-160 catalyst was more reactive and easily removed by oxidation under the
DRM process to meet the practical application [39].
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Figure 8. The weight loss profiles of spent Ni(Pt)/yLSBA-T catalysts for 12 h (a) and 48 h (b), it was
noted that the inserted image of (a) displayed the weight loss trends for the used catalyst, the inserted
image of (b) presented the decomposition temperature of carbon species.
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4. Conclusions

In this contribution, a series of mesoporous perovskites with large SSAs were suc-
cessfully prepared by the in-situ growth of LaFeO3 on mesoporous SBA-15-CTA supports
under a hydrothermal process. The optimized content (50 wt.%) of LaFeO3 was used as a
Ni-based catalyst support to synthesize DRM catalysts of Ni/5LSBA-160. It was found that
the SSA of mesoporous 5LaFeO3-SBA-15-CTA can be up to 180 m2/g, which displays it
as an excellent DRM catalysts carrier candidate to obtain enhanced catalytic activity and
anti-coking properties due to the controllable interaction of Ni-LaFeO3 by adjusting the
content of LaFeO3 and hydrothermal temperature (e.g., 160 ◦C). Moreover, adding noble
Pt over Ni/5LSBA-160 catalyst would further enhance the interaction between Ni and
the support to promote the dispersion of active Ni species and achieve a higher syngas
formation rate as the TPSR depicted. In addition, the capacity of anti-coking and resistance
to sintering can also be improved compared to the Pt-free Ni/5LSBA-160 catalyst sample.
This study will pave the way for designing high SSA mesoporous perovskite and utilizing
it in heterogeneous catalysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12091451/s1, Figure S1: The small-angle XRD patterns of
the obtained high specific surface area mesostructure LaFeO3-SBA-15-CTA supports under different
hydrothermal temperature; Figure S2: The enhanced performance of H2/CO ratio on Ni(Pt)/yLSBA-T
catalysts by adjusting the LaFeO3 loading (a) and hydrothermal temperature (b) as well as the Pt
modification (c). (GHSV = 20,000 mL·gcat

−1·h−1). Table S1: Preparation conditions and grain sizes of
the synthesized catalysts.
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