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Abstract

Objective

To identify intrinsic differences in cartilage gene expression profiles between wild-type- and

Dio2-/--mice, as a mechanism to investigate factors that contribute to prolonged healthy tis-

sue homeostasis.

Methods

Previously generated microarray-data (Illumina MouseWG-6 v2) of knee cartilage of wild-

type and Dio2 -/- -mice were re-analyzed to identify differential expressed genes indepen-

dent of mechanical loading conditions by forced treadmill-running. RT-qPCR and western

blot analyses of overexpression and knockdown of Calr in mouse chondro-progenitor cells

(ATDC5) were applied to assess the direct effect of differential Calr expression on cartilage

deposition.

Results

Differential expression analyses of articular cartilage of Dio2-/- (N = 9) and wild-type-mice

(N = 11) while applying a cutoff threshold (P < 0.05 (FDR) and FC > |1,5|) resulted in 1

probe located in Calreticulin (Calr) that was found significantly downregulated in Dio2-/-

mice (FC = -1.731; P = 0.044). Furthermore, overexpression of Calr during early chondro-

genesis in ATDC5 cells leads to decreased proteoglycan deposition and corresponding

lower Aggrecan expression, whereas knocking down Calr expression does not lead to histo-

logical differences of matrix composition.

Conclusion

We here demonstrate that the beneficial homeostatic state of articular cartilage in Dio2-/-

mice is accompanied with significant lower expression of Calr. Functional analyses further
showed that upregulation of Calr expression could act as an initiator of cartilage destruction.

The consistent association between Calr and Dio2 expression suggests that enhanced

expression of these genes facilitate detrimental effects on cartilage integrity.
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Introduction
Osteoarthritis (OA) is a prevalent, complex, chronic and disabling disease among elderly and is
characterized by progressive destruction of joint cartilage, remodeling of the subchondral
bone, formation of osteophytes and synovitis [1,2]. The aetiology of OA is not entirely under-
stood, yet multiple factors such as joint injury, obesity and mechanical stress have been found
to significantly contribute to the onset and progression of the disease. Moreover, OA has a con-
siderable genetic component and a variety of genetic studies have identified multiple genes that
robustly confer risk to OA [3,4]. A notable OA risk gene is the deiodinase iodothyronine type-
2 (D2) gene (DIO2) [5] that has multiple lines of substantiating functional follow up data indi-
cating that risk allele carriers have a more vivid upregulation of DIO2 expression in articular
cartilage. In vitro cell studies as well as a cartilage-specific transgenic rat study indicated that
this resulted in cartilage destruction. In this in vitromodel, inhibiting DIO2 action, resulted in
prolonged cartilage homeostasis, as where Dio2-/--mice were shown to be protected against
treadmill-running induced OA [6].Moreover, genome wide expression analysis of articular car-
tilage of Dio2-/- and wild-type mice, before and after forced treadmill-running, demonstrated
that particularly Calr,Hmgb2, Sox4 and Socs2 were differentially regulated in the Dio2-/- mice
upon the mechanical applied stresses [6]. As Dio2-/- mice had less cartilage damage these genes
likely contribute to enhanced adaptive capacity to environmental challenges such as mechani-
cal overloading. In parallel to these finding, there is need for insight into intrinsic molecular
pathways that assure articular cartilage tissue homeostasis independent of environmental chal-
lenges. In the current study, we therefore re-analysed our micro-array expression data of wild
type and Dio2-/- mice independent of mechanical loading by treadmill-running and performed
functional studies to validate results.

Materials and Methods

DIO2-/- treadmill-running animal model and microarray assay
Animal experiments. As described previously [6], Dio2-/--mice were a kind gift of Dr. V.

Galton (Dartmouth Medical School, NH, USA) and were backcrossed onto the C57Bl/6 back-
ground. In the experiments reported here, mice were in the 6th generation of backcrossing.
Wild-type C57/Bl6 mice were purchased from Janvier (Le Genest St Isle, France). All experi-
ments were approved by the Ethics Committee for Animal Research (KU Leuven, Belgium).

Four to 6-months old male Dio2-/--and wild-type-mice were subjected to a forced treadmill-
running regimen on a four lane modular treadmill (Columbus Instruments, Columbus, OH,
USA). These mice ran for 3 weeks 1 hour/day, 5 days/week, at a speed of 11 m/min and with an
inclination of 5°. All animals, including mice that were used as non-running controls, were lit-
termates and were caged together and housed in the same facility [6]. Mice were group housed
in standard mouse cages with sawdust as bedding material and under conventional laboratory
conditions; constant room temperature (22 +/- 2°C), humidity level (55 +/- 5%), a 12-h
light:12-h dark cycle (lights on at 8 AM) and standard food (Sniff, Soest, Germany) and water
available ad libitum. Mice were euthanized by decapitation under sedation.

RNA isolation of murine knee cartilage. For gene expression studies, cartilage was
micro-dissected, snap frozen in liquid nitrogen, and stored at -80° Celsius upon isolation. Car-
tilage of left-side knee-joints of Dio2-/— (n = 6 NoRun and n = 12 Run) and wild-type-mice
(n = 6 NoRun and n = 16 Run) was used for RNA isolation. To gain isolation efficiency and
thereby mRNA quality, articular cartilage of knee-joints of two mice from the same sub-group
were pooled resulting in n = 9 Dio2-/- and n = 11 wild-type samples, analyzed in the manuscript
[6].
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Microarray analysis. Sample homogenization, RNA isolations, complementary DNA syn-
thesis, amplification, biotin labeling and hybridization onto the Illumina MouseWG-6 v2 Bead-
Chip microarrays (Illumina, Eindhoven, The Netherlands) were performed as described [6].
Samples were dispersed for experimental condition over the arrays of 6 chips from a single
batch, and each chip contained a replicate sample that was also present on a second chip, to
exclude batch effects across chips. Slide scanning, basic quality control and data normalization
were performed as described [6]. Replicates measured over the different chips were taken into
account when performing normalization. For further analysis, the replicate with the lowest
number of calls was discarded from the dataset. Raw probe-level data were exported for analy-
ses using the Limma R-package [7]. We checked the data for large-scale batch effects between
chips using principal component analysis. Probes with P-value�0.05 after FDR correction for
multiple testing were considered significant.

Gain and loss of function of Calr in ATDC5, chondrogenic induction and
histological evaluation
The murine chondrogenic cell line ATDC5 (kindly provided by H.C.M. Sips, LUMC) was
maintained in DMEM/Ham’s F-12 (1:1 Gibco) supplemented with 5% FBS and antibiotics at
37°C in a humidified 10% CO2 / 90% atmosphere. To induce chondrogenesis, ATDC5 cells
were plated in the medium described above supplemented with ITS+ (6.25 μg/ml insulin,
6.25 μg/ml transferrine, 6.25 ng/ml sodium selenite, 5.33 linoleic acid, and 1.25 μg/ml bovine
serum albumine; Becton&Dickinson, Breda, The Netherlands). The medium was replaced
every other day. The total cell culture time was 4 days.

For Calr overexpression purposes, a plasmid vector containing untagged mouse Calr
(pCMV3-mCalr) was purchased (Sino Biological Inc., Beijing, P.R. China). As a control for the
Calr overexpression experiments, ATDC5 cells were transfected with an empty pCMV3 vector.
For knockdown of Calr expression, 3 unique 27mer siRNA duplexes, specific for Calr, were
purchased (OriGene technologies, Rockville, MD, USA). Together with the 27mer siRNA
duplexes a universal scrambled negative control siRNA duplex (OriGene technologies) was
purchased to be used as a control for the knockdown experiments. The day before transfection,
ATDC5 cells were passaged 1:6 from a confluent 6-well plate into a new 12-wells plate.
Fugene1 6 transfection reagent was used to transfect ATDC5 cells with either themCalr-vec-
tor or control vector, or the mixed siRNA duplexes or control duplex, according to the manu-
facturers protocol. One day after transfection, regular proliferation medium was changed for
chondrogenesis medium. After 4 days of chondrogenesis, the cells were harvested for RNA and
histology.

ATDC5 cells were fixed in 4% formaldehyde and stained for acidic polysaccharides (glycos-
aminoglycans (GAGs)) with Alcian Blue (8-GX pH = 1; Sigma-Aldrich). To measure the stain-
ing intensity, the Alcian Blue staining was washed with 6M guanidine hydrochloride (Sigma-
Aldrich) to decolorize the extracellular matrix. Intensity of the supernatant was measured
using a photospectrometer at 620 nm wavelength. Experiments were perfomed with biological
triplo’s.

DIO2 overexpressing hBMSCs, 3D chondrogenic induction and mRNA
evaluation
Previously, we performed in vitro 3D chondrogenesis using lentiviral DIO2 transduced
hBMSCs[8]. Chondrogenesis was initiated in 0.5 ml serum-free chondrogenic differentiation
medium (DMEM, supplemented with Ascorbic acid (50 μg/ml; Sigma-Aldrich; Zwijndrecht,
The Netherlands), L-Proline (40 μg/ml; Sigma-Aldrich), Sodium Puryvate (100 μg/ml; Sigma-
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Aldrich), Dexamethasone (0,1 μM; Sigma-Aldrich), ITS+, antibiotics, and TGF-β1 (10 ng/ml;
PeproTech)). Lentiviral constructs containing C-terminal FLAG-tagged cys-D2 (kindly pro-
vided by Prof. Dr. Bianco[9]) were constructed and transduced into hBMSCs as described
before [8]. Here we used 3D pellets that were snap frozen in liquid nitrogen and stored at -80
degrees Celsius.

RNA isolation. RNA from the ATDC5 cells was isolated by lysing the cells in 500 μl of
TRIzol1 reagent (Life Technologies, Bleiswijk, The Netherlands), and 200 μl of chloroform
was added before centrifugation (15 min at 14.000g). After addition of 1 v/v 70% ethanol/
DEPC-treated water to the aqueous upper layer total RNA was isolated using Qiagen RNeasy
mini columns following the manufacturer’s protocol. RNA isolation from the hBMSC pellets
was performed by pooling two pellets for every given condition, respectively. The isolation of
RNA was performed as described previously[10]. RNA quantity was assessed using a nanodrop
spectrophotometer (Thermo Fisher Scientific Inc., Wilmington, USA).

Quantitative RT-PCR assay (validation). Isolation of RNA was performed as described
previously[6]. Approximately, 500 ng of total RNA was processed with the “First Strand cDNA
Synthesis Kit” according to the manufacturer’s protocol (Roche Applied Science, Almere, The
Netherlands), upon which cDNA was diluted 5 times. RT-qPCR measurements were per-
formed on the Roche Lightcycler 480 II, using Fast Start Sybr Green Master reaction mix
according to the manufacturer’s protocol (Roche Applied Science). Relative gene expressions
of the Roche Lightcycler 480 II data were calculated by using the 2-ΔΔCt method[11]. The
housekeeping gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as a single
reference gene for qPCR[12,13]. Primer efficiencies were verified by performing a concentra-
tion curve experiment (primer sequences used are listed in S1 Table). The student T-test was
used to calculate the significance. All P-values< 0.05 were considered statistically significant.

Results
After quality control and normalization of micro array expression data of articular cartilage of
N = 9 Dio2-/- and N = 11 wild-type mice, 18226 of the 45281 probes were found to have a
detectable expression level, representing 12312 unique genes (~49% of the mouse transcrip-
tome) and 2707 RIKEN sequences (S2 Table). Differential expression analyses while applying
a cutoff threshold (P< 0.05 (FDR) and FC> |1,5|)[6] resulted in only 1 probe located in Calre-
ticulin (Calr) that was found significantly downregulated in Dio2-/- mice (FC = -1.731;
P = 0.044). Technical validation by RT-qPCR in N = 20 samples (N = 9 Dio2-/- and N = 11 wild
type mice) of the discovery cohort confirmed the expression difference (S1 Fig). Notably, our
previous data showed that forced treadmill-running had a profound effect on Calr expression
(FC = -1,58, P = 0,0418)[6] in cartilage of wild-type-mice. However, stratifying expression of
Calr by both mice type (Dio2-/-, Wildtype) and exposure (Run, Norun) shows that the here
identified Calr-effect appears to be independent of the mechanical challenge (Fig 1).

Next, we investigated the effect of altered Calr expression on the chondrogenic capacity of
ATDC5 cells. As measured by photospectrometry, overexpressing Calr during early 2D chon-
drogenesis resulted in significant lower Alcian Blue staining, indicating less glycosaminoglycan
deposition (Fig 2). Concurrently, RT-qPCR confirmed significant lower mRNA expression lev-
els of Acan (FC = -2,32) (Fig 3). Of note was the 1.8-fold upregulation of Dio2 in the cells over-
expressing Calr, albeit that this effect by definition was not significant (P = 0.08). On the other
hand, knockdown of Calr, by siRNA duplexes in this model, did not show an effect on the
amount of deposited glycosaminoglycans stained by Alcian Blue (Fig 2) nor on the mRNA
expression levels of Acan (Fig 3). However, a significant 4.7-fold downregulated effect was
observed for Dio2mRNA expression levels (P = 0,017).
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Finally, to confirm the transcriptional link between of DIO2 and CALR expression, we
examined CALR expression in cartilage constructs previously generated from human BMSCs
in vitro 3D chondrogenesis and compared them to those generated while applying overexpres-
sion of DIO2 by lentiviral transduction[8]. As shown in Fig 4, also in this human BMSCs in
vitro 3D chondrogenesis model overexpressing DIO2 coincided with significant higher CALR
expression.

Discussion
In parallel to disease modifiers, there is a need for insight into intrinsic factors that enhance sta-
bility of healthy articular chondrocytes. We show that cartilage of the Dio2-/- as compared to
wild type mice has an intrinsic difference in Calr expression. Since Dio2-/- mice were previously
found to be less susceptible to mechanically induced damage, our data indicate that mitigated
Calr and/or Dio2 expression, mark a beneficial homeostatic state of articular cartilage. Despite

Fig 1. Calreticulin expression stratified for treadmill-running and knockout.Representation of theCalr expression
values of all individual samples plotted by genotype-group (Wild-type and Dio2-/-) and treadmill-running-group (No Run
and Run). Showing the significant reduction of Calr expression upon forced treadmill-running in wild-type-mice (P = 0,005)
and the absence of change in the knockout-mice. P-values depicted are derived from Student T-Test.

doi:10.1371/journal.pone.0154999.g001
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the, here outlined, consistent association between Calr and Dio2 expression, no thyroid respon-
sive elements were identified near Calr[14] nor did Calr show any predicted interactivity with
thyroid hormone signaling based on String-DB [15].

Fig 2. OverexpressingCalr resulted in significantly lower Alcian Blue (AB) staining intensities.
Staining intensities of Alcian Blue staining measured with a photospectrometer (620 nm). Values are
displayed as the average±SEM, relative to the control sample. Differences were analyzed with Student
T-Test ((*) P < 0.05).

doi:10.1371/journal.pone.0154999.g002

Fig 3. Expression analyses inCalr overexpressing ATDC5 cells.RT-qPCR expression ofCalr, Dio2 and
Acan in ATDC5 cells transfected with either aCalr-containing vector for overexpression (Calr+) or 3 unique
27mer siRNA duplexes, specific for Calr, for knockdown (Calr-). Values of the RT-qPCR are displayed as the
average±SEM, normalized forGAPDH expression and relative to the control samples (dashed line).
Differences were analyzed with Student T-Test ((*) P < 0.05).

doi:10.1371/journal.pone.0154999.g003
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Calr is a multifunctional protein that was shown to have many putative roles. Some exam-
ples are: Ca2+-binding, storage and stress induced release[16], quality control molecular chap-
erone binding to miss folded proteins and preventing them from being exported from the
endoplasmic reticulum to the Golgi apparatus, and modulator of steroid-sensitive gene expres-
sion[17–21]. For that matter, the amino terminus of Calr interacts with the DNA-binding
domain of nuclear hormone receptors (the glucocorticoid receptor[17], androgen receptor[18],
and retinoic acid receptor[22]) and prevents the receptors from binding to their specific
response elements, influencing transcriptional activities in vitro and in vivo. Furthermore, Calr
expression was shown to be associated with cartilage thinning of mandibular cartilage in a rat
model that studied the effects of compressive mechanical loading[16], and has been implicated
in the pathogenesis of rheumatoid arthritis (RA)[23].

Similarly, in this respect, we showed that overexpression of Calr during early chondrogen-
esis in ATDC5 cells leads to decreased proteoglycan deposition and corresponding lower
Aggrecan expression, whereas knocking down Calr expression does not lead to histological dif-
ferences of matrix composition. It was shown before that increasing levels of Calr, sensitized
the cells to apoptosis during mechanical-induced endoplasmatic reticulum-stress, while
decreasing Calr levels protected cells from apoptosis[24]. It was hypothesised that by regulating
the amount of calcium stored in the ER, and therefore the amount that can be released to the
cytosol to trigger downstream events, Calr can affect apoptotic outcomes[25]. Given our data,
we hypothesize that lower levels of Calr expression, as seen in the Dio2-/--mice, could results
in a more subtle calcium-induced apoptotic signal upon stress, being favourable for the

Fig 4. Calreticulin expression inDIO2 overexpressing hBMSCs. qPCR expression ofCalr in hBMSCs transduced with either a
control virus-vector (eGFP) or a DIO2-eGFP vector. Values of the RT-qPCR are displayed as the average±SEM, normalized for
GAPDH expression and relative to the control sample at every timepoint. Differences were analyzed with Student T-Test ((*)
P < 0.05).

doi:10.1371/journal.pone.0154999.g004
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maintenance of cartilage tissue homeostasis. The beneficial effect of reduced calcium-levels for
cartilage integrity is supported by a recent study which reported that calcium antagonists
might be efficient in preventing progression of OA[26].

Together, we here demonstrate that the beneficial homeostatic state of articular cartilage in
Dio2-/- mice is accompanied with significant lower expression of Calr. Moreover, we showed
that increased Calr expression could directly provoke cartilage destruction. Given their consis-
tent association, we conclude that enhanced interactive expression of Calr and Dio2 contributes
to detrimental effects on cartilage integrity. The precise molecular mechanism of Calr in the
maintenance of cartilage homeostasis and its interplay with Dio2 signalling is, however, little
explored and more research is therefore needed.

Supporting Information
S1 Fig. Expression validation of Calr by RT-qPCR. Values of the RT-qPCR are displayed as
the average±SEM, normalized for GAPDH expression and relative to the control samples. Dif-
ferences were analyzed with Student T-Test ((�) P< 0.05).
(TIF)

S1 Table. Primer sequences used for RT-qPCR.
(XLSX)

S2 Table. Microarray data (FDR-corrected P-values) of probes with detectable expression
levels.
(XLSX)
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