
*For correspondence:

malinir@umich.edu

†These authors contributed

equally to this work

Present address: ‡Department

of Chemistry, University of

Colombo, Colombo, Sri Lanka

Competing interest: See

page 28

Funding: See page 28

Received: 10 January 2018

Accepted: 29 May 2018

Published: 10 July 2018

Reviewing editor: Pamela J

Bjorkman, California Institute of

Technology, United States

Copyright Yarzabek et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Variations in HLA-B cell surface
expression, half-life and extracellular
antigen receptivity
Brogan Yarzabek1†, Anita J Zaitouna1†, Eli Olson1,2†, Gayathri N Silva1‡, Jie Geng1,
Aviva Geretz3,4, Rasmi Thomas3,4, Sujatha Krishnakumar5, Daniel S Ramon6,
Malini Raghavan1*

1Department of Microbiology and Immunology, Michigan Medicine, University of
Michigan, Michigan, United States; 2Graduate Program in Immunology, Michigan
Medicine, University of Michigan, Michigan, United States; 3US Military HIV
Research Program, Walter Reed Army Institute of Research, Silver Spring, United
States; 4Henry M. Jackson Foundation for the Advancement of Military Medicine,
Bethesda, United States; 5Sirona Genomics, Immucor, Inc, California, United States;
6Department of Laboratory Medicine and Pathology, Mayo Clinic, Arizona, United
States

Abstract The highly polymorphic human leukocyte antigen (HLA) class I molecules present

peptide antigens to CD8+ T cells, inducing immunity against infections and cancers. Quality control

mediated by peptide loading complex (PLC) components is expected to ensure the cell surface

expression of stable peptide-HLA class I complexes. This is exemplified by HLA-B*08:01 in primary

human lymphocytes, with both expression level and half-life at the high end of the measured HLA-B

expression and stability hierarchies. Conversely, low expression on lymphocytes is measured for

three HLA-B allotypes that bind peptides with proline at position 2, which are disfavored by the

transporter associated with antigen processing. Surprisingly, these lymphocyte-specific expression

and stability differences become reversed or altered in monocytes, which display larger intracellular

pools of HLA class I than lymphocytes. Together, the findings indicate that allele and cell-

dependent variations in antigen acquisition pathways influence HLA-B surface expression levels,

half-lives and receptivity to exogenous antigens.

DOI: https://doi.org/10.7554/eLife.34961.001

Introduction
Major histocompatibility complex (MHC) class I proteins are cell surface proteins that control

immune responses by CD8+ T cells and natural killer (NK) cells. MHC class I proteins are comprised

of a heavy chain, a light chain, b2-microglobulin (b2m), and a short peptide that is bound to a pep-

tide-binding groove in the heavy chain (Bjorkman and Parham, 1990). Heavy chains of human MHC

molecules (human leukocyte antigens (HLA)) are encoded by three sets of genes, which are the HLA-

A, HLA-B and HLA-C genes. These genes are highly polymorphic, with about 5000 known alleles in

the case of HLA-B and fewer alleles in the case of HLA-A and HLA-C genes (Robinson et al., 2015).

Polymorphic residues are localized to the peptide-binding groove of HLA class I proteins and deter-

mine their specificities for peptide binding (Bjorkman and Parham, 1990). T cell receptors (TCR) of

cytotoxic T cells have specificities for combinations of MHC class I and peptide (Rossjohn et al.,

2015). Binding of a CD8+ T cell TCR to peptide-MHC class I complexes triggers CD8+ T cell cytokine

production and cytotoxic activity. Conversely, NK cells have inhibitory receptors that recognize HLA

class I (Saunders et al., 2015). Engagement of MHC class I by NK cell inhibitory receptors
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suppresses NK cell activity (Parham and Moffett, 2013). NK cell activity is induced by MHC class I

down-modulation, a strategy frequently used by viruses and cancers to evade CD8+ T cell

responses.

MHC class I assembly involves a complex pathway that is initiated by the formation of chaperone-

guided heterodimers of heavy chains and b2m. In the absence of a peptide ligand, heavy chain-b2m

heterodimers are generally unstable and retained in the endoplasmic reticulum (ER) via the peptide

loading complex (PLC). The PLC facilitates peptide loading of MHC class I, and comprises peptide-

deficient forms of MHC class I molecules in complex with the transporter associated with antigen

processing (TAP), the assembly factor tapasin, and the ER chaperones calreticulin and ERp57. The

binding of a peptide releases MHC class I from the PLC, and allows for trafficking to the cell surface

via the Golgi network (Blum et al., 2013; Raghavan and Geng, 2015). HLA class I alleles have

strong influences upon disease progression outcomes in infectious diseases and cancers

(Carrington and Walker, 2012; Tang et al., 2012). Specific alleles are also linked to autoimmune

diseases (Brown et al., 2016; Price et al., 1999) and drug hypersensitivities (Illing et al., 2013).

Since the presence of a ‘foreign’ peptide is the key activation signal for CD8+ T cell responses, the

eLife digest Most cells in the body make proteins called human leukocyte antigen class I (or

HLA-I). These proteins sit on the cell surface, where they help the immune system distinguish

between healthy and diseased cells. A groove in each HLA-I protein holds a fragment of a protein

chain, called a peptide, from inside the cell. In healthy cells, all the peptides come from normal

proteins. Yet in diseased or infected cells, the peptides may come from abnormal or foreign

proteins – those encoded by viruses, for example. When the immune system sees these abnormal

peptides, it responds by killing the cell.

Across the human population, there are thousands of types of HLA-I, each able to carry a

different set of peptides. Any individual person can only make a maximum of six types of the HLA-I,

meaning we each show a different combination of peptides to our immune cells. This difference will

change the way different people respond to the same disease.

Before a peptide can be assembled into HLA-I, it must be moved to the correct part of the cell

by a transporter known as TAP. This transport favors peptides with certain characteristics, but these

characteristics do not always match the preferences of the individual’s HLA-I proteins. For example,

TAP is less likely to transport peptides where the second building block in the chain is a proline, but

these peptides will still fit into the binding grooves of some HLA-I variants.

Here, Yarzabek, Zaitouna, Olson et al. obtained blood from healthy human donors to answer

questions about what happens when TAP and HLA-I have different preferences. Specifically, how

many HLA-I molecules reach the surface, how long do they last, and which peptides do they carry?

This analysis revealed that, when there was a mismatch between HLA-I and TAP, the amount of

some HLA-I types on the surface of white blood cells called lymphocytes dropped. These HLA-I

types were also able to pick up new peptides from their environment, indicating that some HLA-I

were at the surface of the cell without a peptide. The role of these empty HLA-I remains to be fully

defined.

The reverse was true for other white blood cells called monocytes; HLA-I variants that were

mismatched with TAP became more abundant on the cell surface. Monocytes also had more HLA-I

molecules inside and did not pick up peptides from the environment. This suggests that monocytes

may load peptides via new pathways, filling grooves left empty in lymphocytes, although other

mechanisms might also explain the differences between the two types of white blood cells. Taken

together, the findings reveal that HLA-I on the surface of cells depends on both the type of HLA-I

and the type of immune cell.

HLA-I proteins play a key role in the immune system’s ability to recognize and kill diseased cells.

A better knowledge of how HLA-I variants differ could help us to understand why people respond

differently to the same disease. A better grasp of HLA-I could in the future lead to improved drug

and vaccine design.

DOI: https://doi.org/10.7554/eLife.34961.002
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peptide-binding characteristics of individual HLA class I molecules are important determinants of

their associations with many disease outcomes. This is well-studied in the case of HIV infections

(Pereyra et al., 2010).

The cell surface stabilities of HLA class I-peptide complexes can be influenced by multiple factors,

including the nature of peptide-MHC interactions, the abundance of factors that mediate their

assembly, and the extent of peptide-deficient HLA class I expression. A given HLA class I molecule

can bind to a large number of peptides that have specific sequence motifs (for example, Figure 1—

figure supplement 1) and length constraints (the HLA class I peptidome, for example those charac-

terized in [Abelin et al., 2017]). Not all HLA class I binding peptides are transported equivalently by

the TAP transporter. The use of peptide libraries fixed at specific positions with single amino acids

has revealed strong sequence preferences for peptide transport by TAP (Uebel et al., 1997). In gen-

eral, peptide residue 2 (P2) and the C-terminal residues of peptides (PC) are strong determinants of

peptide binding to HLA class I. TAP also has strong preferences within this region; hydrophobic

C-terminal residues, generally preferred by HLA class I molecules, are also preferred by TAP. At the

P2 position, however, proline is strongly disfavored by TAP, but highly preferred by a subset of

HLA-B molecules - those within the B7 supertype (Figure 1—figure supplement 1). The functional

consequences of such mismatches in TAP and HLA class I binding preferences are unknown. It can

be hypothesized that the mismatch causes suboptimal assembly in the ER, and for some allotypes,

reduced cell surface stability and increased ability to sample peptides from unconventional sources.

A number of studies have indicated that tapasin, via the PLC, facilitates HLA class I-peptide

assembly and also optimizes the HLA class I peptide repertoire towards high affinity sequences

(Chen and Bouvier, 2007; Wearsch and Cresswell, 2007; Williams et al., 2002). HLA-B allotypes

differ markedly in their dependencies on tapasin for their cell surface expression (Peh et al., 1998;

Rizvi et al., 2014). Tapasin-independent HLA-B allotypes generally have higher intrinsic stabilities of

their peptide-deficient forms (Rizvi et al., 2014), and thus may be more prone to exit the ER as sub-

optimally loaded versions, particularly when peptide is limiting.

Previous studies have shown that mRNA differences and regulatory polymorphisms affect HLA

class I and class II expression (Raj et al., 2016; Thomas et al., 2009). The HLA-B locus is the most

polymorphic of the HLA class I loci (and thus the most rapidly evolving), with dominant influences

upon disease outcomes (Kiepiela et al., 2004). HLA-B alleles do not vary in mRNA expression

(Ramsuran et al., 2017), but there are known variations in the assembly and peptide-binding charac-

teristics of HLA-B allotypes, as described above. It is unknown whether such variations can result in

global cell surface stability differences, ER retention differences and subsequent cell surface expres-

sion differences in primary human cells. In this study, we addressed the hypothesis that peptide pool

limitations induced by mismatched peptide-binding preferences between TAP and HLA class I allo-

types affects cell surface expression levels of HLA class I molecules, via suboptimal assembly. To

address this hypothesis, we used freshly-isolated human lymphocytes and monocytes and quantita-

tive flow cytometry to examine the expression levels of HLA-B alleles in an Ann Arbor, United States

cohort of healthy donors. Where expression differences were significant, we also undertook cell sur-

face stability measurements to assess whether these variations explain the expression differences.

Finally, we compared exogenous peptide receptivity of HLA-B allotypes with high or low cell surface

stability to assess variations.

Results

Specificities and relative binding propensities of an anti-HLA-Bw6
monoclonal antibody
Allele-dependent differences in stabilities or assembly efficiencies in the ER are expected to culmi-

nate in cell-surface expression differences. Based on this expectation, we first assessed whether

there are measurable HLA-B cell surface expression differences. Important points to consider in

assessing allelic variations in HLA class I cell surface expression are (a) the specificities of antibodies

used for the expression assessments and (b) potential differences in the binding affinities of detect-

ing antibodies towards the HLA class I allotypes that are being compared. We used Luminex bead-

based assays to compare the binding of an HLA-B specific antibody to several HLA class I alleles.

HLA-B allotypes are categorized as either HLA-Bw4 or HLA-Bw6 serotypes based on their
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sequences. Differences at positions 77 and 80–83 of the heavy chain determine the presence of a

Bw4 or Bw6 epitope (Müller et al., 1989). Commercial antibodies are available that target these

epitopes, making them the broadest reported panel of HLA-B-specific antibodies. We thus tested

the anti-Bw6 and anti-Bw4 monoclonals from One Lambda for their binding specificities to beads

carrying individual HLA-A, HLA-B, or HLA-C molecules.

Binding of the HLA-conjugated beads to anti-Bw6 as well as W6/32, a pan HLA class I antibody

(Barnstable et al., 1978), was first assessed at multiple dilutions (1:10 to 1:220). Signals obtained for

anti-Bw6 binding to beads with individual HLA-A, HLA-B, and HLA-C were normalized relative to

those obtained with W6/32, to correct for any difference in HLA class I coupling to beads. The data

obtained at 1:50 dilution from two independent measurements are shown in Figure 1—figure sup-

plement 2. The anti-Bw6 antibody was specific for HLA-B alleles with the Bw6 epitope, and showed

no binding to any HLA-A or HLA-Bw4 allotypes, although it also recognized some HLA-C alleles (Fig-

ure 1—figure supplement 2). Further analyses of the sequences of the HLA-C alleles that were rec-

ognized by anti-Bw6 (residues 77–83) revealed the presence of a sequence motif similar to the Bw6

motif (Figure 1—figure supplement 3). These same HLA-C alleles are also recognized by a different

commercial anti-Bw6 antibody (Miltenyi). HLA-C alleles that are not recognized by anti-Bw6 have

altered sequences in the region corresponding to the Bw6 motif. As discussed below, the majority

of heterozygous donors included in the study expressed one HLA-B allele and one HLA-C allele with

a Bw6 sequence. Based on mass spectrometric analyses, HLA-C allele expression is shown to be ~6

fold lower compared to HLA-B (Apps et al., 2015); thus, within the included donor pool, HLA-B

rather than HLA-C is expected to contribute dominantly to the anti-HLA-Bw6 derived signal.

A total of 244 healthy donors were recruited and genotyped for the HLA class I locus using next-

generation sequencing. Donors who had Bw4/Bw6 heterozygosity at the HLA-B locus or homozygos-

ity for an HLA-Bw6 allele were included for further studies (Figure 1—source data 1). Within this

donor pool, HLA-Bw6 alleles with at least three donors/allele, and a range of peptide-binding prefer-

ences (including P2P; Figure 1—source data 1) were HLA-B*07:02, HLA-B*08:01, HLA-B*15:01,

HLA-B*18:01, HLA-B*35:01, and HLA-B*40:01. Donors with these alleles were selected for Bw6

expression measurements. For the included HLA-Bw6 alleles, the Luminex anti-Bw6/W6/32 ratios

were relatively invariant (Figure 1—figure supplement 2), thus the One Lambda Bw6 antibody

could be used for further expression variation assessments. The majority of donors selected for HLA-

Bw6 measurements (Figure 1—source data 1) had Bw4/Bw6 heterozygosity at the HLA-B locus, and

one HLA-C allele with a Bw6 sequence (HLA-C*01:02, HLA-C*03:02, HLA-C*03:04, HLA-C*07:01,

HLA-C*07:02, HLA-C*07:18, HLA-C*12:03, or HLA-C*16:01). Six donors had HLA-B Bw4/Bw6 hetero-

zygosity, with both HLA-C alleles lacking a Bw6 sequence (HLA-C*04:01, HLA-C*04:04, HLA-

C*05:01, HLA-C*06:02 or HLA-C*15:02). Seven donors had HLA-Bw6 and HLA-C homozygosity, and

all the HLA-C alleles of these donors had a Bw6 sequence (HLA-C*07:01, HLA-C*07:02, or HLA-

C*12:03). For the latter group of donors, the expression measurements shown in Figure 1—source

data 1 and Figure 1 are 50% of the total measured values. As noted above, based on previous mass

spectrometric analyses, where HLA-C allele expression is shown to be several-fold lower than HLA-B

(Apps et al., 2015), HLA-B rather than HLA-C is expected to contribute dominantly to the anti-HLA-

Bw6 derived signal in all the donors included in this study. Thus, all donor allele groupings discussed

below are based on the relevant HLA-B allele.

Low cell surface expression levels of HLA-B*35:01 and HLA-B*07:02 in
lymphocytes
The Bw6 alleles selected for expression measurements included two members of the B7 supertype

(B*07:02 and B*35:01), two members of the B44 supertype (B*18:01 and B*40:01), and one member

each of the B62 (B*15:01) and B8 (B*08:01) supertypes, representing multiple peptide binding spe-

cificities (Figure 1—figure supplement 1). Donors were recruited for multiple blood draws across a

period of roughly 18 months. Peripheral blood mononuclear cells (PBMCs) were purified and stained

with antibodies to identify CD4, CD8, B, and NK cell subsets, and additionally with anti-Bw6 or W6/

32. The anti-Bw6 and W6/32 MFI signals from each measurement were calibrated against measure-

ments from beads with known quantities of Fc receptors that were stained with the same concentra-

tion of antibodies (anti-Bw6 or W6/32) to determine the respective antibody binding capacities

(ABC) on different lymphocyte subsets. Each included donor had at least three ABC measurements

performed from independent blood draws, with most donors having greater than three independent

Yarzabek et al. eLife 2018;7:e34961. DOI: https://doi.org/10.7554/eLife.34961 4 of 33

Research article Immunology and Inflammation

https://doi.org/10.7554/eLife.34961


Figure 1. Expression variations among HLA-Bw6 alleles. Forty-three healthy donors (Figure 1—source data 1) with either heterozygosity for HLA-Bw4/

Bw6 or homozygosity for HLA-Bw6 alleles were sorted into six groups based on their Bw6 alleles. ABC values were calculated by flow cytometry based

on staining freshly isolated PBMCs with anti-Bw6 or W6/32 and normalizing the resulting geometric MFI values against beads with known amounts of Fc

receptors. Averaged ABC values for each donor are shown, grouped by the donor’s HLA-Bw6 alleles and lymphocyte subset analyzed (B cells (top row),

CD4+ T cells (second row), CD8+ T cells (third row), and NK cells (last row)). For homozygous donors, 50% of the derived ABC values are plotted. Bw6

ABC values alone (column 1), W6/32 ABC values alone, (column 2) and the Bw6/W6/32 ABC ratios (column 3) are shown. The number of replicate

measurements for each donor and standard errors of the mean are shown in Figure 1—source data 1. Statistically significant differences between

alleles were analyzed by one-way ANOVA analysis for each cell type. Each dot represents averaged Bw6, W6/32, or Bw6/W6/32 ABC measurements

(n > 3) from a single donor. p *<0.05; **<0.01; ***<0.001; ****<0.0001. This figure has five supplementary figures and one source data table.

Figure 1 continued on next page
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measurements (Figure 1—source data 1). For each donor, averaged Bw6 and W6/32 ABC values

are plotted, grouped by the Bw6 allele at the HLA-B locus (Figure 1, columns 1 and 2). There were

differences in HLA-Bw6 ABC values measured between allele groups. In general, highest expression

is measured for HLA-B*08:01 cells, and lowest expression is measured for HLA-B*07:02 and HLA-

B*35:01 in all cell subsets. Based on a one-way ANOVA analysis, the expression differences between

HLA-B*08:01 and HLA-B*07:02 are significant in CD4+ and CD8+ T cells, but similar trends are noted

in B and NK cell subsets. Differences between HLA-B*08:01 and HLA-B*35:01 are significant in

CD4+, CD8+ T cells and NK cells, but similar trends are noted in B cell subsets.

On the other hand, no significant differences between allele groups were measured in any cell

type for the W6/32 ABC values (Figure 1, column 2). There were, however, donor to donor varia-

tions in W6/32 ABC (total HLA class I expression) between donors within the same allele group. To

correct for potential overall expression differences that may be related to regulatory polymorphisms,

the Bw6/W6/32 ABC ratios were also calculated for each donor and used in a one-way ANOVA anal-

ysis for comparisons between alleles (Figure 1, column 3). The B*08:01 vs B*07:02/B*35:01 differen-

ces were maintained or enhanced following the corrections. The Bw6/W6/32 ABC ratios were

significantly higher for HLA-B*08:01 donors compared to B*07:02 donors in all cell types. Addition-

ally, the Bw6/W6/32 ABC ratios were significantly higher for HLA-B*08:01 donors compared to

B*35:01 donors in CD4+, CD8+ T cells and NK cells, and similar trends were noted in B cells.

Although other significant differences are noted in the Bw6/W6/32 ratios (for example higher ratios

for HLA-B*08:01 compared to HLA-B*15:01 in CD4 and CD8 cells), these differences are not accom-

panied by corresponding differences in anti-Bw6 ABC values. Thus, based on the tested Bw6 group

of alleles, cell surface expression of HLA-B*07:02 and B*35:01 are low compared to other alleles,

and significantly different compared to HLA-B*08:01. The significance of the differences between

these alleles is maintained in most cell types after accounting for overall HLA class I expression dif-

ferences. Although the most significant differences are measured in CD4+ and CD8+ T cells, similar

allele-dependent trends are present in all cells. Notably, both these lowest expressing HLA-B allo-

types prefer P2P peptides that are disfavored for TAP transport.

Absence of differences in HLA-B mRNA expression in lymphocytes
Allele-dependent variations in RNA levels within cells can explain the surface expression differences

(Figure 1), although recent findings indicate that HLA-B transcript levels are relatively invariant

across alleles, based on measurments with PBMC (Ramsuran et al., 2017). This possibility was fur-

ther examined using real time polymerase chain reactions (RT PCR). Alleles were selected based on

the most significant differences observed in the ABC analysis (Figure 1), and purified CD4+ and

CD8+ T cells were used for these analyses. The HLA-B mRNA expression levels for each donor were

measured with HLA-B-specific primers (which measure total transcript levels of both HLA-B alleles

from each donor). Pan-HLA class I primers were also used. Figure 1—figure supplement 4 shows

representative RT PCR experiment for donors expressing indicated HLA-Bw6 alleles (2-DCt values

shown are averaged from three technical replicates of the same RNA preparation). Based on a one-

Figure 1 continued

DOI: https://doi.org/10.7554/eLife.34961.003

The following source data and figure supplements are available for figure 1:

Source data 1. Expression variations among HLA-Bw6 alleles.

DOI: https://doi.org/10.7554/eLife.34961.009

Figure supplement 1. Peptide-binding motifs of several HLA-Bw6 allotypes relevant to this study.

DOI: https://doi.org/10.7554/eLife.34961.004

Figure supplement 2. Validations of anti-Bw6.

DOI: https://doi.org/10.7554/eLife.34961.005

Figure supplement 3. Sequences of HLA-B and HLA-C alleles with a Bw6 motif.

DOI: https://doi.org/10.7554/eLife.34961.006

Figure supplement 4. Representative RT-PCR measurements of HLA-B and total class I RNA levels for donors expressing indicated Bw6 alleles.

DOI: https://doi.org/10.7554/eLife.34961.007

Figure supplement 5. HLA-B mRNA expression within four lymphocyte populations in donors from Africa and Thailand.

DOI: https://doi.org/10.7554/eLife.34961.008
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way ANOVA analysis, no significant differences are noted in transcript levels, using either HLA-B or

pan HLA class I primers. These findings using cDNA samples from the Ann Arbor healthy donor

cohort were consistent with results based on RNA sequencing (RNA-Seq) of samples derived from

donors in Africa and Thailand (Figure 1—figure supplement 5). There were no significant allele-

dependent differences between HLA-B mRNA levels in CD4+ T cells, B cells and NK cells, based on

samples derived from donors in Africa and Thailand. Some significant associations were observed in

the CD8+ T cells, but the significance was lost when donors are stratified by ethnicity to separately

represent the majority African donors.

Lower global cell surface stabilities of HLA-B*35:01 and HLA-B*07:02 in
lymphocytes
ER retention differences can also account for cell surface HLA-B expression differences. In a CD4+ T

cell line, the rate of assembly and exit from the ER for HLA-B*35:01 is so rapid that binding to pep-

tide loading complex components in the ER is undetectable at the steady state

(Thammavongsa et al., 2009). Thus, it is unlikely that increased ER retention explains the lower sur-

face expression of HLA-B*35:01. Consistent with this expectation, the intracellular HLA-Bw6 protein

levels (quantified as a ratio of the fluorescence signal in fixed relative to fixed and permeabilized

cells (fixed/fixed +permeabilized) in flow cytometry experiments are not higher in PBMCs from

B*08:01 donors compared to cells from either HLA-B*35:01 or HLA-B*07:02 donors (data not

shown).

Since differences in cell surface stability (half-life) can be another factor that determines cell sur-

face expression differences, we further quantified and compared global HLA-B cell surface stabilities

(half-lives). Freshly isolated PBMCs were treated with brefeldin A (BFA), which blocks forward traf-

ficking of newly synthesized HLA class I to the cell surface. For selected donors within the HLA-Bw6

donor group, MFI values for anti-Bw6 were measured at different time points after BFA treatment to

calculate the half-lives in the different lymphocyte subsets. Representative stability plots used for the

half-life calculations are shown in Figure 2, left column. Bw6 half-lives were calculated based on sta-

bility plots from individual days, averaged across multiple measurements (made with blood collec-

tions on different days from the same donor), and grouped by HLA-Bw6 allele (Figure 2, right

column and Figure 2—source data 1). HLA-B*08:01, in general, displays high cell surface stability

compared to all other HLA-Bw6 allotypes. Based on a one-way ANOVA analysis, the most significant

differences are between HLA-B*08:01 and HLA-B*35:01 - allotypes which display the most significant

cell surface expression differences (Figure 1). The differences are most significant in CD8+ T cells,

although significant trends are also noted in CD4+ T cells and NK cells. In pairwise comparisons

based on a Welch’s t-test (not shown), the half-life differences between HLA-B*08:01 and HLA-

B*35:01 are significant in all cells, and those between HLA-B*08:01 and HLA-B*07:02 are significant

in all cells except B cells. Overall, the half-life measurements indicate that the high steady state cell-

surface expression levels of HLA-B*08:01 relative to HLA-B*08:01 and HLA-B*07:02 in lymphocytes

can be explained by the higher cell surface stability of HLA-B*08:01.

Altered HLA-B expression and stability patterns in monocytes
compared to lymphocytes
Thus far, expression and stability experiments (Figures 1 and 2) were performed on lymphocyte sub-

sets, since they are the most abundant cells in PBMC, and because lymphocytes share a common

lineage, and are thus most comparable to each other. We next assessed whether the differences

measured in lymphocytes are maintained in additional antigen presenting cell subsets (APC). We

recruited back a subset of donors for expression assessments in monocytes, which are more abun-

dant in blood than dendritic cells (DC), making the measurements feasible using fresh undifferenti-

ated PBMCs. A subset of donors from the B*08:01, B*07:02 and B*35:01 allele groups (alleles with

the most significant lymphocyte HLA-B expression and stability differences) were recruited back for

blood draws over an additional period of roughly 2 months. PBMCs were purified and stained with

antibodies to identify lymphocyte and monocyte subsets, and additionally with anti-Bw6 or W6/32,

and analyzed by flow cytometry, as for Figure 1. For each donor, averaged Bw6 and W6/32 ABC val-

ues in CD4+ and CD8+ T cells and monocytes are plotted, grouped by the Bw6 allele (Figure 3A

and B). Expression differences between B*08:01 and B*07:02/B*35:01 were significant in CD4+ and
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Figure 2. Cell surface stabilities of HLA-Bw6 allotypes are allele-dependent. Left column: Representative cell surface stability measurements of Bw6

epitopes on freshly isolated lymphocytes derived from Bw4/Bw6 heterozygous donors expressing HLA-B*08:01, HLA-B*35:01 or HLA-B*07:02 as the

Bw6 allotype. Right column: Bw6 half-lives from Figure 2—source data 1 are grouped by Bw6 allele. Each data point represents data derived from an

individual donor, with the open data points representing donors shown in the left panel. Mean half-life values are shown for each donor, measured

Figure 2 continued on next page
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CD8+ T cells (Figure 3A), consistent with the previous measurements with the larger pool of donors

(Figure 1). Surprisingly, however, for the parallel monocyte measurements within the same pool of

donors, the expression differences were reversed, with B*08:01 displaying lower expression than

both B*35:01 and B*07:02, and the differences reaching statistical significance for B*35:01

(Figure 3A). No statistically significant differences were measured for the W6/32 ABC values

(Figure 3B), although the overall patterns of expression resembled those obtained with Bw6. When

the monocyte ABC values for each donor were normalized relative to their CD4+ and CD8+ T cell

ABC values and donors grouped by their Bw6 alleles, monocytes displayed a significant induction of

expression relative to CD4+ and CD8+ T cells for B*35:01 and B*07:02, but not for B*08:01

(Figure 3C). Corresponding half-life measurements indicated a significant reduction in B*08:01 half-

life in monocytes compared with CD4+ and CD8+ T cells, whereas the differences between mono-

cytes and lymphocytes were not significant for B*07:02 and B*35:01 (Figure 3D). Indeed, in mono-

cytes, no significant half-life differences were measured between B*08:01 and B*35:01/B*07:02

(Figure 3E). Together, these findings indicated both allele and cell type dependent variations in

HLA-B cell surface expression and stability patterns.

Larger intracellular pool of HLA-Bw6 in monocytes, co-localizing with an
AP-1+ compartment
The findings of Figures 1–3 suggested fundamental allele-specific differences in HLA-B assembly

and surface expression between lymphocytes and monocytes. Although monocytes generally have

higher HLA class I expression than lymphocytes as assessed by W6/32 staining (Figure 3B), there are

allele-specific variations in the extent of monocyte induction of HLA class I. Monocytes favor high

expression of B*35:01 and B*07:02 (alleles belonging to the B7 supertype) whereas lymphocytes

favor high expression of B*08:01, via increased stability of HLA-B*08:01 (Figures 1, 2 and

3A). Based on these cell-type differences, we predicted that intracellular assembly conditions in

monocytes and lymphocytes have variations, and which in turn affect expression of HLA-B alleles in

different ways. To further assess this model, PBMCs were fixed and stained for surface HLA class I

with the W6/32 monoclonal antibody or stained for total HLA class I by fixation and permeabiliza-

tion. Based on these experiments, monocytes were found to have more intracellular HLA class I rela-

tive to lymphocytes populations (Figure 4A). Previous studies have described higher expression of

TAP1 and higher activity of TAP complexes in monocytes relative to lymphocytes (Fischbach et al.,

2015). Additionally, monocytes generally also have more tapasin relative to lymphocytes (Figure 4—

figure supplement 1). However, the tapasin/W6/32 ratios are lower in monocytes compared with

lymphocytes (Figure 4B), suggesting that tapasin is more limiting in monocytes. These differences

could at least in part explain the reduced half-life in monocytes compared with lymphocytes for

HLA-B*08:01, a strongly tapasin-dependent allotype (Rizvi et al., 2014).

In order to determine where the intracellular pool of monocyte HLA-B is localized, imaging

cytometry experiments were performed. PBMCs were stained with anti-CD3, anti-CD8, and anti-

CD14 to differentiate monocytes from CD4+ T cells (Figure 4—figure supplement 2). Permeabilized

PBMCs were additionally co-stained with anti-Bw6 along with antibodies against the ER marker cal-

reticulin, the lysosomal marker LAMP-1, or the adaptor protein AP-1, which mediates protein traf-

ficking between the Trans Golgi Network (TGN) and recycling endosomal compartments (Park and

Guo, 2014). A previous study has demonstrated HLA class I co-localization with AP-1 in a post-TGN

compartment of macrophages. AP-1 binds tyrosine-based sorting signals that are conserved across

HLA-A and HLA-B alleles. Upon binding, AP-1 is thought to mediate trafficking between the TGN

Figure 2 continued

using freshly isolated cells from at least two independent blood collections for each donor. The number of replicate measurements for each donor and

standard errors of the mean are shown in Figure 2—source data 1. Statistical significance is based on one-way ANOVA analysis. p *<0.05, **<0.01,

***<0.001, and ****<0.0001 This figure has one source data table.

DOI: https://doi.org/10.7554/eLife.34961.010

The following source data is available for figure 2:

Source data 1. HLA-Bw6 stability on lymphocytes.

DOI: https://doi.org/10.7554/eLife.34961.011
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and antigen processing compartments of macrophages (Kulpa et al., 2013). It was thus possible

that AP-1 is a marker for monocyte intracellular compartments containing HLA class I.

The imaging cytometry quantifications indicated significantly greater co-localization between

intracellular HLA-Bw6 and AP-1, compared with co-localization between HLA-Bw6 and either

Figure 3. Altered patterns of HLA-Bw6 surface expression and stability in monocytes compared with lymphocytes. A and B: Blood donations were

again obtained from a subset of donors represented in the Figure 1 measurements. Averaged ABC values measured with anti-Bw6 (A) or W6/32 (B) for

each donor are shown, grouped by the donor’s HLA-Bw6 alleles and cell subsets. C: For each donor represented in A and B, Bw6 ABC values in

lymphocytes are normalized relative to the monocyte values from the same donor, and grouped by the donor’s HLA-Bw6 alleles and cell subsets.

Averaged ABC values and data replicates obtained for plots in A-C are shown in Figure 3—source data 1. D: Cell surface stability measurements

(obtained as described in Figure 2) of CD4+ and CD8+ T cells in comparison to monocytes. E: Cell surface stability measurements in monocytes of

indicated HLA-Bw6 allotype. Half-life values and data replicates obtained for the plots in D and E are shown as Figure 3—source data 2. A-E: Each

point represents data from a single donor. Statistical significance is based on one-way ANOVA analysis. p *<0.05, **<0.01, ***<0.001, and ****<0.0001

This figure has two source data tables.

DOI: https://doi.org/10.7554/eLife.34961.012

The following source data is available for figure 3:

Source data 1. T Cell and Monocyte Bw6 ABC Values.

DOI: https://doi.org/10.7554/eLife.34961.013

Source data 2. HLA-Bw6 stability on monocyte, CD4+ T cell and CD8+ T cell.

DOI: https://doi.org/10.7554/eLife.34961.014
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Figure 4. HLA class I assembly differences between monocytes and lymphocytes. A: Flow cytometry experiments measuring W6/32-based staining of

cell surface HLA class I (fixed PBMCs) expressed as a ratio relative to W6/32-based staining of total HLA class I (fixed and permeabilized PBMCs). Each

point represents an individual donor measurement, and a total of 33 donor samples were tested. B: PBMCs were fixed and permeabilized, then stained

with either anti-tapasin or W6/32 antibodies. The ratio of tapasin MFI relative to the W6/32 MFI was calculated for each cell type, then normalized to

the corresponding monocyte ratios. Each point represents an individual donor measurement, and a total of 29 donor samples were tested. C and D:

Summary statistics from two ImageStream experiments with three donors in monocytes (C) or CD4+ T cells (D). Bw6 and AP-1 co-localization, Bw6 and

CRT co-localization, and Bw6 and LAMP-1 co-localization were quantified for donors 94 and 64. Only Bw6 and AP-1 co-localization was measured for

donor 237. E and F: Representative monocyte (E) or CD4+ T cell (F) images for the experiments summarized in Panels C and D. This figure has five

supplementary figures and one source data table.

DOI: https://doi.org/10.7554/eLife.34961.015

The following source data and figure supplements are available for figure 4:

Source data 1. Imaging cytometry co-localization source data.

DOI: https://doi.org/10.7554/eLife.34961.021

Figure supplement 1. Tapasin expression.

DOI: https://doi.org/10.7554/eLife.34961.016

Figure supplement 2. Gating strategy for imaging cytometry experiments.

DOI: https://doi.org/10.7554/eLife.34961.017

Figure supplement 3. Representative image gallery for Donor 64 monocytes.

Figure 4 continued on next page
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calreticulin or LAMP-1. The greater HLA-Bw6 and AP-1 co-localization is measured in both mono-

cytes and T lymphocytes (Figure 4C and D). Additionally, there were no strong differences in Bw6/

AP-1 co-localization between cells from a B*08:01 donor and a B*07:02 donor, suggesting that B7

supertype members do not co-localize or interact differently with AP-1 than B*08:01 (Figure 4C and

D). Representative images are shown for monocytes (Figure 4E), and CD4+ T cells (Figure 4F).

Together, the findings of Figure 4 indicate more intracellular HLA class I in monocytes

(Figure 4A), and substantial localization in a AP-1+ compartment (Figure 4C and E, and Figure 4—

figure supplements 3–5). Despite the reduced tapasin/HLA class I ratios in monocytes relative to

lymphocytes (Figure 4B), both B*08:01 and B*07:02 allotypes exit the ER, as evidenced by the lower

proportion of cells with high Bw6/calreticulin co-localization (Figure 4C). The AP-1+ compartment

could provide a source of peptides that accounts for the strong cell surface induction of HLA-

B*07:02 and HLA-B*35:01 in monocytes compared with lymphocytes. On the other hand, in lympho-

cytes, HLA class I trafficking differences result in a smaller intracellular pool of HLA class I

(Figure 4A). The smaller pool of the intracellular class I could render the HLA class I of lymphocytes

more reliant on a TAP-dependent ER pool of peptides. As a consequence, mismatches between the

peptide binding preferences of HLA-B7 supertype members and TAP may be more strongly mani-

fested in lymphocytes. There may be additional differences between lymphocytes and monocytes

such as expression patterns of proteins containing prolines, or expression/activity of ER aminopepti-

dases, which render the peptide pool in monocytes more favorable for assembly of the B7 super-

type. Further studies are needed to fully understand the basis for the measured expression

differences.

Increased exogenous antigen receptivity of HLA-B*35:01 and HLA-
B*07:02 is indicative of suboptimal intracellular assembly in
lymphocytes
Suboptimal intracellular peptide loading, such as those resulting from mismatches with TAP binding

preferences or deficiencies in TAP can be assessed by measuring enhanced receptivity to exogenous

peptide. HC10 is an antibody that detects open (peptide-deficient) forms of HLA class I (Stam et al.,

1990). We examined HC10 signals in cells from multiple donors following incubation with peptides

specific for HLA-B*08:01, HLA-B*35:01, or HLA-B*07:02 to further examine evidence for suboptimal

loading of HLA-B*35:01 or HLA-B*07:02 in lymphocytes. The allele-specific peptides, including vari-

ous antigenic epitopes, had matched control peptides that were mutated at critical N-terminal

anchor residues and C-terminally truncated so as to abrogate peptide binding to HLA class I. HC10

signals are low in all lymphocyte subsets, except B cells, under basal conditions. Analyses of the

HC10 ratio (specific/control peptide; Figure 5) indicate that there is in fact overall greater receptivity

of HLA-B*35:01 and HLA-B*07:02 for peptides compared with HLA-B*08:01 in B cells and CD4+ T

cells with similar trends observed in NK cells and CD8+ T cells. Assessment of the temperature

dependence of surface peptide loading suggests that peptide loading does not require internaliza-

tion, and thus that cell surface HLA-B*35:01 and HLA-B*07:02 are at least partially directly peptide-

receptive (data not shown). In lymphocytes, the high peptide receptivity of HLA-B*35:01 and HLA-

B*07:02 and low surface expression are consistent with the model that the intracellular peptide pool

for those allotypes is limiting owing to their P2P binding preferences, which is disfavored for trans-

port by TAP. HLA-B*35:01 and HLA-B*07:02 have high or intermediate tapasin-independence for

their assembly, and thus it is likely that sub-optimally assembled or peptide-deficient versions of

these allotypes can escape quality control mechanisms mediated by the PLC. On the other hand,

monocyte HLA-B are not receptive to exogenous peptides for HLA-B*08:01, B*35:01, or for B*07:02.

The reduced stability of HLA-B*08:01 (Figure 3D) in monocytes relative to lymphocytes is not

accompanied by enhanced cell surface peptide receptivity in monocytes (Figure 5). Taken together,

Figure 4 continued

DOI: https://doi.org/10.7554/eLife.34961.018

Figure supplement 4. Representative image gallery for Donor 94 monocytes.

DOI: https://doi.org/10.7554/eLife.34961.019

Figure supplement 5. Representative image gallery for Donor 237 monocytes.

DOI: https://doi.org/10.7554/eLife.34961.020
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Figure 5. Lymphocyte HLA-B*35:01 and HLA-B*07:02 are receptive to exogenous peptides. PBMCs were freshly isolated from healthy donors

expressing one copy of the indicated HLA-B allele and incubated with 100 mM of specific or matched control peptides for each allotype for four hours

at 37˚C. The cells were then stained with an antibody cocktail containing antibodies to differentiate lymphocyte subsets, as well as HC10, a monoclonal

antibody that recognizes peptide-deficient HLA class I molecules. The data are shown for CD4+ and CD8+ T cells, B cells, NK cells, and monocytes.

Figure 5 continued on next page
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the findings are consistent with the overall model of suboptimal assembly of B*35:01 and B*07:02 in

lymphocytes. Furthermore, the results indicate that lymphocytes and monocytes maintain their cell

surface HLA-B via different mechanisms, which in turn differently influence their exogenous peptide-

receptivity.

Specificities and relative binding propensities of an anti-HLA-Bw4
monoclonal antibody
HLA-Bw4 allotypes constitute the second group of HLA-B, which are functionally distinct from HLA-

Bw6 in the NK cell response. We assessed whether some of the findings with the HLA-Bw6 group

are extendable to the HLA-Bw4 group. For these measurements, the anti-Bw4 antibody from One

Lambda was used, which is specific for HLA-B alleles within the HLA-Bw4 group and does not bind

HLA-Bw6 alleles or HLA-C alleles. However, five HLA-A alleles are recognized (Figure 6—figure sup-

plement 1; A*23:01, A*24:02, A*24:03, A*25:01, A*32:01). Further analyses of the sequences of the

HLA-A alleles that are recognized by anti-Bw4 (residues 77–83) revealed the presence of a sequence

motif similar to the Bw4 motif (Figure 6—figure supplement 2). Other HLA-A alleles have altered

sequences in that region. Within the total pool of 244 donors, donors with Bw4/Bw6 heterozygosity

at the HLA-B locus and lacking a cross-reactive HLA-A were included for Bw4 expression measure-

ments. Expression measurements were obtained for HLA-Bw4 alleles with at least four donors/allele

within that donor pool, which were HLA-B*13:02, HLA-B*27:05, HLA-B*37:01, HLA-B*44:02, HLA-

B*51:01 and HLA-B*57:01 (Figure 6—source data 1). Within this selected group of HLA-Bw4 alleles,

the anti-Bw4 antibody showed considerable binding variability (Figure 6—figure supplement 1).

Binding variations across the same alleles were also seen with an anti-Bw4 obtained from a different

commercial source (Miltenyi). The One Lambda anti-Bw4 was used for further expression variation

assessments, but taking into account variations in antibody binding to alleles within the Bw4 group.

Among Bw4 allotypes, B*51:01 displays low expression on lymphocytes
The Bw4 alleles considered included those within the B7 (B*51:01), B44 (B*44:02 and B*37:01), B58

(B*57:01), B27 (B*27:05) and unclassified (B*13:02) supertypes. A range of peptide-binding preferen-

ces (including P2P) were represented (Figure 6—figure supplement 3). As with the Bw6 measure-

ments, fresh PBMCs for Bw4 measurements were purified and stained for flow cytometry with anti-

Bw4 or W6/32 as well as antibodies directed against lymphocyte subsets. The anti-Bw4 and W6/32

ABC values were calculated as described for Figure 1. For each donor, averaged Bw4 ABC are

shown (Figure 6—source data 1 and Figure 6—figure supplement 4), grouped by Bw4 allele. Sig-

nificant differences in HLA-Bw4 ABC values are measured in all four cell types based on a one-way

ANOVA analysis. Many cell subsets showed significant differences between B*57:01/B*27:05 and

other HLA-Bw4 allotypes (Figure 6—figure supplement 4). This is similar to the pattern seen with

the Luminex binding analyses, which indicated the highest binding preference of anti-Bw4 for HLA-

B*57:01 and HLA-B*27:05 (Figure 6—figure supplement 1). A correlation analysis of the Luminex

bead Bw4/W6/32 ratio versus cell-derived Bw4 ABC values showed significant positive correlations

in all lymphocytes (Figure 6, column 1). These analyses indicated that the varying anti-Bw4 binding

preferences contribute to differences in the observed cell-derived Bw4 ABC values. However,

whereas in the Luminex bead analyses, the binding preference was HLA-B*57:01 > HLA-B*27:05 >

HLA-B*51:01 > HLA-B*37:01 = HLA-B*13:02 > HLA-B*44:02 (Figure 6—figure supplement 1), the

general Bw4 ABC value trends (Figure 6—figure supplement 4, column 1) indicated that the aver-

aged HLA-B*51:01 ABC value on cells is lower than that expected based on the measured anti-Bw4

binding preferences, and resemble the B*44:02 signals. Correspondingly, the majority of HLA-

Figure 5 continued

Data are representative of 1-2 separate measurements for each donor, with 3-5 donors per allele, as specified in Figure 5—source data 1. This figure

has one source data table.

DOI: https://doi.org/10.7554/eLife.34961.022

The following source data is available for figure 5:

Source data 1. PBMC peptide receptivity source data.

DOI: https://doi.org/10.7554/eLife.34961.023
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Figure 6. Cell-derived Bw4 ABC values correlate with anti-Bw4 binding preferences (with the exception of B*51:01) and similar cell surface stabilities are

measured for the indicated Bw4 allotypes. Columns 1 and 2: Lymphocyte ABC values for Bw4/Bw6 heterozygous donors expressing indicated Bw4

genotypes (and lacking cross-reactive HLA-A) were measured using anti-Bw4 and W6/32 (all donor information is specified in Figure 6—source data 1).

Resulting Bw4 ABC data (column 1) or Bw4/W6/32 ABC ratios (column 2) are grouped for donors based on their Bw4 genotypes, and plotted against

the corresponding Luminex Bw4/W6/32 signals obtained from Figure 6—figure supplement 1). Column 3: Averaged cell surface stability

Figure 6 continued on next page
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B*51:01 ABC values fall below the linear regression line of the correlation plot in all the tested cells

(Figure 6, column 1).

There were, as with the Bw6 alleles, donor to donor variations in W6/32 ABC values (Figure 6—

figure supplement 4, column 2). The averaged W6/32 ABC measurements for the donor pool used

for Bw4 ABC generally did not show significant allele-dependent differences (Figure 6—figure sup-

plement 4, column 2). There was a positive correlation between the Luminex bead Bw4/W6/32

ratios and cell-derived Bw4/W6/32 ABC ratios, but the majority of cell-derived Bw4/W6/32 ABC

ratios for HLA-B*51:01 donors fall below the linear regression line of the correlation plots (Figure 6,

column 2). No significant differences are noted in HLA-B transcript levels in lymphocyte subsets from

donors expressing B*51:01 compared to other donors (Figure 1—figure supplement 5). Bw4 half-

life values were also measured in lymphocytes from a subset of the Bw4 group donors (B*57:01,

HLA-B*44:02, B*51:01 and HLA-B*37:01; Figure 6—source data 2). No significant half-life differen-

ces were measurable for HLA-B*51:01 compared to other HLA-Bw4 alleles in any of the cell types

(Figure 6, column 3). A limiting supply of peptides may create an intracellular assembly bottleneck

for B*51:01 (which is highly tapasin-dependent; [Rizvi et al., 2014]), which requires further assess-

ments. Overall, as with Bw6 alleles, the lowest expressing Bw4 allele in lymphocytes is a member of

the B7 supertype, and has a P2P peptide-binding preference that is disfavored for TAP transport.

Altered HLA-Bw4 expression patterns in monocytes compared to
lymphocytes
HLA-B expression patterns in lymphocytes and monocytes were compared in selected donors within

the B*51:01, B*57:01 and B*44:02 groups who were recruited back for additional blood draws across

a roughly 2 month period. PBMCs were stained with antibodies to identify lymphocyte and mono-

cyte subsets, and additionally with anti-Bw4 or W6/32. For each donor, averaged Bw4 and W6/32

ABC values for B cells and monocytes are plotted, grouped by the Bw4 allele (Figure 7A–B). The

averaged B*51:01 ABC values are lower than those for B*57:01, and comparable to B*44:02 in B

cells, as previously noted with the larger pool of donors (Figure 6—figure supplement 4, column 1),

although differences become non-significant with the smaller pool of donors in Figure 7A. Again,

surprisingly, these expression trends become altered in monocytes, where B*51:01 becomes

strongly induced compared with lymphocytes, whereas there is a small change for B*57:01, and a

reduction for B*44:02 (Figure 7A). It is noteworthy that the expression patterns obtained with W6/

32 in monocytes mirrored those obtained with anti-Bw4 (Figure 7B), indicating that variations in sin-

gle HLA-B allele expression levels significantly impact total HLA class I levels. When the ABC values

for B cells were normalized relative to the monocyte values for each donor, significant increases and

decreases in expression were measured respectively for B*51:01 and B*4402 in monocytes com-

pared with lymphocytes (Figure 7C). The Luminex bead Bw4/W6/32 ratios calculated from

Figure 6 continued

measurements of Bw4 epitopes on freshly isolated lymphocytes derived from Bw4/Bw6 heterozygous donors expressing indicated Bw4 allotypes. Half-

life statistical significance is based on one-way ANOVA analysis using data in Figure 6—source data 2. This figure has four supplementary figures and

two source data tables.

DOI: https://doi.org/10.7554/eLife.34961.024

The following source data and figure supplements are available for figure 6:

Source data 1. Bw4 ABC Values.

DOI: https://doi.org/10.7554/eLife.34961.029

Source data 2. HLA-Bw4 stability on lymphocytes.

DOI: https://doi.org/10.7554/eLife.34961.030

Figure supplement 1. Specificity and relative binding propensity of anti-Bw4.

DOI: https://doi.org/10.7554/eLife.34961.025

Figure supplement 2. Sequences of HLA-B and HLA-A alleles with a Bw4 motif.

DOI: https://doi.org/10.7554/eLife.34961.026

Figure supplement 3. Peptide-binding motifs of several HLA-Bw4 allotypes relevant to this study.

DOI: https://doi.org/10.7554/eLife.34961.027

Figure supplement 4. Expression measurements of HLA-Bw4 alleles.

DOI: https://doi.org/10.7554/eLife.34961.028
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Figure 6—figure supplement 1 were used to also obtain correlation plots with the new Bw4 ABC

data (Figure 7D) and the corresponding Bw4/W6/32 ABC ratios (Figure 7E) for both B cells and

monocytes, in order to account for antibody binding differences. With the reduction in the number

of alleles examined, a significant correlation was obtained in monocytes that have the high B*51:01

expression, but not in lymphocytes, where B*51:01 expression is lower than predicted by the Lumi-

nex bead binding (Figure 7D and E). Thus, the cellular assembly landscape of monocytes favors

B*51:01 cell surface expression and disfavors B*44:02 expression, whereas cell surface expression of

B*51:01 is disfavored in lymphocytes. As noted in Figure 4, monocytes and lymphocytes differ in the

magnitude of intracellular HLA class I and in tapasin/HLA class I ratios.

The peptide-binding characteristics of B*08:01 underlie its high stability
in lymphocytes
Our findings indicate that lymphocytes and monocytes maintain cell surface HLA-Bw6 via different

mechanisms that relate in part to their peptide-binding preferences. Lymphocytes have an unfavor-

able landscape for the assembly of three B7 supertype members, whereas lymphocytes favor high

expression of HLA-B*08:01, coincident with its high cell surface stability. To better understand the

molecular basis for the high expression and stability of B*08:01 in lymphocytes (Figures 1 and

2), the peptidomes of several relevant HLA-B allotypes were compared with that of B*08:01 after

Figure 7. Altered patterns of HLA-Bw4 surface expression in monocytes compared with lymphocytes. (A and B) Blood donations were again obtained

from a subset of donors represented in the Figure 6 measurements. Averaged ABC values measured with anti-Bw4 (A) or w6/32 (B) for each donor are

shown, grouped by the donor’s HLA-Bw4 alleles and cell subsets. Donor information and ABC values are shown in Figure 7—source data 1. (C) For

each donor represented in A and B, Bw4 ABC values in lymphocytes are normalized relative to the monocyte values from the same donor, and grouped

by the donor’s HLA-Bw4 alleles and cell subsets. (D and E) The averaged Bw4 ABC values (D) or Bw4/W6/32 ABC ratios (E) from data in A and B are

plotted against the corresponding Luminex Bw4/W6/32 signals obtained from Figure 6—figure supplement 1 to account for differences in antibody

binding. Each point represents data from a single donor. Statistical significance is based on one-way ANOVA analysis. p *<0.05, **<0.01, ***<0.001,

and ****<0.0001. This figure has one source data table.

DOI: https://doi.org/10.7554/eLife.34961.031

The following source data is available for figure 7:

Source data 1. B Cell and Monocyte Bw4 ABC Values.

DOI: https://doi.org/10.7554/eLife.34961.032
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mining B cell-derived peptidome datasets from the literature. A recent study used B lymphoblastic

cell lines from 18 subjects to isolate and characterize MHC-associated peptides. Peptides were iso-

lated from cell surface HLA class I by mild acid elution and identified by mass spectrometry. Using

the immune epitope database (IEDB), 8–14 mer peptides were assigned to HLA allotypes with the

best predicted binding affinity (Pearson et al., 2016). Published 9-mer data from this study were

analyzed to compare the restriction patterns of peptidomes of several HLA-B allotypes relevant our

study.

Shannon entropy plots have been used to assess the sequence restrictions and diversities of HLA

class I peptidomes (Rao et al., 2009) based on the frequency of occurrence of each of 20 amino

acids at each position of a given peptide length. A higher Shannon entropy value corresponds to

high sequence diversity at a particular position, and a low Shannon entropy value corresponds to

high sequence restriction at the same position. Shannon entropy plots for the peptidomes of several

HLA-B allotypes derived from the published dataset (Pearson et al., 2016) and relevant to this study

are shown in Figure 8. All the tested HLA-B allotypes have strong N-terminal and/or Pc residue pref-

erences. The Shannon entropy plot for the high-expressing HLA-B*08:01 allotype has notable fea-

tures that point to multiple structurally distinct interactions mediated by its peptidome compared to

other peptidomes. B*08:01 is unusual not only for its unique P5 anchor (resembling the anchor resi-

due positioning in murine MHC class I molecules), but also in having restrictive P3 and Pc-1 residues

in addition to the restrictions at P2 and Pc (Figure 8 and Figure 1—figure supplement 1).

We analyzed the solved crystal structures of HLA-B*08:01 complexes compared to other HLA-B

allotypes (Figure 8—figure supplement 1). In general, P2 and Pc of the peptides are the most

restrictive and buried positions, containing the specificity-conferring ‘anchor’ residues. Typically, P2

forms hydrogen bonds with residues 9, 45, and 67 of the HLA-B heavy chains, and Pc forms

Figure 8. Peptidome and peptide-binding characteristics of HLA-B. Shannon entropy plots of B lymphoblastic

cell-derived 9-mer peptides for the indicated allotypes, based on mass spectrometry datasets obtained from

(Pearson et al., 2016). Plots are based on 9-mer peptides assigned to each allele based on IEDB predictions

(iedb.org). n values represent the total number of independent datasets used for the plots. x values represent the

number of peptides in the independent datasets used for the plots. This figure has two supplementary figures.

DOI: https://doi.org/10.7554/eLife.34961.033

The following figure supplements are available for figure 8:

Figure supplement 1. Crystal structures of HLA-B allotypes illustrate that the D9 polymorphism of B*08:01, absent

among other HLA-B allotypes, accounts for the unique P5 amino acid anchor of B*08:01.

DOI: https://doi.org/10.7554/eLife.34961.034

Figure supplement 2. Peptide-binding motifs of B*35:01 compared to HLA-B*57:01.

DOI: https://doi.org/10.7554/eLife.34961.035
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hydrogen bonds with residues at 95, 77, 116, and 123. In B*08:01, the overall geometry is different

from other HLA-B allotypes including HLA-B*35:01. E45 and F67 of HLA-B*08:01 move away from

the P2 pocket and F36 spatially substitutes for E45. In addition to the non-polar interaction of resi-

dues P2 and PC of the peptide with non-polar clusters of protein residues (P2 with F36 and PC with

L81-L95-Y116-Y123), B*08:01 has ionic interactions between D9 and a deeply buried peptide residue

at P5. Indeed, as a result of these multiple contact points, comparisons of crystal structures of HLA

class I peptide complexes have revealed fully extended and deeply buried peptides for HLA-B*08:01

compared to other HLA-B allotypes, including HLA-B*35:01 and B*07:02 (Maenaka et al., 2000).

These unique peptide-binding characteristics of HLA-B*08:01 are likely to underlie its high cell sur-

face stability in lymphocytes.

Discussion
HLA-B alleles do not vary in their mRNA expression in individual lymphocyte subsets, as previously

described in bulk PBMC (Figure 1—figure supplements 4 and 5 and (Ramsuran et al., 2017). How-

ever, both allele-intrinsic and cell-intrinsic factors exert important influences on HLA-B cell surface

protein expressions levels. Nonetheless, there is no global high or low cell surface expressing allo-

type among the 12 HLA-B alleles considered in this study; rather, measured variations are cell-spe-

cific (Figure 9). Furthermore, there are allele and cell type-dependent thresholds for passing ER

quality control checkpoints rather than a global threshold for HLA class I stability.

Mismatch of HLA peptide binding preference with TAP transport specificity (P2P preferences of

the B7 superfamily) is a potential determinant of low cell surface expression in lymphocytes. A tapa-

sin-independent assembly pathway is also a potential factor for reduced cell surface expression and

stability and enhanced exogenous peptide-receptivity in lymphocytes, particularly when the intracel-

lular peptide pool is also limiting. High affinity peptides are better able to displace tapasin from HLA

class I than low affinity peptides (Rizvi and Raghavan, 2006), consistent with recent structural stud-

ies (Jiang et al., 2017; Thomas and Tampé, 2017) that support models involving competition

between peptide and tapasin. For MHC class I allotypes assembling in the context of the PLC, the

threshold peptide affinity required to exit the ER is expected to be dictated by the affinity of the

tapasin-MHC interaction. For allotypes such as HLA-B*35:01 and B*07:02 that can also assemble effi-

ciently independently of the PLC, this threshold affinity would be lower than allotypes such as

B*08:01, which are more dependent on the PLC for assembly. Since tapasin-independent assembly

is also linked to higher stability of the peptide-deficient form (Rizvi et al., 2014), allotypes such as

HLA-B*35:01 and B*07:02 may escape PLC-mediated and other ER quality control mechanisms when

devoid of peptides or when bound to a sub-optimal peptide, resulting in enhanced peptide recep-

tivity in lymphocytes. Alternatively, tapasin-dependent allotypes such as B*51:01 that have P2P pref-

erences may face an intracellular assembly bottleneck. Conversely, high expression and stability of

B*08:01 in lymphocytes is linked to its unique peptide-binding characteristics (Figure 8), an ample

peptide supply and tapasin-dependent assembly.

With regard to cell-intrinsic factors, in monocytes, an intracellular AP-1+ compartment contains a

large pool of intracellular HLA-B, and assembly parameters within this compartment are likely to

account for monocyte-specific HLA-B cell surface expression differences (Figure 4). While further

studies are needed to understand the differences between HLA-B assembly in monocytes and lym-

phocytes, it is apparent that a more substantial pool of HLA-B is intracellularly localized in mono-

cytes than lymphocytes (Figure 4A). Peptides that enter the intracellular compartments

independently of TAP may provide a robust peptide source for members of the B7 supertype in

monocytes. Indeed, in a related study (Geng et al., 2018), we find that HLA-B allotypes with P2P

preferences generally tend to express at higher levels under TAP-deficiency conditions. Furthermore,

despite the presence of higher levels of tapasin in monocytes (Figure 4—figure supplement 1), the

parallel increases in HLA class I levels (and reduced tapasin/HLA class I ratios; (Figure 4B)) are likely

to induce greater competition for the formation of stoichiometric tapasin:HLA class I complexes

within the PLC. Such competition, combined with the particular environment within the AP-1+ com-

partment, could selectively reduce the assembly efficiency and/or the assembly quality of allotypes

such as HLA-B*44:02 and B*08:01 in monocytes. Overall, the measurements with lymphocytes and

monocytes highlight the importance of the cellular assembly landscape as a key HLA-B cell surface

expression determinant (Figure 9).
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Figure 9. Models for allele-dependent variations in HLA-B cell surface expression, stability and exogenous antigen receptivity in lymphocytes and

monocytes. HLA class I molecules are assembled in the ER and traffic to the cell surface via the Golgi network. Cell surface HLA class I is internalized

into the lysosome for degradation. Steady state surface expression is determined by the net rates of intracellular assembly, trafficking and loss from the

cell surface. Top: In lymphocytes, optimal peptides are assembled with tapasin-dependent alleles such as HLA-B*08:01, for which the ER peptide pool

is not limiting. Additionally, HLA-B*08:01-peptide complexes have a more buried peptide, due to ionic interactions mediated by D9 of B*08:01 with

peptide residue 5, which is predicted to confer high stability to the complexes. In contrast, the ER peptide pool is limiting for HLA-B*35:01 and HLA-

B*07:02 (due to mismatch between their peptide-binding specificities and TAP transport specificity), but their high intrinsic stabilities and tapasin-

independent assembly characteristics allow escape from the ER to the cell surface. These sub-optimally loaded complexes have higher receptivity to

exogenous peptides. The ER peptide pool is limiting for HLA-B*51:01 (due to mismatch between its peptide-binding specificities and TAP transport

specificity). The requirement for tapasin-dependent assembly (related to low intrinsic stability of the peptide-deficient form) may result in low cell

surface accrual and expression. Bottom: The B7 supertype members (B*07:02, B*35:01 and B*51:01) have induced expression in monocytes relative to

lymphocytes, despite the mismatch between their peptide binding preferences and TAP transport specificity, suggesting an alternative source of

peptides, such as those that may be found in the AP-1+ compartments. In contrast, the highly tapasin dependent HLA-B*08:01 and HLA-B*44:02 have

lower surface expression or induction and stability relative to lymphocytes, possibly due to slow assembly in the same AP-1+ compartment,

compounded by a reduced ratio of tapasin relative to HLA class I in the ER. This figure has one source data table reflecting all blood donor

demographics.

DOI: https://doi.org/10.7554/eLife.34961.036

The following source data is available for figure 9:

Source data 1. Blood Donor demographics.

DOI: https://doi.org/10.7554/eLife.34961.037
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A recent study reported higher expression of HLA-B*57 and HLA-B*27 relative to other Bw4 allo-

types including HLA-B*44 in bulk PBMCs (Boudreau et al., 2016). Those results can be explained by

variations in recognition by the anti-Bw4 antibody that was used, which was the same antibody used

as in our Bw4 measurements (Figure 6 and Figure 6—figure supplements 1 and 4). Another recent

study found low cell surface expression among some chicken MHC allotypes, which was attributed

to their promiscuous binding of peptides lacking recognizable anchor residues (Chappell et al.,

2015). Using a different set of antibodies than anti-Bw4/Bw6, the study also reported high expres-

sion of cell surface HLA-B in lymphocytes and monocytes of homozygous donors expressing HLA-

B*27:05 and HLA-B*57:01 compared with donors expressing B*07:02 and B*35:01. Higher promiscu-

ity of the B*07:02 and B*35:01 peptidomes relative to those of B*27:05 and HLA-B*57:01 was sug-

gested based on prior studies (Chappell et al., 2015). While it is likely that mass spectrometry does

not capture the full peptidome diversity, Shannon Entropy plots of mass spectrometry-derived 9-

mer peptides suggest higher P2 diversity for B*57:01 compared to B*35:01, confirmed by motif

assessments with a different peptidome dataset (Figure 8 and Figure 8—figure supplement 2).

Assessments of length diversities indicate similar preferences of B*57:01 compared to B*35:01 for 9-

mer and 10-mer peptides relative to other lengths (data not shown). Overall, our findings suggest

that there is a not a simple relationship between HLA-B expression levels and peptidome diversity,

and indeed that intracellular assembly variations can induce different peptidome diversities for the

same allotype in different cells.

The HLA 8.1 ancestral haplotype, which includes the HLA-B*08:01 allele, has been associated

with a number of autoimmune diseases (Candore et al., 2002; Price et al., 1999). Recent genetic

studies show that the strongest individual allelic associations for polymyositis are with HLA-B*08:01

(Miller et al., 2015) and another study showed strong HLA-B*08:01 associations with idiopathic

inflammatory myopathies (Rothwell et al., 2016). Our findings indicate high cell-surface expression

and high cell-surface stability of HLA-B*08:01 in lymphocytes, relating to the specifics of peptide

interactions with HLA-B*08:01 (Figure 8), which may lead to increased probability of CD8+ T cell

activation in autoimmune myopathies. Conditional upregulation of HLA class I in muscle is sufficient

to induce some characteristics of autoimmune myositis in mouse models of disease (Nagaraju et al.,

2000). Important questions that stem from our current observations relate to whether high expres-

sion of HLA-B*08:01, measurable in lymphocytes, is also maintained in muscle, which could have key

relevance to the autoimmunity linkages of HLA-B*08:01.

The findings described in this study (Figure 9) are relevant to further understanding of how varia-

tions in HLA-B expression, stability and peptide occupancy influence immunity to pathogens such as

HIV that preferentially target CD4+ T cells and macrophages. The influences of HLA class I expres-

sion levels on the lysis of HIV-infected CD4+ T cells by cytotoxic CD8+ T cells is well-studied

(Collins et al., 1998). HLA-B alleles have strong influences on AIDS progression outcomes and viral

loads (Bashirova et al., 2014; Carrington and Walker, 2012). High HLA-B expression in APC line-

age cells would favor effective priming of an HIV-specific CD8+ T cell response and their activity

against infected macrophages, whereas high HLA-B expression in CD4+ T cells would favor efficient

CD8+ T cell-mediated lysis of infected CD4+ T cells. The B*57:01 advantage in HIV infections relative

to less protective HLA-Bw4 allotypes such as B*51:01 and B*44:02 may derive in part from the rela-

tively high expression of B*57:01 in both cell lineages. Similarly, the B*35:01 disadvantage may

relate in part to its lower expression, lower stability and higher proportion of peptide-deficient ver-

sions in CD4+ T cells. Further studies are needed to assess influences of HIV infection on HLA-B

expression, stability and peptide occupancy in CD4+ T cells and macrophages.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Biological
sample (human)

human peripheral
blood mononuclear cells

human donor # 1–237

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Antibody W6/32
(anti-HLA-A,B,C)

mouse hybridoma,
UMICH Hybridoma
PMID: 667938

W6/32 mouse hybridoma purified with
Protein G column and labeled
with FITC

Antibody HC10
(anti-HLA-heavy chain)

mouse hybridoma
UMICH Hybridoma
PMID: 2088481

HC10 mouse hybridoma purified with
Protein G column and labeled
with FITC

Antibody PaSta-1
(anti-tapasin antibody)

Received
from Dr. Peter Cresswell
Yale University
PMID: 11825568

PaSta-1 anti-tapasin antibody (received
purified) and labeled with FITC

Antibody anti-Bw4 FITC One Lambda Fisher:FH0007 (1:20) (1:10)

Antibody anti-Bw6 FITC One Lambda Fisher:FH0038 (1:20) (1:10)

Antibody IgG3 mouse
isotype control FITC

Abcam ab91539 (1:10)

Antibody IgG2a mouse
isotype control FITC

Abcam ab91362 (1:10)

Antibody anti-CD3
UCHT1 pacific blue

Biolegend RRID:AB_2562048
(BioLegend
Cat. No. 300442)

(1:50)

Antibody anti-CD4
RPA-T4 PE/Cy7

Biolegend RRID:AB_314086
(BioLegend
Cat. No. 300518)

(1:50)

Antibody anti-CD8
SK1 Alexa Fluor 700

Biolegend RRID:AB_2562790
(BioLegend
Cat. No. 344724)

(1:50)

Antibody anti-CD14
63D3 Alexa Fluor 700

Biolegend RRID:AB_2566716
(BioLegend
Cat. No. 367114)

(1:50)

Antibody anti-CD19
HIB19 APC

Biolegend RRID:AB_314242
(BioLegend
Cat. No. 302212)

(1:20)

Antibody anti-CD33
P67.6 PE/Cy7

Biolegend RRID:AB_2566416
(BioLegend
Cat. No. 366614)

(1:50)

Antibody anti-CD56 5.1H11 APC/Cy7 Biolegend RRID:AB_2563927
(BioLegend
Cat. No. 362510)

(1:50)

Antibody anti-HLA-DR
L243 BV650

Biolegend RRID:AB_2563828
(BioLegend
Cat. No. 307650)

(1:50)

Antibody mouse anti-AP-1 Sigma Aldrich RRID:AB_476720
(Sigma-Aldrich
Cat# A4200)

(1:500)

Antibody goat anti-mouse IgG2b
-Alexa Fluor 568

Thermo Fisher RRID:AB_2535780
(Thermo Fisher
Scientific
Cat# A-21144)

(1:500)

Antibody anti-calreticulin (CRT) Thermo Fisher RRID:AB_325990
(Thermo Fisher
Scientific
Cat# PA3-900)

(1:500)

Antibody goat anti-rabbit
IgG-Alexa Fluor 594

Cell Signaling
Technology

RRID:AB_2716249
(Cell Signaling
Technology
Cat# 8889)

(1:500)

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Antibody PE mouse anti-human
CD107a (LAMP-1)

BD Biosciences RRID:AB_396135
(BD Biosciences
Cat# 555801)

(1:20)

Sequence-based
reagent

HLA-B reverse primer
5’ TCAAGCTGTGAGAGACACAT 3’

PMID: 20842357

Sequence-based
reagent

HLA-B forward primer
5’ TCCTAGCAGTTGTGGTCATC 3’

PMID: 20842357

Sequence-based
reagent

pan-Class I forward primer
5’ GAGATCACACTGACCTGGCA 3’,

This paper Primer chosen by
sequence alignment

Sequence-based
reagent

pan-Class I reverse primer
5’ GAACCTTCCAGAAGTGGG 3’

This paper Primer chosen by
sequence alignment

Sequence-based
reagent

ACTB forward primer
5’ GGACTTCGAGCAAGAGATGG 3’

RealTime
Primers.com

VHPS-110

Sequence-based
reagent

ACTB reverse primer
5’ AGCACTGTGTTGGCGTACAG 3’

RealTime
Primers.com

VHPS-110

Sequence-based
reagent

GAPDH forward primer
5’ GAGTCAACGGATTTGGTCGT 3’

RealTime
Primers.com

VHPS-3541

Sequence-based
reagent

GAPDH reverse primer
5’ TTGATTTTGGAGGGATCTCG 3’

RealTime
Primers.com

VHPS-3541

Sequence-based
reagent

HPRT1 forward primer
5’ TGACACTGGCAAAACAATGCA 3’

RealTime
Primers.com

VHPS-4263

Sequence-based
reagent

HPRT1 reverse primer
5’ GGTCCTTTTCACCAGCAAGCT 3’

RealTime
Primers.com

VHPS-4263

Peptide,
recombinant protein

HSKKKCDEL Synthetic Biomolecules
(A and A labs LLC)

HSK Peptide chosen from IEDB

Peptide,
recombinant protein

HSDYECDE Synthetic Biomolecules
(A and A labs LLC)

HSD Peptide modified from HSK

Peptide,
recombinant protein

GPKVKRPPI Synthetic Biomolecules
(A and A labs LLC)

GPK Peptide chosen from IEDB

Peptide,
recombinant protein

GPDVERPP Synthetic Biomolecules
(A and A labs LLC)

GPD Peptide modified from GPD

Peptide,
recombinant protein

QIKVRVDMV Synthetic Biomolecules
(A and A labs LLC)

QIK Peptide chosen from IEDB

Peptide,
recombinant protein

QIDVEVDM Synthetic Biomolecules
(A and A labs LLC)

QID Peptide modified from QID

Peptide,
recombinant protein

HPVGEADYFEY Synthetic Biomolecules
(A and A labs LLC)

HPV Peptide chosen from IEDB

Peptide,
recombinant protein

HGVGEADYFE Synthetic Biomolecules
(A and A labs LLC)

HGV Peptide modified from HPV

Peptide,
recombinant protein

EPLPQGQLTAY Synthetic Biomolecules
(A and A labs LLC)

EPL Peptide chosen from IEDB

Peptide,
recombinant protein

EGLPQGQLTA Synthetic Biomolecules
(A and A labs LLC)

EGL Peptide modified from EPL

Peptide,
recombinant protein

HPNIEEVAL Synthetic Biomolecules
(A and A labs LLC)

HPN Peptide chosen from IEDB

Peptide,
recombinant protein

HGNIEEVA Synthetic Biomolecules
(A and A labs LLC)

HGN Peptide modified from HGN

Peptide,
recombinant protein

RPPIFIRRL Synthetic Biomolecules
(A and A labs LLC)

RPPI Peptide chosen from IEDB

Peptide,
recombinant protein

RKPIFIRR Synthetic Biomolecules
(A and A labs LLC)

RKPI Peptide modified from RKPI

Peptide,
recombinant protein

QPRAPIRPI Synthetic Biomolecules
(A and A labs LLC)

QPRA Peptide chosen from IEDB

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Peptide,
recombinant protein

QKRAPIRP Synthetic Biomolecules
(A and A labs LLC)

QKRA Peptide modified from QKRA

Peptide,
recombinant protein

TPRVTGGGAM Synthetic Biomolecules
(A and A labs LLC)

TPRV Peptide chosen from IEDB

Peptide,
recombinant protein

TKRVTGGGA Synthetic Biomolecules
(A and A labs LLC)

TKRV Peptide modified from TKRV

Commercial
assay or kit

DNeasy Blood and
Tissue Kit

Qiagen Qiagen:69504

Commercial
assay or kit

RNeasy Mini Kit Qiagen Qiagen:74104

Commercial
assay or kit

QuantumÔ Simply
Cellular anti-Mouse IgG

Bangs Lab Bangs Lab:815A

Chemical
compound, drug

Brefeldin A Sigma Aldrich Sigma-Aldrich:B7651

Chemical
compound, drug

FITC Thermo Fisher Fisher:46424

Software,
algorithm

FlowJo Version 10 FlowJo, LLC RRID:SCR_008520

Software,
algorithm

Prism 7 GraphPad Software RRID:SCR_002798

Study approval
For all experiments except the RNA Sequencing studies, blood was collected in Ann Arbor, MI,

USA, with informed consent from healthy donors in accordance with a University of Michigan IRB

approved protocol (HUM00071750). For the RNA Sequencing studies, all study participants in

RV217 gave written informed consent prior to inclusion in the study. RV217 was reviewed and

approved by the human subject ethics and safety committees in each country as well as by the Wal-

ter Reed Army Institute of Research (Silver Spring, MD, USA), in compliance with all relevant federal

guidelines and institutional policies.

Peripheral blood mononuclear cell (PBMC) preparations and HLA
Genotyping
PBMCs were isolated from whole blood using Ficoll-Paque density gradient centrifugation (GE

Healthcare, Chicago, IL). Whole blood was diluted to 50 mL with 1x PBS + 2% FBS (fluorescence

activated cell sorting (FACS) buffer), layered over Ficoll-Paque and centrifuged at 400 x g for 30 min

with no brakes. The buffy coat layer was then moved to a new tube and washed twice with FACS

buffer.

DNA was extracted from the cells using a DNeasy Blood and Tissue kit (Qiagen, Maryland, USA)

following the kit instructions. The HLA typing was performed by Sirona Genomics (Mountain View,

CA), an Immucor Company. The assay, based on a previous publication (Wang et al., 2012), was

performed using the MIA FORA NGS HLA typing assay for the class I loci. The full-length amplicons

for the class I loci were amplified and pooled. These samples were then fragmented, and tagged

with unique index adaptors. The samples were pooled and sequenced on the Illumina MiSeq, and

the HLA type was determined using the MIA FORA NGS HLA typing software. The Sirona Genomic

HLA typing method has been validated by the Histocompatibility, Immunogenetics and Disease Pro-

filing Laboratory of the Stanford University School of Medicine using 50 reference cell lines.

Specificity assessments with anti-Bw6 and anti-Bw4 monoclonal
antibodies with a solid phase bead array
The specificity analyses and the relative binding propensities of the anti-Bw6 and anti-Bw4 monoclo-

nal antibodies (One Lambda Inc., Thermo Fisher Scientific Inc., Canoga Park, CA; BiH0038 and

BiH0007) were analyzed utilizing a Luminex bead array, where each bead is coated with a single
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recombinant HLA molecule. The LABScreen reagent used in this study was Class I-LS1A04NC (LAB-

Screen, One Lambda Inc., Thermo Fisher Scientific Inc., Canoga Park, CA). Twenty microliters from

each biotinylated monoclonal antibody (a biotinylated preparation of W6/32 was made in house)

was mixed with 5 mL the bead array suspension and incubated for 30 min at room temperature. The

beads were centrifuged and washed three times using the washing buffer provided by the vendor.

After the final wash, the pellet was resuspended with a 1:100 solution of PE-Streptavidin provided

by the same vendor (LT-SAPE). The solution was incubated for 30 min at room temperature, and fol-

lowed by two washes. The bead pellet was resuspended with 80 mL of washing buffer and the reac-

tion was acquired using a Luminex Analyzer. The strength of the reaction with each monoclonal was

measured in the semi-quantitative unit mean fluorescence intensity (MFI), using HLA Fusion Software

(One Lambda Inc., Thermo Fisher Scientific Inc., Canoga Park, CA).

Quantitative flow cytometry of lymphocytes
Donors from the Bw4/Bw6 heterozygous and HLA-Bw6 homozygous groups were scheduled for mul-

tiple blood draws of 30 mL each spaced at least 1 week apart. PBMCs were isolated using Ficoll-

Paque density gradient centrifugation as described above and the final pellet was resuspended in

RPMI media (RPMI 1640 (Life Technologies, Thermo Fisher Scientific Inc., Canoga Park, CA). Cells

were stained with a lymphocyte-identifying antibody mixture containing a combination of anti-CD3-

Pacific Blue (BioLegend, San Diego, CA; 317301), anti-CD4-APC/Cy7 (BioLegend; 300518), anti-

CD8-Alexa Fluor 700 (BioLegend; 344724), anti-CD56-PE/Cy7 (BioLegend; 362510), and anti-CD19-

APC (BD Biosciences; 555415) and either anti-Bw6-FITC (IgG3, One Lambda, USA; FH0038; 1:10),

anti-Bw4-FITC (IgG2a, One Lambda; FH0007; 1:10), FITC-labeled W6/32 (Parham et al., 1979) (puri-

fied from ascites fluid and labeled using a 1:20 protein:FITC ratio, FITC IgG3 isotype control for Bw6

(Abcam; ab91539; 1:50) or FITC IgG2a isotype control for Bw4 (Abcam, San Francisco, CA; ab91362;

1:50). In some experiments PBMCs were stained with an antibody mixture that contained a combina-

tion of the lymphocyte-identifying antibodies along with monocyte-specific antibodies (anti-CD14-

Alexa Fluor 700 (BioLegend; 367114), anti-CD33-APC/Cy7 (Biolegend; 366614), and anti-HLA-DR-

BV650 (Biolegend; 307650)). These can be combined despite common antibody fluorophores, as the

monocytes are CD3-negative and T cells subsets (with the label overlap with monocytes, are CD3-

positive). The following gating strategy was used for each cell subset: B cells (CD3-negative, CD19-

positive), NK cells (CD3 negative, CD56-positive), CD4+ T cells (CD3-positive, CD4-positive), CD8+ T

cells (CD3-positive, CD8-positive), and monocytes (CD3-negative, CD14-positive, CD33-positive,

HLA-DR-positive or in some analyses, CD3-negative, CD14-positive, CD33-positive ). Cells were

stained for 40 min at 4˚C and then 7-AAD and Annexin V-PE (Fisher Scientific) were added to the

cells prior to washing with FACS buffer and flow cytometric analyses were performed using either a

BD LTXFortessa or BD Canto. Quantum Simply Cellular anti-Mouse IgG beads (Bangs Laboratories,

Inc., Fishers, IN; 815A) containing known amounts of Fc receptors were also stained with anti-Bw6-

FITC, anti-Bw4-FITC or W6/32-FITC under the same conditions as for cells, and fluorescence signals

were measured in every experiment in order to convert the mean fluorescence intensities (MFI) of

cell staining into antibody binding capacity (ABC) values.

ABC calculations
Flow cytometric data were analyzed with FlowJo software (V10.0.8r1, Ashland, OR). Using the geo-

metric MFI values obtained from the staining of the Quantum Simply Cellular anti-Mouse IgG beads,

a standard curve was calculated following the procedures and bead ABC values provided by Bangs

Laboratories, Inc. Following flow cytometric analyses of cells, the live lymphocyte populations were

first gated, followed by sub-gating for the four lymphocyte types; CD4+ T cells (CD3+CD4+), CD8+ T

cells (CD3+CD8+), B cells (CD3-CD19+), and NK cells (CD3-CD56+). The geometric MFI values for the

anti-Bw6-FITC, anti-Bw4-FITC and W6/32-FITC, were calculated for each cell type and background

MFI values obtained from the relevant isotype controls were subtracted. Within each experiment,

the background subtracted geometric MFI values from the donor cells were interpolated against the

standard curve (as either linear-linear or log-log fits) to calculate the ABC values for anti-Bw6, anti-

Bw4 and W6/32 signals in each of four lymphocyte subsets analyzed. ABC values were averaged

over multiple blood donations, each obtained at least 1–2 weeks apart. Averaged values for each

donor were grouped by allele in Graphpad Prizm 7.0a and newer (La Jolla, CA).

Yarzabek et al. eLife 2018;7:e34961. DOI: https://doi.org/10.7554/eLife.34961 25 of 33

Research article Immunology and Inflammation

https://doi.org/10.7554/eLife.34961


RT-PCR on isolated lymphocyte subsets
mRNA was extracted from CD4+ and CD8+ T cells isolated from whole blood with StemCell EasySep

Direct Human Isolation Kits according to the instructions. mRNA was extracted from the isolated

cells using a RNeasy mini kit (Qiagen) according to the instructions and converted to cDNA using a

High Capacity cDNA Reverse Transcription Kit (Applied Biosystems) according to the instructions.

Each RT-PCR reaction was carried out in a final volume of 30 mL with 1x SYBR green master PCR mix

(Applied Biosystems), diluted cDNA (between 40–60 ng cDNA per reaction; consistent amounts

within an experiment) and 1 mM primer set. Primers were either HLA-B specific, pan-HLA class I spe-

cific, or specific for endogenous controls. The endogenous control primers were directed against

human GAPDH, ACTß and HPRT1 (Realtimeprimers). The HLA-B-specific forward primer sequence

was 5’ TCCTAGCAGTTGTGGTCATC 3’ and the reverse sequence was 5’ TCAAGCTGTGAGAGA-

CACAT 3’. These primers are previously described (Garcı́a-Ruano et al., 2010). The pan-HLA class I

forward primer sequence was 5’ GAGATCACACTGACCTGGCA 3’, and reverse primer sequence

was 5’ GAACCTTCCAGAAGTGGG 3’. The pan-HLA class I primers were chosen by aligning all rele-

vant HLA class I sequences and finding areas of complete identity. Primer specificity was confirmed

by sequencing analysis of RT-PCR products.

RT-PCR reactions were done on a 7500 Fast Real-Time PCR (Applied Biosystems) using the com-

parative Ct (DDCt) settings and the standard time run. There was an initial holding stage of 50˚C for

20 s followed by denaturation at 95˚C for 10 min. The cycling conditions were denaturing at 95˚C for

15 s, followed by annealing and florescence reading at 60˚C for 1 min, repeated for 40 cycles. The

melt curves were examined for the presence of a single peak. The Ct values generated were used to

calculate the 2-DCt values for both the HLA-B specific primer set and the pan-Class I primer set. A

minimum of three technical replicates were performed for each experiment. A one-way ANOVA

analysis was used to examine statistically significant differences between alleles in 2-DCt values.

RNA-Seq of lymphocyte subsets from African and Thai cohorts
PBMCs from 38 donors of African and Thai ethnicity from the RV217 study (Robb et al., 2016) were

sorted into CD4+ T cells, CD8+ T cells, CD19+ B cells and CD56+ NK cells by flow cytometry. Quan-

tity and quality of extracted RNA was verified on the Agilent Bioanalyzer. cDNA was synthesized

from 2.5 ng RNA using the SMART-Seq technology (Clontech) (Picelli et al., 2014; Ramsköld et al.,

2012). Library preparation of quantitated cDNA included fragmentation, molecular indexing, amplifi-

cation, and purification. Uniquely indexed samples were sized, quantitated, normalized, pooled, and

sequenced on the Illumina HiSeq 2500 platform. All paired-end FASTQ reads were aligned to an

HLA reference and HLA-specific reads were extracted and genotypes assigned by Omixon Target

1.9.3. All HLA genotypes from the RNA-Seq data matched HLA genotypes generated by NGS HLA

typing from the same donors using methods as previously described (Ehrenberg et al., 2014;

Ehrenberg et al., 2017). To determine HLA-B mRNA expression, sample-specific GMAP mRNA

references were created based on each sample’s genotype information, IMGT allele reference data,

and allele-specific single nucleotide polymorphism positions (SNP). Original FASTQ reads were sub-

jected to sequencing quality control and trimming using the Trimmomatic 0.36 software

(Bolger et al., 2014). All samples were down-sampled to 10M reads and aligned using the SNP-tol-

erant option of GSNAP (GMAP version 2017-01-14) (Wu and Nacu, 2010). HLA-B expression data

were generated from read counts using HTSeq 0.9.1 (Anders et al., 2015). Statistical differences

comparing mRNA expression between samples with at least one HLA-B allele of interest within a cell

subset was computed using ANOVA analysis.

HLA surface stability and half-life calculations
The protocol used was as described previously (Zarling et al., 2003), but using PBMC isolated from

a subset of donors recruited for the ABC measurements. Freshly isolated PBMCs were rested for 1

hr (37˚C with 5% CO2) before beginning the assay. PBMCs (8 to 12 � 105 cells/well) were washed

with 1X PBS and resuspended in RPMI with 10% FBS media, 1% glutamine, and 1% antibiotic-anti-

mycotic (R10 media). At the designated time points, PBMCs were centrifuged at 1800 x g for 1 min

and resuspended in R10 media with 0.5 mg/mL brefeldin A (BFA, Sigma Aldrich, St. Louis, MO). The

cells were incubated at 37˚C with 5% CO2. After the incubation, the cells were centrifuged at 1800 x

g for 1 min and the media discarded. Prior to staining, cells were blocked with 5% normal mouse
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serum (Jackson ImmunoResearch Laboratories, West Grove, PA) for 10–15 min at 4˚C and then incu-

bated with an antibody cocktail containing 5% normal mouse serum for 45 min at 4˚C. The antibody

cocktail contained antibodies as described above for ABC measurements, and flow cytometry was

performed as described above.

Live cells with specific cell populations were analyzed by FlowJo LLC. The geometric mean meas-

urements of Bw6, Bw4 or isotype control antibodies were input into GraphPad Prism where the repli-

cate isotype signal was subtracted from the specific antibodies (i.e. anti-Bw6 - IgG3). Replicate

values were fit using a one phase decay with a constrained plateau of zero to extract the half-life

value. Half-life values were averaged across multiple independent experiments. Significance was

measured using one-way ANOVA on GraphPad Prism.

Stability measurements were more variable with anti-Bw4 compared to anti-Bw6, and data are

compiled only for donors with standard error of the mean half-life values less than 33% of the mean

values (based on n � 2 independent measurements) on all four measured lymphocyte populations.

Intracellular staining in lymphocytes and monocytes
Frozen or freshly isolated PBMCs were washed with R10 media and flow cytometry buffer. The cells

were then incubated with the relevant surface marker cocktails (described above) for 30 min at 4˚C
and washed twice with flow cytometry buffer. The cells were fixed with 4% paraformaldehyde (Elec-

tron Microscopy Sciences, Hatfield, PA, USA) in PBS for 15 min at room temperature and washed

three times with PBS. A subset of cells were permeabilized using 0.02% Triton X-100 in PBS for 6

min at room temperature and washed twice with PBS. The cells were then incubated with either

FITC-labeled W6/32, PaSta-1 (anti-tapasin; purified Pasta-1, a gift from Dr. Peter Cresswell, Yale Uni-

versity, labeled with FITC using a 1:2 antibody:FITC ratio), or relevant isotype controls for 1 hr at

4˚C. The cells were washed twice with flow cytometry buffer and then measured by flow cytometry

as described above.

Specific cell populations were analyzed by FlowJo LLC. The specific geometric mean measure-

ments were input into GraphPad Prism and the isotype signal was subtracted from the specific anti-

bodies (for example, W6/32 – IgG2a). Measurements were compared across experiments by

normalizing the signal of each cell classification against that of monocytes or by normalizing to W6/

32 signal. Significance was measured using one-way ANOVA on GraphPad Prism.

ImageStreamX imaging cytometry experiments
PBMCs were freshly isolated from donors. About 2 million cells per well were stained with anti-CD3,

anti-CD8, and anti-CD14 for 30 min on ice. Cells were washed twice with PBS, and fixed with 4%

formaldehyde for 15 min at room temp. Cells were washed twice with PBS, then permeabilized and

blocked by adding PBS + 0.2% saponin + 5% goat serum for 15 min at room temp. Without wash-

ing, primary antibodies were added in separate wells: mouse anti-AP-1 (IgG2b), rabbit anti-calreticu-

lin (CRT), and mouse anti-LAMP1-PE. Dilutions used were 1:500, 1:500, and 1:10, respectively. Cells

were incubated on ice for 30 min, and then washed twice with PBS. Secondary antibody in

PBS + 0.2% saponin + 5% goat serum was added: anti-mouse IgG2b-Alexa Fluor 568 (1:600), anti-

rabbit IgG-Alexa Fluor 594 (1:500), and no secondary for LAMP-1. Anti-Bw6-FITC was added to all

wells at 1:20 dilution. Cells were incubated for 30 min on ice, then washed twice with PBS. Cells

were concentrated to 70 mL in PBS and analyzed on the Amnis ImageStreamX. Data were analyzed

using Amnis Ideas software.

PBMC peptide receptivity assay
PBMCs were isolated from healthy donors. These cells were resuspended in R10 media and counted.

From a 10 mM stock, 1 mL peptide solubilized in DMSO was added to wells of a 96 well plate;

DMSO alone was used as a negative control. To each well, 100 mL of cells was added (at least

200,000 cells/well), and the cells were incubated at 37˚C + 5% CO2 for 4 hr. The final concentration

of peptide in each well was 100 mM. After incubation, cells were washed once with FACS buffer

(PBS + 2% FBS) and stained with an antibody cocktail as described above: anti-CD3, anti-CD4, anti-

CD8, anti-CD56, anti-CD19, anti-CD14, anti-CD33, anti-HLA-DR and HC10-FITC. Cells were incu-

bated on ice for 30 min and washed twice with FACS buffer. Cells were then stained with 7-AAD for

viability and analyzed on the BD LTXFortessa flow cytometer. Data was analyzed with FlowJo LLC.
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Peptidome motifs and Shannon entropy plots
For peptide motifs and Shannon entropy plots shown in Figure 1—figure supplement 1 and Fig-

ure 8, mass spectrometry datasets were obtained from references (Pearson et al., 2016) and

(Abelin et al., 2017). In these studies, BLCLs were generated from genotyped donors and peptides

isolated from BLCLs using a mild acid elution buffer (citrate-phosphate pH 3.3) (Pearson et al.,

2016) or immunoaffinity procedure (Abelin et al., 2017). Following mass spectrometric analyses, the

peptide sequences derived from the acid elution study (Pearson et al., 2016) were assigned to spe-

cific HLA alleles based on NetMHC predictions (Lundegaard et al., 2008). The peptide sequences

derived from immunoaffinity procedure (Abelin et al., 2017) were sorted to eliminate overlaps

between HLA alleles that do not share binding motifs, but were otherwise directly used with no

additional filters. The resulting datasets were analyzed using seq2logo: http://www.cbs.dtu.dk/bio-

tools/Seq2Logo/ (Thomsen and Nielsen, 2012) for \Figure 1—figure supplement 1 and Figure 6—

figure supplement 3. For Figure 8, only data from reference (Pearson et al., 2016) are shown, as

those datasets include a larger number of alleles relevant to this study. The peptide composition

was calculated by Shannon Entropy (E(i)) using Equation 1, where q is the frequency of each amino

acid at a particular position in the peptide length (i).

EðiÞ ¼
X20

L¼1

qi log2 qi (1)

Statistics
Statistical significance of allele-specific differences from ABC measurements was assessed using a

one-way ANOVA analysis. The HLA class I cell surface stability was also assessed using a one-way

ANOVA analysis and Welch’s t-test.
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TAP-dependent antigen compartmentalization in scarce primary immune cell subsets. Nature Communications
6:6199. DOI: https://doi.org/10.1038/ncomms7199, PMID: 25656091

Garcı́a-Ruano AB, Méndez R, Romero JM, Cabrera T, Ruiz-Cabello F, Garrido F. 2010. Analysis of HLA-ABC
locus-specific transcription in normal tissues. Immunogenetics 62:711–719. DOI: https://doi.org/10.1007/
s00251-010-0470-z, PMID: 20842357

Geng J, Zaitouna AJ, Raghavan M. 2018. Selected HLA-B allotypes are resistant to inhibitors or deficiency of the
transporter associated with antigen processing (TAP). PLoS Pathogens. In press.

Illing PT, Vivian JP, Purcell AW, Rossjohn J, McCluskey J. 2013. Human leukocyte antigen-associated drug
hypersensitivity. Current Opinion in Immunology 25:81–89. DOI: https://doi.org/10.1016/j.coi.2012.10.002,
PMID: 23141566

Jiang J, Natarajan K, Boyd LF, Morozov GI, Mage MG, Margulies DH. 2017. Crystal structure of a TAPBPR-MHC I
complex reveals the mechanism of peptide editing in antigen presentation. Science 358:1064–1068.
DOI: https://doi.org/10.1126/science.aao5154, PMID: 29025991

Kiepiela P, Leslie AJ, Honeyborne I, Ramduth D, Thobakgale C, Chetty S, Rathnavalu P, Moore C, Pfafferott KJ,
Hilton L, Zimbwa P, Moore S, Allen T, Brander C, Addo MM, Altfeld M, James I, Mallal S, Bunce M, Barber LD,
et al. 2004. Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature 432:
769–775. DOI: https://doi.org/10.1038/nature03113, PMID: 15592417

Kulpa DA, Del Cid N, Peterson KA, Collins KL. 2013. Adaptor protein 1 promotes cross-presentation through the
same tyrosine signal in major histocompatibility complex class I as that targeted by HIV-1. Journal of Virology
87:8085–8098. DOI: https://doi.org/10.1128/JVI.00701-13, PMID: 23678182

Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M. 2008. NetMHC-3.0: accurate web
accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic
Acids Research 36:W509–W512. DOI: https://doi.org/10.1093/nar/gkn202, PMID: 18463140

Maenaka K, Maenaka T, Tomiyama H, Takiguchi M, Stuart DI, Jones EY. 2000. Nonstandard peptide binding
revealed by crystal structures of HLA-B*5101 complexed with HIV immunodominant epitopes. The Journal of
Immunology 165:3260–3267. DOI: https://doi.org/10.4049/jimmunol.165.6.3260, PMID: 10975842

Miller FW, Chen W, O’Hanlon TP, Cooper RG, Vencovsky J, Rider LG, Danko K, Wedderburn LR, Lundberg IE,
Pachman LM, Reed AM, Ytterberg SR, Padyukov L, Selva-O’Callaghan A, Radstake TR, Isenberg DA, Chinoy H,
Ollier WE, Scheet P, Peng B, et al. 2015. Genome-wide association study identifies HLA 8.1 ancestral haplotype
alleles as major genetic risk factors for myositis phenotypes. Genes & Immunity 16:470–480. DOI: https://doi.
org/10.1038/gene.2015.28, PMID: 26291516

Müller CA, Engler-Blum G, Gekeler V, Steiert I, Weiss E, Schmidt H. 1989. Genetic and serological heterogeneity
of the supertypic HLA-B locus specificities Bw4 and Bw6. Immunogenetics 30:200–207. DOI: https://doi.org/10.
1007/BF02421207, PMID: 2777338

Nagaraju K, Raben N, Loeffler L, Parker T, Rochon PJ, Lee E, Danning C, Wada R, Thompson C, Bahtiyar G,
Craft J, Hooft Van Huijsduijnen R, Plotz P. 2000. Conditional up-regulation of MHC class I in skeletal muscle
leads to self-sustaining autoimmune myositis and myositis-specific autoantibodies. PNAS 97:9209–9214.
DOI: https://doi.org/10.1073/pnas.97.16.9209, PMID: 10922072

Parham P, Barnstable CJ, Bodmer WF. 1979. Use of a monoclonal antibody (W6/32) in structural studies of HLA-
A,B,C, antigens. Journal of immunology 123:342–349. PMID: 87477

Parham P, Moffett A. 2013. Variable NK cell receptors and their MHC class I ligands in immunity, reproduction
and human evolution. Nature Reviews Immunology 13:133–144. DOI: https://doi.org/10.1038/nri3370,
PMID: 23334245

Yarzabek et al. eLife 2018;7:e34961. DOI: https://doi.org/10.7554/eLife.34961 31 of 33

Research article Immunology and Inflammation

https://doi.org/10.1038/nrrheum.2015.133
http://www.ncbi.nlm.nih.gov/pubmed/26439405
https://doi.org/10.1016/S1568-9972(01)00004-0
https://doi.org/10.1016/S1568-9972(01)00004-0
http://www.ncbi.nlm.nih.gov/pubmed/12849055
https://doi.org/10.1146/annurev-med-062909-130018
http://www.ncbi.nlm.nih.gov/pubmed/22248321
https://doi.org/10.7554/eLife.05345
http://www.ncbi.nlm.nih.gov/pubmed/25860507
https://doi.org/10.1038/sj.emboj.7601624
http://www.ncbi.nlm.nih.gov/pubmed/17332746
https://doi.org/10.1038/34929
http://www.ncbi.nlm.nih.gov/pubmed/9450757
https://doi.org/10.1186/1471-2164-15-864
http://www.ncbi.nlm.nih.gov/pubmed/25283548
https://doi.org/10.1111/tan.13133
http://www.ncbi.nlm.nih.gov/pubmed/28842944
https://doi.org/10.1038/ncomms7199
http://www.ncbi.nlm.nih.gov/pubmed/25656091
https://doi.org/10.1007/s00251-010-0470-z
https://doi.org/10.1007/s00251-010-0470-z
http://www.ncbi.nlm.nih.gov/pubmed/20842357
https://doi.org/10.1016/j.coi.2012.10.002
http://www.ncbi.nlm.nih.gov/pubmed/23141566
https://doi.org/10.1126/science.aao5154
http://www.ncbi.nlm.nih.gov/pubmed/29025991
https://doi.org/10.1038/nature03113
http://www.ncbi.nlm.nih.gov/pubmed/15592417
https://doi.org/10.1128/JVI.00701-13
http://www.ncbi.nlm.nih.gov/pubmed/23678182
https://doi.org/10.1093/nar/gkn202
http://www.ncbi.nlm.nih.gov/pubmed/18463140
https://doi.org/10.4049/jimmunol.165.6.3260
http://www.ncbi.nlm.nih.gov/pubmed/10975842
https://doi.org/10.1038/gene.2015.28
https://doi.org/10.1038/gene.2015.28
http://www.ncbi.nlm.nih.gov/pubmed/26291516
https://doi.org/10.1007/BF02421207
https://doi.org/10.1007/BF02421207
http://www.ncbi.nlm.nih.gov/pubmed/2777338
https://doi.org/10.1073/pnas.97.16.9209
http://www.ncbi.nlm.nih.gov/pubmed/10922072
http://www.ncbi.nlm.nih.gov/pubmed/87477
https://doi.org/10.1038/nri3370
http://www.ncbi.nlm.nih.gov/pubmed/23334245
https://doi.org/10.7554/eLife.34961


Park SY, Guo X. 2014. Adaptor protein complexes and intracellular transport. Bioscience Reports 34:381–390.
DOI: https://doi.org/10.1042/BSR20140069, PMID: 24975939

Pearson H, Daouda T, Granados DP, Durette C, Bonneil E, Courcelles M, Rodenbrock A, Laverdure JP, Côté C,
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