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Abstract: The accurate and prompt recognition of a driver’s cognitive distraction state is of great
significance to intelligent driving systems (IDSs) and human-autonomous collaboration systems
(HACSs). Once the driver’s distraction status has been accurately identified, the IDS or HACS
can actively intervene or take control of the vehicle, thereby avoiding the safety hazards caused
by distracted driving. However, few studies have considered the time–frequency characteristics
of the driving behavior and vehicle status during distracted driving for the establishment of a
recognition model. This study seeks to exploit a recognition model of cognitive distraction driving
according to the time–frequency analysis of the characteristic parameters. Therefore, an on-road
experiment was implemented to measure the relative parameters under both normal and distracted
driving via a test vehicle equipped with multiple sensors. Wavelet packet analysis was used to
extract the time–frequency characteristics, and 21 pivotal features were determined as the input of
the training model. Finally, a bidirectional long short-term memory network (Bi-LSTM) combined
with an attention mechanism (Atten-BiLSTM) was proposed and trained. The results indicate that,
compared with the support vector machine (SVM) model and the long short-term memory network
(LSTM) model, the proposed model achieved the highest recognition accuracy (90.64%) for cognitive
distraction under the time window setting of 5 s. The determination of time–frequency characteristic
parameters and the more accurate recognition of cognitive distraction driving achieved in this work
provide a foundation for human-centered intelligent vehicles.

Keywords: intelligent driving system; cognitive distraction driving; wavelet packet analysis; long
short-term memory network; attention mechanism

1. Introduction

Distracted driving has developed as one of the dominating inducements of crashes [1], and
happens when a driver consciously or unconsciously transfers their attention from the main driving
operation to other tasks unrelated to driving; this attention shift impairs the driver’s scenario perception,
decision-making, and manipulative effects [2]. With the widespread use of information media such
as in-vehicle information systems and cell phones, more and more distracted driving has appeared
and seriously threatens traffic safety [3]. It is evident that distraction severely impacts driving safety.
Therefore, for intelligent driving systems (IDSs), determining how to effectively detect and recognize
driver distraction is the key to, and prerequisite for, taking intervention measures [4].

Distracted driving is usually categorized as one of three types, namely operational distraction,
visual distraction, and cognitive distraction [5]. Operational distraction refers to the transfer of the
driver’s senses or locomotive organs from the vehicle handling structure required by the main driving
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task to other places, such as by shifting hands from the steering wheel, resulting in the driver being
unable to safely manipulate the vehicle [6]. Visual distraction means that the driver’s sight intentionally
or unintentionally leaves the road and shifts to something unrelated to driving [7]. Cognitive distraction
refers to the driver reflecting on other tasks unrelated to driving, which makes the driver unable to
drive safely or impairs his or her reaction ability [8]. However, both visual and operation distraction
will inevitably be accompanied by cognitive distraction, the impact of which on driving safety is more
complex and subtle. In their summary of the impacts of disparate classifications of distraction on
driving safety, Hagiwara et al. [9] pointed out that assessing the influence of cognitive distraction on
driving safety must be the focus of future research. In addition, compared to cognitive distraction, the
visual distraction and operational distraction can be more easily recognized by IDSs; moreover, drivers
themselves are more likely to be aware of the risks of visual and operational distraction, but lack of
awareness of the extent of the danger of cognitive distraction or easily ignore the impact of cognitive
distraction on driving safety [10]. Most related studies have not conducted in-depth research on the
recognition of cognitive distraction.

The core of the construction of a recognition model of cognitive distraction is to extract the features
of the vehicle’s state and driver operation data during the driver’s cognitive distraction to provide a
basis for model establishment. Ranney et al. [11] required test subjects to complete simple tasks, difficult
tasks, and basic tasks as quickly as possible while maintaining a constant car-following distance, and
the results revealed that the steering wheel rotation rate increased when performing secondary tasks,
thereby indicating cognitive distraction. During a study of the driving behaviors of drivers while they
made mathematical calculations, Shi et al. [12] proposed that the number of steering wheel turns and
the number of pedal depressions increased with the increased level of brain load. Overall, cognitive
distraction may lead to poorer steering stability. Harbluk et al. [13] used the number of emergency
braking events to represent the driver’s longitudinal control ability, and found that the number of
emergency braking events increased significantly with the promotion of the difficulty of cognitive
distraction tasks. Peng et al. [14] studied the influence of cognitive distraction caused by an on-board
information system on vehicle longitudinal control ability via a simulator. The results indicated that
the cognitive distraction caused by both text input and text reading tasks led to significant increases
(45% and 30%, respectively) in the standard deviation of the headway time as compared with normal
driving. The standard deviation of lane position (SDLP) is generally employed to describe the lateral
control ability. Liang et al. [15] manifested that the SDLP decreased and the lane-keeping characteristics
improved when drivers performed cognitive distraction tasks. Jan et al. [16] proposed that the driver’s
gaze point would be more concentrated and the lane-keeping ability would be improved via driving
simulator and real vehicle experiments. Through an on-road test of skilled drivers, Deram et al. [17]
confirmed that the steering wheel angle, lateral position, lateral speed, and steering wheel angular
speed of the vehicle during cognitive distraction driving were significantly different from those during
normal driving, and can therefore be employed to characterize cognitive distraction.

Cognitive distraction recognition has been the theme of abundant empirical research that
has analyzed diverse characterization parameters and machine learning algorithms to establish
identification models. Fagerberg et al. [18] implemented on-road tests and detected the distracted state
of drivers via the vehicle speed, steering wheel angular speed, and steering signal. Yang et al. [19]
used a global positioning system (GPS) to collect data on the vehicle speed, yaw angle, lateral position,
and longitudinal position, then employed Gaussian mixture models (GMMs) to identify cognitive
distraction behavior; the average recognition rate reached 70%. Yekhshatyan [20] detected distraction
via the driver’s visual behavior and vehicle operating state, and it was revealed that the combination of
these factors can promote the competence of machine learning models to identify visual and cognitive
distraction. Kutila et al. [21] combined eye movement and lane-keeping characteristics to detect the
cognitive distraction state of drivers, and used a support vector machine (SVM) to classify the collected
data; it was found to be able to detect 80% of visual distraction and 68%–86% of cognitive distraction.
He et al. [22] used multiwavelet transform and Fourier transform to analyze data on the steering wheel
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angle collected from a driving simulator test, and proved that it is effective and feasible to employ the
wavelet transform of the steering wheel angle data to detect the driver’s mental state by employing
the chaos theory analysis method. Zhao et al. [23] extracted the energy characteristics of dangerous
driving behavior parameters in different frequency bands via multiwavelet analysis, and combined the
time domain, spatial information, and phase to construct the characteristic parameters of dangerous
driving behavior. Finally, an SVM was employed to classify the driving status. The digital memory
and logical reasoning served as secondary tasks in the study from Jin et al. [24] for the analysis of
normal driving and cognitive distraction driving characteristics via a driving simulator. The vehicle
speed, vehicle acceleration, vehicle yaw velocity, steering wheel angle, and steering wheel angular
velocity were collected as characteristic parameters to recognize cognition distraction, and the results
revealed that the recognition rate of the straight line reached 88.58%.

At present, the overwhelming majority of cognitive distraction recognition models are established
based on the analysis of time domain features [25–27]. To explore whether a driver is in a cognitive
distraction status via the operational behavior and vehicle movement data, the key is to determine
characteristic parameters that can distinguish normal driving from distracted driving. However, the
driving behavior and vehicle movement signals are not stable, which manifests that the mean, variance,
and covariance of the collected related parameters will transform over time. It is often imperative to
know the trend of the variation of the signal spectrum with time when processing non-stationary time
series data, i.e., the time–frequency characteristic of the signal [28,29]. Therefore, it is not sufficient to
homogeneously construct a recognition model by extracting the cognitive distraction characteristic
parameters from the time domain or frequency domain.

To address the deficiencies in the recognition models of cognitive distraction for IDSs, in the
present research, the six-layer wavelet packet of the collected driving behavior and vehicle state
parameters were decomposed and reconstructed from the perspective of time–frequency characteristic
analysis through the implementation of the wavelet package analysis method. The distribution
characteristics of the relative energy of the corresponding frequency bands during normal driving and
cognitive distraction driving were studied, and the frequency band energy with a significant difference
was determined as the characteristic index. On this basis, a bi-directional long short-term memory
(Bi-LSTM) network combined with an attention model (Atten-BiLSTM) was employed to establish a
recognition model of cognitive distraction. In addition, on-road experiments of a real vehicle were
designed and implemented to obtain cognitive distraction driving data under the designed cognitive
distraction tasks. Calculation questions and the memorization of phone numbers were selected as
distraction subtasks. The driving behavior and vehicle state parameters included the steering wheel
angle, steering wheel angular velocity, vehicle speed, vehicle yaw rate, and vehicle longitudinal and
lateral acceleration, and data on these parameters while the drivers were engaged in different subtasks
were collected. Finally, the feature sequences of cognitive distraction from on-road tests were employed
to train the identification model and perform offline experimental verification.

The remainder of the paper is structured as follows. Section 2 details the methods used in this
work, including wavelet packet analysis and the Atten-BiLSTM network. Section 3 provides detailed
information on the experimental design, process, equipment, and sensors. Section 4 exhibits the results
of the time–frequency analysis of the data of characteristic parameters collected when drivers were
cognitively distracted. The recognition results of cognitive distraction from the Atten-BiLSTM, SVM,
and LSTM methods are introduced in Section 5. Finally, discussions and conclusions are exhibited in
Section 6. The main framework of this study is presented in Figure 1.
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Figure 1. Cognitive distraction recognition framework. 

2. Method 
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in this study, wavelet packet analysis was employed to extract the time–frequency characteristics of 
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decomposition algorithm, new features based on the time–frequency analysis could be extracted 
from the time series data, which can provide support for improving the accuracy of the recognition 
model. In addition, traditional machine learning algorithms have been widely used in the 
establishment of distraction recognition models. This article employed the deep learning algorithms 
to train the time–frequency features of cognitive distractions and establish a recognition model. 
Among the deep learning algorithms, Bi-LSTM has great advantages in processing long-term 
sequences. Therefore, this paper determined the Bi-LSTM algorithm as the foundation for the 
establishment of the recognition model. In order to further improve the performance of the 
recognition model, this paper brought in the attention mechanism based on the Bi-LSTM model, 
thereby increasing the model's attention to the pivotal features, and then promoting the recognition 
accuracy of the cognitive distraction recognition model.   

2.1. Wavelet Packet Analysis 

Wavelet analysis theory is a new function approximation tool and a novel approach of 
time–frequency analysis and is the consequence of the inheritance and development of Fourier 
analysis theory [30]. Fourier transform can only separately analyze data from the time domain or 
the frequency domain, and cannot combine the two domains to observe the signal. Wavelet 
transform analyzes the signal via a window function called the wavelet function, which is the same 
as the short-time Fourier transform [31]. However, a significant peculiarity of the wavelet transform 
is that the local characteristics of the signal could be analyzed together with both the time and 
frequency domains. Another peculiarity is multi-resolution analysis, i.e., the resolutions of 
frequency and time can be changed according to varied requirements. In wavelet transform, at high 
signal frequencies, the frequency resolution decreases and the time resolution increases; on the 
contrary, the frequency resolution increases and the time resolution decreases at low signal 
frequencies [32]. Therefore, wavelet transform was employed in the present study to extract the 
time–frequency characteristics of driving behavior and vehicle status data when drivers were 
cognitively distracted, and new characteristic parameters were determined. Therefore, this study 
ameliorates the research method of cognitive distraction and provides a basis for the establishment 
of a recognition model.     

Figure 1. Cognitive distraction recognition framework.

2. Method

Time–frequency characteristic analysis is pivotal to obtain non-stationary time series features.
However, scarce research has focused on the time–frequency characteristics of the driving behavior
and vehicle status during distracted driving for the establishment of a recognition model. Therefore,
in this study, wavelet packet analysis was employed to extract the time–frequency characteristics
of the collected data including the steering wheel angle, steering wheel angular velocity, vehicle
speed, vehicle yaw rate, and vehicle longitudinal and lateral acceleration. By using the six-layer
decomposition algorithm, new features based on the time–frequency analysis could be extracted from
the time series data, which can provide support for improving the accuracy of the recognition model.
In addition, traditional machine learning algorithms have been widely used in the establishment
of distraction recognition models. This article employed the deep learning algorithms to train the
time–frequency features of cognitive distractions and establish a recognition model. Among the deep
learning algorithms, Bi-LSTM has great advantages in processing long-term sequences. Therefore, this
paper determined the Bi-LSTM algorithm as the foundation for the establishment of the recognition
model. In order to further improve the performance of the recognition model, this paper brought
in the attention mechanism based on the Bi-LSTM model, thereby increasing the model’s attention
to the pivotal features, and then promoting the recognition accuracy of the cognitive distraction
recognition model.

2.1. Wavelet Packet Analysis

Wavelet analysis theory is a new function approximation tool and a novel approach of
time–frequency analysis and is the consequence of the inheritance and development of Fourier
analysis theory [30]. Fourier transform can only separately analyze data from the time domain or the
frequency domain, and cannot combine the two domains to observe the signal. Wavelet transform
analyzes the signal via a window function called the wavelet function, which is the same as the
short-time Fourier transform [31]. However, a significant peculiarity of the wavelet transform is that
the local characteristics of the signal could be analyzed together with both the time and frequency
domains. Another peculiarity is multi-resolution analysis, i.e., the resolutions of frequency and time
can be changed according to varied requirements. In wavelet transform, at high signal frequencies,
the frequency resolution decreases and the time resolution increases; on the contrary, the frequency
resolution increases and the time resolution decreases at low signal frequencies [32]. Therefore, wavelet
transform was employed in the present study to extract the time–frequency characteristics of driving
behavior and vehicle status data when drivers were cognitively distracted, and new characteristic
parameters were determined. Therefore, this study ameliorates the research method of cognitive
distraction and provides a basis for the establishment of a recognition model.
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According to the research results of multi-resolution analysis, if the standard orthogonal basis
in S2(O) is composed of binary discrete wavelet function clusters

{
ξ j,n (t); j, n ∈ Z}, the orthogonal

wavelet decomposition of the input data x(t) ∈ S2(O) is as follows:

x(t) =
M∑

j=1

∑
n∈Z

a j
nξ j,n(t) +

∑
n∈Z

bM
n ϑ j,n(t), (1)

where M is the number of decompositions, d j
n is the coefficient of wavelet decomposition, bM

n is the
coefficient of scale decomposition, ξ j,n(t) and ϑ j,n(t) are a cluster if binary orthogonal functions are

determined by the basic wavelet function ξ(t) and a basic scale function ϑ(t), respectively; and a j
n and

bM
n meet the following recursive decomposition criterion.

a j+1
n =

∑
l∈Z

b j
l h1(l−2n)

b j+1
n =

∑
l∈Z

b j
l h0(l−2n)

(2)

where h0n and h1n are two filters that satisfy the two-scale difference equation, as follows.
ξ(t) =

√
2

∑
n∈Z

h0nξ(2t− n)

ϑ(t) =
√

2
∑

n∈Z
h1nϑ(2t− n)

(3)

Wavelet packet analysis can decompose the frequency band at multiple levels. To enhance the
time–frequency resolution, the high-frequency part is further decomposed with a lower-frequency
resolution during wavelet analysis. Let ξ(t) and ϑ(t) satisfy the two-scale criterions. Note that
λ0(t) = ξ(t), λ1(t) = ϑ(t), and the definitions are as follows.

λ2m(t) =
√

2
∑

n∈Z
h0nλm(2t− n)

λ2m+1(t) =
√

2
∑

n∈Z
h1nλm(2t− n)

(4)

The orthogonal wavelet packet is the functional system
{
λm (t)

}
m∈Z , which is determined by

λ0(t) = ξ(t). Therefore, the wavelet packet λ0(t) = ξ(t) is a set of related functions including the scale
function λ0(t) and the wavelet function λ1(t). By applying the orthogonal wavelet decomposition
algorithm to the wavelet packet, the seasoning relationship of the wavelet packet decomposition
algorithm is as follows.

a j+1,2m
n =

∑
l∈Z

a j,m
l h0(l−2n) (5)

a j+1,2m+1
n =

∑
l∈Z

a j,m
l h1(l−2n) (6)

Then, the wavelet packet reconstruction algorithm is as follows.

a j,m
n =

∑
l∈Z

a j+1,2m+1
l h0(n−2l) +

∑
l∈Z

a j+1,2m
l h1(n−2l) (7)

The steps of the feature extraction of frequency band energy after wavelet packet decomposition
mainly include the following (three-layer decomposition is used as an example for illustration). First,
the wavelet basis function is selected to perform three-layer decomposition on the original signal.
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Then, the signal is reconstructed according to the decomposition coefficient obtained in the previous
step, and the formula for expressing the original signal with the reconstructed signal is as follows:

D = D30 + D31 + D32 + D33 + D34 + D35 + D36 + D37, (8)

where D is the primitive signal, Di j denotes the reconstructed signal of Xi j, Xi j is the coefficient of
wavelet packet decomposition, and (i,j) denotes the j-th node in the i-th layer.

Third, the energy E j of the reestablished data in each frequency band is solved. This is

defined as E j =
m∑

n=1

∣∣∣D3 j(n)
∣∣∣2, where the discrete signal amplitude of the reconstructed signal D3 j is

D3 j(n), n = 1, 2, · · · , m, and m represents the extent of the reconstructed data. Finally, E j is normalized;

E j represents the energy of the reestablished data, and the total energy is E =
7∑

j=0
E2

j . The normalized

relative energy is as follows.

R j =
E j

E
; j = 0, 1 . . . 7 (9)

The energy gap between different frequency bands is very large. To facilitate observation and
comparison, the logarithmic value of normalized energy is taken as the analysis object, as given by
the following.

En j = log R j; j = 0, 1 . . . 7 (10)

The wavelet basis function can be divided into orthogonal and non-orthogonal functions.
The common orthogonal wavelet foundation functions mainly contain the Harr wavelet, Daubechies
wavelet, Coiflets wavelet, and Symlets wavelet, while the non-orthogonal wavelet basis functions mainly
involve the Morlet wavelet and Mexican hat wavelet. Orthogonal wavelet basis functions are used in
wavelet packet transformation and dyadic wavelet transformation. Both orthogonal and non-orthogonal
wavelet foundation functions could be applied in continuous wavelet transformation [33]. In this work,
the wavelet packet transform method was employed to deal with the data by employing the Haar
wavelet, Daubechies wavelet, and Symlets wavelet, respectively. By comparison, it was found that the
influence of the wavelet basis function was less than that of the decomposition layer. Finally, db3 was
intended as the wavelet foundation function.

To determine the number of decomposition layers, the relative frequency band energy results of
five, six, and seven decompositions and reconstructions of the yaw angular velocity using the db3
wavelet were comparatively analyzed. The results indicate that 32 frequency bands were obtained by
the decomposition and reconstruction of the five-layer wavelet packet, each of which had a bandwidth
of 0.31 Hz, resulting in fewer frequency bands and a larger bandwidth. There were very few frequency
bands with significant differences between different driving states. Additionally, 128 frequency bands
were obtained by the decomposition and reconstruction of the seven-layer wavelet packet, each of
which had a bandwidth of 0.078 Hz. There were more frequency bands and the bandwidth was also
suitable. However, the sampling time required for the seven-layer decomposition was nearly one
minute. Under normal circumstances, the time for cognitive distraction to occur is relatively short,
and the results obtained by the seven-layer decomposition cannot correspond to the actual situation.
Therefore, the six-layer decomposition was ultimately selected for consideration.

2.2. Bidirectional Long Short-Term Memory Network

The recurrent neural network (RNN) was established by Seppo for the processing of sequence
data, and a parameter-sharing method was employed to enhance the generalization competence of the
training network [34]. Although the RNN algorithm has achieved excellent results in various fields,
the problems of gradient explosion or disappearance in the backpropagation process have not been
effectively improved. To conquer the defects of the RNN algorithm, Hochreiter and Schmidhuber
constructed the long short-term memory network (LSTM) according to the RNN structure, and a
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gate-controlled cell including an input gate, forget gate, and output gate was introduced into the
unit [35]. The main function of the gate structure is to selectively delete or add relevant information to
the state of the cell to keep it continuously updated. Therefore, the structure effectively addresses the
imperfection of the long sequence dependence present in the RNN and enables the networks to have a
longer memory ability, thereby ameliorating the gradient explosion and disappearance problems [36].
The specific working procedures of the LSTM model are presented as follows.

(1) Apply the forget gate to delete irrelevant information in the cell unit. The specific information
that needs to be deleted is determined by the sigmoid layer in the forget gate. The input of the forget
gate is composed of the input data xt of the layer at the current moment and the hidden layer output
ht−1 at the last moment.

ft = σ
(
Vh·[ht−1, xt] + d f

)
(11)

where σ is the sigmoid function of the forget gate, Vh is the weight matrix, d f is the bias term, and
the output range of ft is [0,1]. The larger the output value, the lesser the degree of forgetting, i.e., the
more cell information is retained at the last time. At this moment, the output of the cell will be greatly
affected by the cell at the last moment.

(2) Use the input gate to add fresh information to the unit. The specific information that needs
to be added is determined by the sigmoid layer and the tanh layer in the input gate, as shown in
Equations (12) and (13). The input of the input gate is determined by data xt at the current moment
and the hidden layer output ht−1 at the last moment.

it = σ(Vt·[ht−1, xi] + di), (12)

C̃t = tanh(Vc·[ht−1, xi] + dc), (13)

where σ is the sigmoid function of the input gate, tanh is the tanh function, Vt and Vc are the weight
matrixes, di and dc are the bias terms, it is the update value of the input gate cell, and C̃t is the update
value of the tanh function.

(3) The update value of the cell state can be obtained by combining Equations (11)–(13). As shown
in Equation (14), the state value of the original cell is multiplied by the input of the forget gate to delete
irrelevant information. The results of the output values of the sigmoid layer and the tanh layer are
then combined with the output value of the forget gate to obtain the update value of the unit status Ct

at the current time.
Ct = ft·Ct−1 + it·C̃t, (14)

where Ct−1 is the unit status value at the last moment.
(4) Apply the output gate to transfer the relevant message to the cell at the next moment, which is

determined by the sigmoid layer in the output gate and the update value of the cell state. The output
of the sigmoid layer in the output gate is shown as follows:

ot = σ(V·[ht−1, xt] + do) (15)

where σ is the sigmoid function of the output gate, Vo is the weight matrix, and do is the bias term.
(5) The final output of the unit at the current moment ht can then be expressed as follows.

ht = ot·tan h(Ct) (16)

The cell unit in the LSTM network can usually only process information in one direction, while
Bi-LSTM can simultaneously process information in both the positive and negative directions, allowing
it to obtain more complete information sequence data. Let the input of the Bi-LSTM model at time t be
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xt. During information processing, the state update of the network layer of the Bi-LSTM model from
front to back is as follows:

⇀
h t = H

(
V

x
⇀
h t

xt + V⇀
h
⇀
h

⇀
h t−1 + d⇀

h

)
(17)

where H is the output function of the backward layer, V
x
⇀
h t

is the weight matrix from the input layer to

the forward layer, V⇀
h
⇀
h

is the weight matrix between the forward layers, and d⇀
h

is the bias term.
The state update of the network layer from front to back is shown as following.

↼
h t = H′

(
V

x
↼
h t

xt + V↼
h
↼
h

↼
h t−1 + d↼

h

)
(18)

where H′ is the output function of the forward layer, V
x
↼
h t

is the weight matrix from the input layer to

the backward layer, V↼
h
↼
h

is the weight matrix between the backward layers, and d↼
h

is the bias term.
Then, the output of the Bi-LSTM model after network layer superposition is

ht = H̃
(
V⇀

h o

⇀
h t + V↼

h o

↼
h t + do

)
(19)

where H̃ is the output function of the forward layer, V⇀
h o

is the weight matrix from the input layer to
the backward layer, V↼

h o
is the weight matrix between the backward layers, and do is the bias term.

2.3. Bi-LSTM with Attention Mechanism

The attention model is derived from the simulation of the visual signal processing mechanism of
the human brain [37]. When the brain is processing visual signals, it will focus on certain areas in the
image and extract relevant detailed features from these regions of focus. Similar to this mechanism,
the attention mechanism can filter out the parts that have an important impact on the task target from
the input data. The key feature information that is screened out can not only reduce the influence
of noise on the model training, but also effectively improves the operational efficiency and accuracy
of the algorithm [38]. In this work, the problem of a driver’s cognitive distraction recognition is
regarded as a modeling and classification problem based on time characteristic sequences. Since the
application of the attention mechanism model can ensure that greater weight is distributed to the
pivotal characteristics during the modeling process, this can effectively improve the model recognition
accuracy. Therefore, the attention model and Bi-LSTM model were combined in this study to establish
a recognition model of the cognitive distraction driving of drivers, and the model structure diagram is
exhibited in Figure 2.

Sensors 2020, 20, x FOR PEER REVIEW 8 of 25 

 

where ܪ is the output function of the backward layer, ௫ܸ௛ሬሬറ೟ is the weight matrix from the input 
layer to the forward layer, ௛ܸሬሬറ௛ሬሬറ is the weight matrix between the forward layers, and ݀௛ሬሬറ is the bias 
term. 

The state update of the network layer from front to back is shown as following. ℎരሬ௧ = )‘ܪ ௫ܸ௛രሬሬ೟ݔ௧ + ௛ܸരሬሬ௛രሬሬℎരሬ௧ିଵ + ݀௛രሬሬ) (18) 

where ܪ‘ is the output function of the forward layer, ௫ܸ௛രሬሬ೟ is the weight matrix from the input 
layer to the backward layer, ௛ܸരሬሬ௛രሬሬ is the weight matrix between the backward layers, and ݀௛രሬሬ is the 
bias term. 

Then, the output of the Bi-LSTM model after network layer superposition is ℎ௧ = ෩൫ܪ ௛ܸሬሬറ௢ℎሬറ௧ + ௛ܸരሬሬ௢ℎരሬ௧ + ݀௢൯ (19) 

where ܪ෩ is the output function of the forward layer, ௛ܸሬሬറ௢ is the weight matrix from the input layer 
to the backward layer, ௛ܸരሬሬ௢ is the weight matrix between the backward layers, and ݀௢ is the bias 
term. 

2.3. Bi-LSTM with Attention Mechanism 

The attention model is derived from the simulation of the visual signal processing mechanism 
of the human brain [37]. When the brain is processing visual signals, it will focus on certain areas in 
the image and extract relevant detailed features from these regions of focus. Similar to this 
mechanism, the attention mechanism can filter out the parts that have an important impact on the 
task target from the input data. The key feature information that is screened out can not only reduce 
the influence of noise on the model training, but also effectively improves the operational efficiency 
and accuracy of the algorithm [38]. In this work, the problem of a driver's cognitive distraction 
recognition is regarded as a modeling and classification problem based on time characteristic 
sequences. Since the application of the attention mechanism model can ensure that greater weight is 
distributed to the pivotal characteristics during the modeling process, this can effectively improve 
the model recognition accuracy. Therefore, the attention model and Bi-LSTM model were combined 
in this study to establish a recognition model of the cognitive distraction driving of drivers, and the 
model structure diagram is exhibited in Figure 2.  

A B C D…

…

F F F F…

w

Softmax Output layer

Attention layer

Bi-LSTM 
layer

Input layer

Time series

Sliding window T

Schematic diagram of working 
principle of the LSTM

Ct-1 Ct

ht-1 ht

xt

ht

 
Figure 2. Bidirectional long short-term memory network (Bi-LSTM) model with an attention 
mechanism. 

As shown in Figure 2, the established model includes four layers, namely the input layer, the 
Bi-LSTM layer, the attention layer, and the output layer. The input layer includes the features of 
time series after wavelet packet analysis, and the detailed description of the features selection is 
exhibited in Section 4. The Bi-LSTM layer is mainly composed of the LSTM models. The schematic 

Figure 2. Bidirectional long short-term memory network (Bi-LSTM) model with an attention mechanism.



Sensors 2020, 20, 4426 9 of 24

As shown in Figure 2, the established model includes four layers, namely the input layer, the
Bi-LSTM layer, the attention layer, and the output layer. The input layer includes the features of
time series after wavelet packet analysis, and the detailed description of the features selection is
exhibited in Section 4. The Bi-LSTM layer is mainly composed of the LSTM models. The schematic
diagram of the working principle of the LSTM model is presented in the left of the figure, and the
specific calculations of the LSTM model are described in Section 2.2. The Bi-LSTM layer implements
preliminary feature extraction on the input data. The attention layer performs linear weighting on the
input data (the output of the Bi-LSTM layer) to complete the screening of the pivotal features. When
several feature sequences are input, the attention algorithm obtains the weight value of each feature
sequence through a similarity calculation. The weight value is employed to denote the attention degree
of the attention mechanism to the feature sequences. The larger the weight is, the more attention the
algorithm pays to the feature sequence, that is, the greater the influence of the feature after weighted
combination. Therefore, in this work, a fully-connected layer is added on the basis of the Bi-LSTM
model to realize the learning function. The added learning function F is employed to calculate the
weight coefficient ct of the Bi-LSTM output vector ht, and the pivotal feature vector a can be calculated
by linear weighting. Finally, the softmax function in the output layer is used to output the recognition
results. The output of the learning function F can be expressed as follows:

ft = F(ht). (20)

The weight coefficient ct is

ct =
exp( ft)∑n

i=1 exp( ft)
. (21)

Then, the pivotal feature vector a can be computed as

n∑
i=1

ctht. (22)

In this study, because cognitive distraction recognition is a two-category problem (normal driving
and cognitive distraction driving), the softmax function was selected as the activation function, the
Adam algorithm was chosen as the optimizer, and binary_crossentropy was selected as the loss
function, and the computational formula is

loss = −
n∑

i=1

y̌ilogyi (23)

where y̌i denotes the true probability and yi denotes the predicted probability.
During the model training, the total sample set was distributed into a training set, a verification

set, and a test set according to the ratio of 6:3:1. The selected feature vectors are described in detail in
Section 4. The time window was selected as 5 s, the dropout rate was 0.4, and each layer of the model
contained 128 hidden units. The maximum number of epochs was 80. The learning rate in the Adam
algorithm was 0.01, and the attenuation value was 0.9.

3. On-Road Experiments

3.1. Apparatus

The experimental vehicle (exhibited in Figure 3) applied in the on-road tests was a multi-purpose
vehicle, which was equipped with a steering wheel angle sensor for the measurement of the steering
wheel angle and angular velocity during normal driving and cognitive distraction driving, and a
gyro sensor (IMU02) for the collection of the vehicle status data including the yaw rate, longitudinal
acceleration, and lateral acceleration. The vehicle was also equipped with a VBOX (a device that can
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determine a vehicle’s GPS coordinates) to record the vehicle speed, and a video monitoring system
to collect the operation data of the drivers and driving environment. The data collected from the
steering wheel angle sensor, gyro sensor, and VBOX were all transmitted through a CAN bus data
communication system.Sensors 2020, 20, x FOR PEER REVIEW 10 of 25 
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3.2. Participants and Driving Route

Thirty-two drivers (29 males and 3 females) were recruited in the cognitive distraction driving
tests. The age range of the drivers was 24 to 51 years old, and the mean age was 36.5 years, with a
standard deviation value of 7.62. The driving experience range of the participants was 6 to 29 years,
and the average value was 15.4 years, with a standard deviation value of 6.2. The total participants
possessed a driver’ license and they were not professional drivers. In addition, all the participants had
not undergone a serious crash in the past five years.

The choice of the test route has a direct impact on the implementation of a test, as well as the
driver’s physiology and psychology, thereby affecting the final test results. After conducting field
investigations on multiple road sections and comparing the alignment, traffic conditions, environment,
and other factors of each road section, Xitai Road in Xi’an, China was determined as the driving route
for the following reasons. First, the selected road is not affected by additional factors such as pedestrian
interference, slope, or curvature factors that can have an impact on the drivers. Second, the test route
is not too long, and the road environment is simple. Additionally, the vehicle flow of this route is
not too high, which ensured the safety of the experiments. The map of the determined test route is
presented in Figure 4. The selected road is composed of a relatively gentle curve and a 4-km straight
section. There are no obvious slopes in either the horizontal or vertical directions. The test section is
completely closed, and there are no instances of turning vehicles around or crossing pedestrians along
the whole section, excluding the starting and finishing positions at which vehicles can turn around at
intersections controlled by traffic lights. The road is separated by a central separation belt, and the
outside of the road is separated from the auxiliary road by a green belt. The speed limit on this road is
70 km/h, and the actual observed traffic flow is about 700 vehicles per hour.
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3.3. Cognitive Distraction Tasks

In this work, cognitive distraction tasks were divided into three types (as shown in Table 1), namely
simple calculation (addition and subtraction), complex calculation, and the short-term memorization
of a mobile phone number. These cognitive distraction subtasks not only conform to the actual state of
cognitive distraction, but also have strong operability. Both simple and complex calculations refer to
double-digit addition and subtraction. Simple calculations do not require borrowing, while complex
calculations do. The test staff explained the calculation task to the participants and asked the driver to
answer immediately. If the answer was correct, the next question would be started. If the answer was
wrong, the test staff would repeat the question again. After the same question was asked for the second
time, the next question was asked regardless of whether the answer was correct. Short-term memory
refers to the driver remembering and repeating an 11-digit mobile phone number reported by the staff

in a short amount of time. The participants had two chances to repeat the phone number before the
next question was asked. During the test, the staff recorded the correctness rate of answers. To increase
the coverage of the sample, different types of cognitive distraction subtasks were alternately presented.

Table 1. Cognitive distraction tasks.

Types Examples

Simple calculation 15+4; 89−6; 45+3; . . .
Complex calculation 64−38; 56+29; 32−88; . . .

Short-term memorization of a mobile phone number Phone number: 18594154134; . . .

3.4. Procedures

Before the test, the participants were required to have a trial run for approximately 20 min to be
familiar with the experimental vehicle and the test environments. Then, the test staff introduced the
cognitive distraction subtasks to the participants according to a pre-prepared plan. The participants
performed the cognitive distraction subtasks according to the requirements while driving the test
vehicle. Each subtask lasted about 25 s. The staff recorded the results of each subtask. After each
subtask, the participants were free to manipulate the vehicle until the beginning of the next subtask.
To alleviate driving fatigue, the participants could rest for 10 min after every 20 min of testing. During
the test, the driver was required to strictly abide by the traffic rules and make safe driving as a priority
at all times. In case of emergency, such as abnormal operation of the vehicle or equipment or the
unsatisfactory condition of the participants, the test would be stopped immediately and the test vehicle
would be safely parked in the emergency parking zone.
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3.5. Obtained Data

After the experiments, 1500 sets of cognitive distraction driving data (the length of each set
sequence was about 25 s, from the beginning of the subtask to the end) and 1600 sets of (the length of
each set sequence was 25 s) normal driving data were obtained. To test whether the participants had
effectively executed the cognitive distraction subtasks, the correctness rates of different participants
performing different cognitive distraction tasks were counted. Each driver’s correctness rate while
performing the cognitive distraction subtasks was greater than 85%, which indicates that the participants
had a high degree of devotion when performing cognitive distraction subtasks. In other words, the test
matched the requirements of simulating the actual distracted driving situation.

3.6. Ethics and Authorization Statement

The experimental procedure was authorized by the research committee of Chang’an University,
and the informed consent was received from each participant. In addition, the research did not require
any extra license and the study complied with all correlative regulations.

4. Wavelet Packet Feature Analysis Results

4.1. Wavelet Packet Characteristic Analysis of the Steering Wheel Angle Signal

After denoising the steering wheel angle signals in the normal driving data and the cognitive
distraction driving data, six-layer wavelet packet analysis was performed to obtain the energies of
64 frequency bands. The energies of the frequency bands under both normal and cognitive distraction
driving conditions were plotted by MATLAB software, and the results are exhibited in Figure 5.
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Figure 5 reveals that the energy of the steering wheel angle signal was mostly concentrated in
the first frequency band, which indicates that the steering wheel angle signal was mainly focused in
the low-frequency region (0–0.2 Hz). Since the frequency and amplitude of the steering operation
on a straight road section were relatively small in the time domain, the energy distribution in the
low-frequency band was comparatively high. Due to the decrease in the driver’s ability to control the
steering wheel while engaged in distracted driving, a relatively more frequent steering operation may
have emerged. Hence, more than 95% of the energy of the frequency bands in the cognitive distraction
driving state was greater than that in the normal driving state.

Via comparative analysis, it was found that the energies of three frequency bands of 21, 47, and 61
in the cognitive distraction driving state were significantly higher than those in the normal driving
state. The results of the one-way analysis of variance were p = 0.00 < 0.05, F(1, 3098) = 4536.926,
p = 0.00 < 0.05, F(1, 3098) = 5032.314, and p = 0.00 < 0.05, F(1, 3098) = 5981.280, respectively, which
indicated that the energy values of the steering wheel angle under normal and distracted driving were
significantly different in these three frequency bands. The real frequency bands corresponding to these
three frequency bands were the 30th (4.53–4.69 Hz), 57th (8.75–8.91 Hz), and 35th (5.15–5.31 Hz) bands.
Therefore, these three frequency bands were determined as the new characteristic parameters of the
steering wheel angle signal.

4.2. Wavelet Packet Characteristic Analysis of the Steering Wheel Angular Velocity Signal

After denoising the steering wheel angular velocity signals in the normal and cognitive distraction
driving data, six-layer wavelet packet analysis was performed to obtain the energies of 64 frequency
bands. The energies of the frequency bands under both normal and cognitive distraction driving
conditions were plotted, and the results are presented in Figure 6.
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Figure 6 reveals that the energy of the steering wheel angular velocity signal was mostly
concentrated in the first four frequency bands, which indicates that the steering wheel angular velocity
signal was primarily focused in the low-frequency region (0–0.5 Hz). Since the frequency and amplitude
of the steering operation on a straight road section were relatively small in the time domain, the energy
distribution in the low-frequency band was comparatively high. Due to the decrease in the driver’s
ability to control the steering wheel while engaging in distracted driving, a relatively more frequent
steering operation may have emerged. Hence, more than 80% of the energy of the frequency bands in
the cognitive distraction driving state was greater than that in the normal driving state.

Via comparative analysis, it was found that the energies of the four frequency bands of 1, 17, 49,
and 57 in the normal driving state were significantly higher than those in the cognitive distraction
driving state, whereas the energy of frequency band 61 in the cognitive distraction driving state
was significantly higher than that in the normal driving state. The results of the one-way analysis
of variance were p = 0.00 < 0.05, F(1, 3098) = 3235.941, p = 0.00 < 0.05, F(1, 3098) = 4125.374,
p = 0.00 < 0.05, F(1, 3098) = 6032.306, p = 0.00 < 0.05, F(1, 3098) = 4451.283, and p = 0.00 <
0.05, F(1, 3098) = 4035.761, respectively, which indicated that the energy values of the steering wheel
angular velocity under normal and distracted driving were significantly different in these five frequency
bands. The real frequency bands corresponding to these four frequency bands were the 1st (0–0.16 Hz),
24th (3.59–3.75 Hz), 40th (6.09–6.25 Hz), 36th (5.47–5.62 Hz), and 35th (5.15–5.31 Hz) bands. Therefore,
these five frequency bands were determined as the new characteristic parameters of the steering wheel
angular velocity signal.

4.3. Wavelet Packet Characteristic Analysis of the Vehicle Yaw Rate Signal

After denoising the vehicle yaw rate signals in the normal driving data and the cognitive distraction
driving data, six-layer wavelet packet analysis was performed to obtain the energies of 64 frequency
bands. The energies of the frequency bands under normal driving and cognitive distraction driving
conditions were plotted, and the results are exhibited in Figure 7.
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Figure 7. Box diagrams of the energies of the frequency bands under different driving states.

Figure 7 illustrates that the energy of the vehicle yaw rate signal was mostly concentrated in
the first frequency band, which indicates that the steering wheel angular velocity signal was mainly
focused in the low-frequency region (0–0.2 Hz). Since the frequency and amplitude of the steering
operation on a straight road section were relatively small in the time domain, the energy distribution
in the low-frequency band was comparatively high. Due to the decrease in the driver’s ability to
control the steering wheel while engaging in distracted driving, a relatively more frequent steering
operation may have emerged. Hence, more than 80% of the energy of the frequency band in the
cognitive distraction driving state was greater than that in the normal driving state.

Via comparative analysis, it was determined that the energies of four frequency bands of 9,
41, 49, and 57 in the normal driving state were significantly higher than those in the cognitive
distraction driving state, while the energy of frequency band 54 in the cognitive distraction driving
state was significantly higher than that in the normal driving state. The results of the one-way analysis
of variance were p = 0.00 < 0.05, F(1, 3098) = 3087.136, p = 0.00 < 0.05, F(1, 3098) = 4081.719,
p = 0.00 < 0.05, F(1, 3098) = 4378.371, p = 0.00 < 0.05, F(1, 3098) = 5408.614, and p = 0.00 <
0.05, F(1, 3098) = 4819.320, respectively, which indicated that the energy values of the vehicle yaw
rate under normal and distracted driving were significantly different in these five frequency bands.
The real frequency bands corresponding to these five frequency bands were the 12th (1.71–1.87 Hz),
60th (9.22–9.38 Hz), 40th (6.09–6.25 Hz), 47th (7.18–7.34 Hz), and 36th (5.47–5.63 Hz) bands. Therefore,
these five frequency bands were determined as the new characteristic parameters of the vehicle yaw
rate signal.

4.4. Wavelet Packet Characteristic Analysis of the Vehicle Longitudinal Acceleration Signal

After denoising the vehicle longitudinal acceleration signals in the normal driving data and the
cognitive distraction driving data, six-layer wavelet packet analysis was performed to determine the
energies of 64 frequency bands. The energies of the frequency bands under both normal driving and
cognitive distraction driving conditions were plotted, and the results are exhibited in Figure 8.

Figure 8 demonstrates that the energy of the vehicle yaw rate signal was mostly concentrated in
the first frequency band, which indicates that the steering wheel angular velocity signal was mainly
focused in the low-frequency region (0–0.2 Hz). Since the frequency and amplitude of throttle control
on a straight road section were relatively small in the time domain, the energy distribution in the
low-frequency band was comparatively high. Due to the decrease in the driver’s ability to control
the throttle while engaging in distracted driving, a relatively more frequent throttle control may have
emerged. Hence, more than 80% of the energy of the frequency band in the cognitive distraction
driving state was greater than that in the normal driving state.
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Via comparative analysis, it was found that the energies of two frequency bands of 49 and
57 in the normal driving state were significantly higher than those in the cognitive distraction
driving state, while the energy of frequency band 53 in the cognitive distraction driving state was
significantly higher than that in the normal driving state. The results of the one-way analysis of
variance were p = 0.00 < 0.05, F(1, 3098) = 6283.648, p = 0.00 < 0.05, F(1, 3098) = 5349.276, and
p = 0.00 < 0.05, F(1, 3098) = 5122.390, respectively, which indicated that the energy values of the
vehicle longitudinal acceleration under normal and distracted driving were significantly different in
these three frequency bands. The real frequency bands corresponding to these three frequency bands
were the 40th (6.09-6.25 Hz), 46th (7.02-7.18 Hz), and 36th (5.47-5.63 Hz) bands. Therefore, these three
frequency bands were determined as the new characteristic parameters of the vehicle longitudinal
acceleration signal.

4.5. Wavelet Packet Characteristic Analysis of the Vehicle Lateral Acceleration Signal

After denoising the vehicle lateral acceleration signals in the normal driving data and the cognitive
distraction driving data, six-layer wavelet packet analysis was performed to obtain the energies
of 64 frequency bands. The energies of the frequency bands under normal driving and cognitive
distraction driving conditions were plotted, and the results are shown in Figure 9.
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Figure 9 illustrates that the energy of the vehicle yaw rate signal was mostly concentrated in the
first frequency band, which indicates that the steering wheel angular velocity signal was mainly focused
in the low-frequency region (0–0.2 Hz). Since the frequency and amplitude of throttle and steering
control on a straight road section were relatively small in the time domain, the energy distribution in
the low-frequency band was comparatively high. Due to the decrease in the driver’s ability to control
the throttle and steering wheel while engaging in distracted driving, a relatively more frequent throttle
and steering control may have emerged. Hence, more than 80% of the energy of the frequency bands
in the cognitive distraction driving state was greater than that in the normal driving state.

Via comparative analysis, it was found that the energies of the four frequency bands of 17,
25, 49, and 57 in the normal driving state were significantly higher than those in the cognitive
distraction driving state, while the energy of frequency band 53 in the cognitive distraction driving
state was significantly higher than that in the normal driving state. The results of the one-way
analysis of variance were p = 0.00 < 0.05, F(1, 3098) = 4292.553, p = 0.00 < 0.05, F(1, 3098) =

4133.984, p = 0.00 < 0.05, F(1, 3098) = 4588.643, p = 0.00 < 0.05, F(1, 3098) = 6271.551, and
p = 0.00 < 0.05, F(1, 3098) = 3670.062, respectively, which indicated that the energy values of the
vehicle lateral acceleration under normal and distracted driving were significantly different in these
five frequency bands. The real frequency bands corresponding to these five frequency bands were the
24th (3.59–3.75 Hz), 20th (2.97–3.13 Hz), 40th (6.09–6.25 Hz), 46th (7.02–7.18 Hz), and 36th (5.47–5.63 Hz)
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bands. Therefore, these five frequency bands were determined as the new characteristic parameters of
the vehicle lateral acceleration signal.

5. Cognitive Distraction Recognition Results

In this work, a total of 3100 effective samples including 1500 sets of cognitive distraction driving
data and 1600 sets of normal driving data were collected. The total sample was distributed into a
training set, a verification set, and a test set according to the ratio of 6:3:1: there were 1860 samples
in the training set, 930 samples in the verification set, and 310 samples in the test set, as shown in
Table 2. According to the wavelet packet analysis results presented in Section 4, 21 new characteristic
parameters originating from the steering wheel angle, steering wheel angular velocity, vehicle yaw rate,
vehicle longitudinal acceleration, and vehicle lateral acceleration were determined as critical features
by which to distinguish normal driving and cognitive distraction driving. Therefore, the length of the
training sample was 21.

Table 2. Number of samples in each set.

Label Training Sample Verification Sample Test Sample

Normal Driving 960 480 160
Cognitive Distraction 900 450 150

5.1. Recognition Results with Different Time Windows

The earlier the recognition of the cognitive distraction of a driver, the more promptly the IDS will
make the necessary intervention on vehicle control. However, cognitive distraction is a consecutive
process. The accuracy of the recognition model will be reduced if the time window is set to be too
short; in contrast, the accuracy may increase as the time window lengthens, but the IDSs will be
slower to recognize distracted driving. Therefore, the recognition accuracy and time lag must be
comprehensively considered to determine a reasonable length of the time window.

In this study, different time window lengths were selected from 1 s to 10 s (the time interval was
1 s) to intercept the original data, and wavelet packet analysis was then employed to extract 21 new
characteristic parameters to train the recognition model. The recognition accuracy of the training
model under different time window lengths is presented in Figure 10, and the specific recognition
results are reported in Table 3. Moreover, the recognition results of the SVM and LSTM models were
compared with those of the proposed model.
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Table 3. The recognition accuracy under different time window lengths.

Recognition Results (%) 1.0 s 2.0 s 3.0 s 4.0 s 5.0 s 6.0 s 7.0 s 8.0 s 9.0 s 10.0 s

Atten-BiLSTM 59.35 69.67 74.19 81.29 90.64 91.93 92.25 92.58 93.54 93.87
LSTM 54.83 66.77 71.29 79.03 83.22 85.48 86.13 87.14 88.78 89.78
SVM 50.00 64.45 69.67 75.16 78.38 80.64 83.22 85.80 85.48 87.09

According to the analysis presented in Figure 10 and Table 3, the Atten-BiLSTM model established
in this study achieved the highest recognition accuracy at each time window length. With the increase
in the time window length, the recognition accuracy of each model was gradually improved and
dramatically increased between 1 and 5 s, after which the growth rate slowed. The recognition accuracy
of the proposed model reached 90% when the time window length was 5 s, which could satisfy the
needs of the IDS. As the time window length continued to increase, the promotion of recognition
accuracy was not significant. Therefore, the optimal time window length was determined to be 5 s via
the comprehensive consideration of the recognition accuracy and time lag.

5.2. Recognition Model Performance Analysis

According to the determined time window, the correlation performance of the established
recognition model was analyzed including the accuracy rate, precision rate, recall rate, F1 scores,
receiver operating characteristics (ROC) curve, and other indicators. Figure 11 presents the change of
the loss value during the model training process with the number of training iterations under the time
window length of 5 s.Sensors 2020, 20, x FOR PEER REVIEW 20 of 25 
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It can be seen from Figure 11 that the loss value of the training set gradually decreased with the
increase in the number of iterations during the training process, and it decreased rapidly within the
first three epochs. As the number of training iterations continued to increase from 3 to 15 epochs, the
loss value fluctuated. When the number of iterations exceeded 18 epochs, the loss value of the training
set gradually stabilized. Similarly, the loss value of the verification set gradually decreased with the
increase in the number of iterations, and the decreasing rate was faster within the first three epochs.
As the number of iterations continued to increase, the decrease in the loss value of the verification set
tended to be gentle, and when the number of iterations reached 27 epochs, the loss value dropped to
a local minimum and stabilized at around 0.002. Therefore, the model training can be stopped after
iteration for 27 epochs to prevent overfitting of the training model.

The accuracy rate, precision rate, recall rate, and F1 scores of different recognition models were
calculated, and the results are reported in Table 4.



Sensors 2020, 20, 4426 20 of 24

Table 4. The recognition performance of different models.

Model Accuracy Rate Precision Rate Recall Rate F1 Scores

Atten-BiLSTM 90.64% 91.33% 89.5% 90.42%
LSTM 83.22% 84% 81.82% 82.90%
SVM 78.38% 80% 76.43% 78.17%

The results exhibited in Table 4 indicate that the performance of the Atten-BiLSTM recognition
model was better than those of the LSTM and SVM models. The identification results of normal driving
and cognitive distraction driving were specifically analyzed, and the confusion matrix is shown in
Figure 12. It can be seen that the identification accuracy of cognitive distraction driving was higher
than that of normal driving. The ROC curve based on the recognition results of different models is
presented in Figure 13.
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The results displayed in Figure 13 demonstrate that the area under the curve (AUC) value of the
Atten-BiLSTM recognition model was the largest of all models investigated; thus, the greater the AUC
value, the better the capability of the recognition algorithm.

6. Discussions and Conclusions

In this study, an attention model was combined with a Bi-LSTM model to establish a recognition
model of cognitive distraction driving. An on-road experiment was implemented, and data on the
steering wheel angle, steering wheel angular velocity, vehicle yaw rate, vehicle longitudinal acceleration,
and vehicle lateral acceleration of a vehicle under normal driving and cognitive distraction driving
conditions were collected. To determine the time–frequency characteristics of the operation and vehicle
status data, wavelet packet analysis was employed to analyze the collected data. Via comparative
analysis, 21 characteristic frequency bands that can be used to distinguish between normal driving and
cognitive distraction driving were ultimately extracted and determined. By using the 21 features as
the input, the Atten-BiLSTM recognition model was trained and compared with the traditional SVM
and LSTM models. The comparison results demonstrate that although all three models achieved high
recognition accuracy, the proposed Atten-BiLSTM model provided more advantages for cognitive
distraction driving recognition. The accuracy reached 90.64%, which was 7.42% higher than that of the
LSTM algorithm and 12.26% higher than that of the SVM algorithm under the time window of 5 s.
Other aspects of the recognition performance analysis results demonstrated that the proposed model
can effectively distinguish between normal driving and cognitive distraction driving.

At present, driving simulators were generally employed to conduct cognitive distraction
experiments. The application of the driving simulator for distracted driving research possessed
many advantages over the real vehicle experiments, which included the safety, the experimental
control, and the ease of data collection [39]. However, there were some possible disadvantages,
including motion sickness, the scene authenticity, and most importantly, the validity. A large number
of research had verified the absolute validity and relative validity of driving simulator results based
on different research points, such as the verification of the driver’s longitudinal and lateral control
performance under a distracted state [40]. Engstrom et al. [41] proved that the steering operation
in the real vehicle test was more frequent than that in the simulator when the driver was under a
distracted state. Reymond et al. [42] demonstrated that the maximum value of lateral acceleration
in the real vehicle test was higher than that in the simulator. Considering that the driver’s cognitive
load, operation data, and vehicle status data obtained in the actual vehicle test were different from
in the driving simulator test under a distracted driving state, an on-road experiment was therefore
implemented for the sake of collecting more realistic data, and the data were gathered from a test
vehicle equipped with a steering wheel angle sensor, a gyro sensor, and a VBOX, which can provide
support for the practical application of the recognition model of cognitive distraction driving.

In addition, an overwhelming majority of cognitive distraction recognition models were established
based on the analysis of time domain features [43]. However, the driver’s operation data and vehicle
movement data can be regarded as non-stationary signals, and it was necessary to catch the trend of the
variation of the signal spectrum with time when dealing with non-stationary signals [44]. Therefore,
in this study, 64 frequency bands were obtained via six-layer wavelet packet analysis, and the results
indicate that the parameter signals were primarily concentrated in the low-frequency region. More
than 80% of the energy of the frequency band in the cognitive distraction driving state was greater
than that in the normal driving state. Via comparative analysis, 21 characteristic frequency bands that
can be used to distinguish between normal driving and cognitive distraction driving were ultimately
extracted and determined. These frequency bands include the 21st, 47th, and 61st bands of the steering
wheel angle, the 1st, 17th, 49th, 57th, and 61st bands of the steering wheel angular velocity, the 9th,
41st, 49th, 54th, and 57th bands of the vehicle yaw rate, the 49th, 53rd, and 57th frequency bands of
the vehicle longitudinal acceleration, and the 17th, 25th, 49th, 53rd, and 57th frequency bands of the
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vehicle lateral acceleration. The extracted features based on time–frequency characteristic analysis can
provide support for improving the accuracy of the recognition model.

The determination of the time window was a pivotal factor in the development of the recognition
model of cognitive distraction. Sun et al. [45] proposed a driver’s distraction recognition model based
on the LSTM algorithm and the time window was determined as 10 s. Zhou et al. [46] constituted
a cognitive distraction identification model based on the random forest algorithm by using drivers’
eye-movement data and the time window was determined as 5 s. The time window of the distraction
recognition model based on video data was usually short [47]. In summary, the different algorithms
and different input data would influence the time window length setting of the recognition model.
In practical application, the earlier the recognition of the cognitive distraction of a driver, the more
promptly the IDS will make the necessary intervention on vehicle control. However, cognitive
distraction was a continuous process. If the time window was set to be too short, the accuracy of
the recognition model will be reduced; in contrast, the accuracy may increase as the time window
lengthens, but the IDSs will be slower to recognize distracted driving. Therefore, the recognition
accuracy and time lag must be comprehensively considered to determine a reasonable length of the
time window. In this study, different time window lengths were selected from 1 to 10 s to intercept
the original data, and wavelet packet analysis was then employed to extract 21 new characteristic
parameters to train the recognition model. On the basis of the accuracy analysis of the recognition
model under different time window lengths and while comprehensively considering the accuracy and
time lag, the optimal time window was determined to be 5 s.

A few deficiencies in this work need to be ameliorated in future work. There was a difference
between the actual state of cognitive distraction and the distraction state triggered by the designed
secondary tasks. A future study will pay close attention to the difference and collect drivers’ cognitive
distraction under naturalistic driving. In addition, the recognition model parameters will be calibrated
according to more sufficient data.
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