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New SARS-CoV-2 variants emerge as part of the virus’ adaptation to the human host. The Health
Organizations are monitoring newly emerging variants with suspected impact on disease or vaccination
efficacy as Variants Being Monitored (VBM), like Delta and Omicron. Genetic changes (SNVs) compared to
the Wuhan variant characterize VBMs with current emphasis on the spike protein and lineage markers.
However, monitoring VBMs in such a way might miss SNVs with functional effect on disease.
Here we introduce a lineage-agnostic genome-wide approach to identify SNVs associated with disease.

We curated a case-control dataset of 10,520 samples and identified 117 SNVs significantly associated
with adverse patient outcome. While 40% (47) SNV are already monitored and 36% (43) are in the spike
protein, we also identified 70 new SNVs that are associated with disease outcome. 31 of these are disease-
worsening and predominantly located in the 30-50 exonuclease (NSP14) with structural modelling reveal-
ing a concise cluster in the Zn binding domain that has known host-immune modulating function.
Furthermore, we generate clade-independent VBM groupings by identifying interacting SNVs (epistasis).
We find 37 sets of higher-order epistatic interactions joining 5 genomic regions (nsp3, nsp14, Spike S1,
ORF3a, N). Structural modelling of these regions provides insights into potential mechanistic pathways
of increased virulence as well as orthogonal methods of validation.
Clade-independent monitoring of functionally interacting (epistasis, co-evolution) SNVs detected

emerging VBM a week before they were flagged by Health Organizations and in conjunction with struc-
tural modelling provides faster, mechanistic insight into emerging strains to guide public health
interventions.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Genetic mutations of SARS-CoV-2 have emerged as part of the
virus’ adaptation to the human host. There is evidence that some
of these mutations have made the virus more transmissible, have
caused more severe disease, or reduced diagnostics, treatments,
or vaccine effectiveness. Virus strains containing mutations with
functional consequences are catalogued by the Centers for Disease
Control and Prevention (CDC) as Variants of Concern (VOC) [1].
Examples include the Delta Variant, which is characterized by 15
single nucleotide variants (SNVs) in the spike protein and the Omi-
cron Variant, characterized by 37 SNV in the spike protein.

CDC also defined ‘Variants of Interest’ (VOI), for which there is
emerging evidence that implies their role in changed receptor
binding, reduced neutralization by antibodies generated against
previous infection or vaccination, reduced efficacy of treatments,
potential diagnostic impact, or predicted increase in transmissibil-
ity or disease severity. To monitor potential VOI and/or VOC, CDC
maintains a list of ‘Variants Being Monitored’ (VBM) with their
specific phylogenetic lineages with examples being Alpha, Beta,
Gamma, Epsilon, Eta, Iota, Kappa, Zeta, Mu. All VBM to date have
focused on the genomic regions of the spike protein as it is the
most well understood segment of the virus and where in vivo
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Table 1
Summary of sample inclusion into the case-control dataset.

Annotations Removed/
Kept

Number of
Samples

Patient status annotated as ‘Unknown’ Removed 3,312,914
Ambiguous annotations that cannot be associated

with better or worse disease outcome including,
‘Live’, ‘Hospitalized’, ‘Outpatient’, ‘Symptomatic’,
‘Released’, ‘Ambulatory’, ‘Inpatient’, ‘other’.

Removed 120,429

Unannotated (missing patient status) Removed 27,939
‘Deceased’, ‘Severe’, ‘Critical’, ‘Dead’, ‘Post-mortem’,

‘Death’ and ‘ICU’.
Kept –
Cases

3,639

‘Asymptomatic’, ‘Mild’, ‘Mild clinical signs without
hospitalisation’, and ‘Recovered’

Kept –
Controls

7,157

Total Samples Removed 3,461,282
Total Samples Kept 10,796
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and protein structure experiments can best provide evidence of
functional changes [2].

However, there is evidence that other regions of the SARS-CoV-
2 virus may also have an impact on clinically relevant properties
[3,4]. A genome-wide screening for SNVs with genome-phenome
association, such as severity of disease, is hence desirable to gain
the full picture of existing and emerging VBM.

Traditional genome-wide association studies (GWAS) can iden-
tify SNVs that are statistically associated with common or complex
traits using regression-based approaches [5]. Indeed, a GWAS
study on 7,548 patient-outcome annotated SARS-CoV-2 samples
from the Global Initiative on Sharing All Influenza Data (GISAID)
used logistic regression to identify SNVs associated with disease
outcome. Surprisingly, they identified only a single locus of signif-
icance (25088 bp resulting in V1176F in the Spike protein) [6].
Since VBMs are characterized by multiple SNVs it is hence more
likely that multiple loci in the viral genome evolve together to
modulate its pathology and such an outcome would have been
expected in a GWAS study.

The reason for this unexpected outcome might be that these
genomic changes individually only have small or no functional
effects, and only when taken together explain the different capabil-
ities of the viral strains (epistasis). Traditional methods, like logis-
tic regression, are hence not suitable to identify such epistatic
interactions of SNV with small effect size.

Here, we introduce VariantSpark as a platform for the automatic
detection of genome-wide interacting SNV in large international
data resources with the ability to characterize emerging VBM. Vari-
antSpark, originally developed for the human disease space [7], is a
distributed machine learning framework capable of identifying
complex genomic associations and was adapted to identify SNV
with likely functional consequences in SARS-CoV-2 genomes.
Unlike other Random Forest packages such as Ranger [8], VariantS-
park can process very large datasets and can handle ambiguity
codes needed to process non-human encodings.

Demonstrating the power of this approach, we assembled the
largest association dataset to date with 10,000 case-control sam-
ples by carefully curating the ‘‘Patient Status” field from GISAID
and matching it with the mutation profile of the viral genome.
We used VariantSpark on this stringent case/control dataset to
identify SNVs associated with severe disease outcome. We anno-
tate the set of SNVs which are jointly driving disease using BitEpi
[9], a software for the exhaustive search of up to 4 epistatic inter-
action partners, to generate clade-independent definitions of
VBMs.
2. Results and discussion

2.1. Curating the largest Case-Control dataset for VOI detection

We first assembled the case-control dataset by obtaining the
‘‘Patient Status” field of the 3,472,078 GISAID samples (data freeze
on 14th Sep 2021). To curate a high-confidence dataset, we group
the samples by patient outcome into 3411 cases (worse disease
outcome) and 7109 controls. Table 1 summarises our inclusion
and exclusion criterion. Note that only 0.3% of samples passed
our inclusion criteria despite GISAID making the ‘‘Patient Status”
field mandatory on 27 April 2020, indicating an ongoing issue with
data standardization [10]. During the quality control step, we
removed a further 276 samples, which had incomplete genomic
information (sequence length less than 29000) or sequences from
non-human sources (e.g. pangolin). To our knowledge, this
resulted in the world’s largest case-control dataset for VBM detec-
tion with 10,520 samples.
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2.2. Estimating the effects of confounders

Next, we evaluated if this new case-control dataset had any
geographical biases. For example, whether samples from regions
with relatively poor healthcare may be overrepresented in the
cases while countries with higher sequencing and reporting
regimes may skew the control samples.

While a large proportion of reporting countries had an even dis-
tribution of cases and controls, some countries, like Bulgaria were
indeed overrepresented in the cases, while Réunion island was
enriched in controls. This suggests that geographical bias is not
the main driver for clustering.

To test this hypothesis, we compared the data clustering with
country against clustering with the dominant variant or clade
which was circulating at the time. We first conducted principal
component analysis to reduce the dimensionality of the data,
resulting in 29 principal components accounting for 99.9% of the
total variance explained. Next, we performed Uniform Manifold
Approximation and Projection (UMAP) [11] to visualise our data.
We then used density-based spatial clustering of applications with
noise (DBSCAN) to cluster our data, resulting in 8 distinct clusters
(Supplementary Figure S1). Color-coding revealed an association
with CDC clade (Supplementary Figure S2) instead of country
(Supplementary Figure S3). To quantify this, we calculated the
purity and entropy.

The purity and entropy of the clade clustering were 0.698 and
0.446 respectively, where 1 represents a strong relationship
between the clustering and the annotation. In contrast, clustering
by country only achieved a purity of 0.429 and entropy of 0.291.
Similarly, the adjusted-rand index also suggested a stronger rela-
tionship with clades (0.247) rather than country (0.104). Taken
together, these data suggests that the overrepresentation of cases/-
controls in some regions are a consequence of the genetic make-up
of the virus strains active in the region rather than a data collection
artefact.
2.3. VariantSpark identifies novel single nucleotide variants associated
with patient outcome

We conducted the case-control study on the 10,520 samples to
identify genetic variants that are associated with poor health out-
come (see Table 1). We used VariantSpark to determine the Gini-
importance score for all genetic variants in the viral genome. In
order to maximise the accuracy of our model, parameter tuning
was conducted to determine the optimum parameters for our anal-
ysis. Out of bag (OOB) error was used to estimate model accuracy,
resulting in a minimum OOB of 0.251 based on the parameters
tested (Supplementary Table S1). All further analyses were carried
out using the selected parameters (Supplementary Table S1,
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green highlight). We performed significance testing by measuring
the deviation of the observed Gini importance scores from the
right-skewed distribution of the background signal [12].

We identified 117 genetic mutations that had a significant asso-
ciation with patient health outcome (FDR adjusted p-value cut off
0.01, Supplementary Table S2). As shown in Fig. 1, of the 117 sig-
nificant SNV 36% (43/117) are located in the spike protein and 40%
(47/117) are already monitored in one or more VBMs (16 muta-
tions are reported in the Gamma variant, 12 in the Mu, 11 Beta,
1 in the Delta and 9 in other VBM).

To investigate the relevance of the 70 mutations not currently
monitored as VBMs, we next identified their likely role on disease
outcome, e.g., protective (mild disease) or pathogenic (severe dis-
ease). We calculated the odds ratio with 95% confidence interval
to classify loci as protective (confidence interval below 1) or patho-
genic (confidence interval above 1). We identified 64 SNV to be
pathogenic and 53 SNV to be protective amongst the 117 signifi-
cant SNVs. Unsurprisingly, 70% of the SNVs included in the VBM
are pathogenic (33/47). However, there are also 14 protective SNVs
defining the VBMs. Conversely, out of the 70 SNV that are not cur-
rently part of VBM, 31 have putative pathogenic effects (Table 2).

With the global health organizations focusing on the spike pro-
tein, it is noteworthy that all of the 31 unmonitored and putatively
pathogenic SNVs occur in other regions of the genome, namely
ORF1ab (which produces either 30 to 50 exonuclease nsp14 or 20

O-ribose methyl transferase nsp16) and ORF7a (interferon antago-
nist). nsp14 and nsp16 along with the stimulatory factor nsp10 is
Fig. 1. Results from association analysis. A) Manhattan plot of VariantSpark gini im
Mutations associated with current and previous variants being monitored (VBM) are lab
are grey and unlabelled. Red dot with yellow border represents hit from a previous GW
protein regions. Protein regions coloured in dark red correspond to protein regions with
represent regions involved in putative highly associative 4-SNV interactions. Inset repres
nsp14 mutation cluster identified by VariantSpark. (For interpretation of the references t
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important for viral replication, RNA stability and RNA viral proof-
reading [13,14]. Interestingly, SARS-CoV-2 ORF7a ectodomain has
been found to bind efficiently to human CD14+ monocytes, sug-
gesting that SNVs in this region may differentially modulate the
severity of the host immune response to viral infection [15]. Mono-
cytes are a key driver in the recruitment of macrophages to the
lungs, and increased levels of macrophages have been shown to
correlate with increased disease severity [15]. Taken together, this
suggests that SNV outside the spike protein need to be monitored.

2.4. VariantSpark hits are robust and replicable with logistic
regression.

To technically validate our findings, we compared the VariantS-
park hits with results from Firth’s logistic regression including the
first 20 principal components as covariates. We next conducted
Spearman’s rank correlation to compare the ranks from VariantS-
park hits and hits from logistic regression. The rank correlation
for the top 20 LR hits was 0.90, indicating a good agreement on
the dominant signal. As expected, the rank correlation for the top
100 hits reduced to 0.68 because LR is not able to take gene-gene
interactions into account. Drilling in further, we found that the
two main clusters of hits we identified in nsp14 and spike regions
with VariantSpark overlapped with the LR clusters (Supplemen-
tary Figure S4, Supplementary Tables S4 – S6).

We further tested the robustness of the results by creating a
down-sampled balanced dataset (1:1, case:control), as random for-
portance scores with 10,520 case/control data. 100 bp are removed on each end.
elled and coloured while mutations which are not currently associated with a VBM
AS study (Hahn et al., 2021). B) SARS-CoV-2 genome and regions corresponding to
significant clusters of mutations (from Fig. 1A). Protein regions highlighted in blue
ents AlphaFold prediction and location of amino acid residues corresponding to the
o color in this figure legend, the reader is referred to the web version of this article.)



Table 2
VariantSpark predicted 31 novel variants associated with worse disease outcome.

Locus REF ALT p-value Gene Consequence Product

19,276 G N 4.75E-07 NSP14 ’G413S’, ’G413R’, ’G413C’ 30-to-50 exonuclease
19,277 G N 9.08E + 00 NSP14 ’G413D’, ’G413A’, ’G413V’ 30-to-50 exonuclease
19,278 T N 9.14E + 00 NSP14 ’G413G’, ’G413G’, ’G413G’ 30-to-50 exonuclease
19,279 T N 9.03E + 00 NSP14 ’C414S’, ’C414R’, ’C414G’ 30-to-50 exonuclease
19,280 G N 2.34E-06 NSP14 ’C414Y’, ’C414S’, ’C414F’ 30-to-50 exonuclease
19,281 T N 2.10E-06 NSP14 ’C414*’, ’C414C’, ’C414W’ 30-to-50 exonuclease
19,282 G N 1.54E-06 NSP14 ’D415N’, ’D415H’, ’D415Y’ 30-to-50 exonuclease
19,283 A N 4.36E-07 NSP14 ’D415A’, ’D415G’, ’D415V’ 30-to-50 exonuclease
19,284 T N 5.29E-07 NSP14 ’D415E’, ’D415D’, ’D415E’ 30-to-50 exonuclease
19,285 G N 2.98E-07 NSP14 ’G416S’, ’G416R’, ’G416C’ 30-to-50 exonuclease
19,286 G N 1.34E-06 NSP14 ’G416D’, ’G416A’, ’G416V’ 30-to-50 exonuclease
19,287 T N 5.62E-06 NSP14 ’G416G’, ’G416G’, ’G416G’ 30-to-50 exonuclease
19,288 G N 9.62E-06 NSP14 ’G417S’, ’G417R’, ’G417C’ 30-to-50 exonuclease
20,800 A N 6.14E-05 NSP16 ’T48P’, ’T48A’, ’T48S’ 20-O-ribose methyltransferase
20,801 C N 5.22E-05 NSP16 ’T48N’, ’T48S’, ’T48I’ 20-O-ribose methyltransferase
20,802 T N 6.71E-05 NSP16 ’T48T’, ’T48T’, ’T48T’ 20-O-ribose methyltransferase
20,803 C N 6.68E-05 NSP16 ’Q49K’, ’Q49E’, ’Q49*’ 20-O-ribose methyltransferase
20,804 A N 6.85E-05 NSP16 ’Q49P’, ’Q49R’, ’Q49L’ 20-O-ribose methyltransferase
20,805 A N 6.46E-05 NSP16 ’Q49H’, ’Q49Q’, ’Q49H’ 20-O-ribose methyltransferase
20,809 T N 2.21E-05 NSP16 ’C51S’, ’C51R’, ’C51G’ 20-O-ribose methyltransferase
20,810 G N 2.16E-05 NSP16 ’C51Y’, ’C51S’, ’C51F’ 20-O-ribose methyltransferase
20,811 T N 2.25E-05 NSP16 ’C51*’, ’C51C’, ’C51W’ 20-O-ribose methyltransferase
20,812 C N 2.31E-05 NSP16 ’Q52K’, ’Q52E’, ’Q52*’ 20-O-ribose methyltransferase
20,813 A N 2.18E-05 NSP16 ’Q52P’, ’Q52R’, ’Q52L’ 20-O-ribose methyltransferase
26,492 A T 5.93E-05 Between E and M region
27,512 A N 1.03E-04 ORF7a ’Y40S’, ’Y40C’, ’Y40F’ Accessory protein
27,513 C N 1.02E-04 ORF7a ’Y40*’, ’Y40*’, ’Y40Y’ Accessory protein
27,514 G N 1.06E-04 ORF7a ’E41K’, ’E41Q’, ’E41*’ Accessory protein
27,516 G N 7.21E-05 ORF7a ’E41E’, ’E41D’, ’E41D’ Accessory protein
28,272 A T 4.13E-06 Between ORF8 and N region
29,782 A * 8.62E-05 N/A
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est methods like VariantSpark are sensitive to imbalanced training
data. We ran VariantSpark on a dataset with 3412 cases and 3714
controls. Supplementary Table S3 summarizes the comparable
number of top 100 hits in both balanced and actual dataset. We
determined that clusters of mutations in S proteins were repro-
duced. This finding suggests that for this analysis, the impact of
our original imbalanced dataset is likely minimal. Therefore, we
retained the largest dataset available to avoid any data loss due
to under-sampling.

2.5. Disease associated SNV have epistatic interactions and structural
changes

Next, we investigated which of the 117 SNV have epistatic
interaction and jointly modulate disease outcome. Using BitEpi
we identified 99 highly associative 2-SNV interactions with all
the hits comprising of 1 protective SNV and 1 pathogenic SNV indi-
cating a balanced co-evolution (Supplementary Table S7).

To investigate this behaviour further, we looked at higher-order
interactions. BitEpi identified 540 highly associative 3-SNV interac-
tions (Supplementary Table S8) and 37 4-SNV interactions (Fig. 2,
Supplementary Table S9), respectively. 92% (34/37) of the 37 4-
SNV interactions involved interactions between nsp14 region,
spike region, N region with either ORF3a region or nsp3 region.
To investigate the co-evolution property we constructed contin-
gency tables for the 4-SNVs, which lists the number of cases versus
controls of each of the involved genotypes. From this we can iden-
tify which particular genotypes in the 4-SNV interactions are more
frequently observed in cases versus controls by determining the
deviation from the over-all case-ratio, which is 0.37. Each SNV
case-rate is listed in Supplementary Figures S5 – S7, Supplemen-
tary Table S10.

We again find interactive pairs of protective/pathogenic co-
evolution. For example, the 4-SNV combination of 6319A:21801A
:22346G:25563 T with one alternative allele ‘‘0001” seems to be
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very pathogenic, doubling the case-ratio over the baseline (0.63
vs 0.37) (Supplementary Table S11). However, pairing this with
another alternative allele ‘‘0011”, with a shift away from G at
22346, reduces the pathogenic effect to 0.45, because this muta-
tion alone seems to be very protective (‘‘0010” has a case ratio of
only 0.08).

We examined the distribution of these allele combinations
across viral strains/clades in a recent data freeze from GISAID
(22nd March 2022). Interestingly, we found that although some
allele combinations were quite specific to a particular CDC variant,
most allele combinations were distributed over multiple variants.
For example, of all the samples with the pathogenic D_1 (6319A:
21801A:22346 N:25563 T) combination, 98.9% were comprised of
the Beta variant (Supplementary Table S12). More commonly,
allele combinations were not variant-specific, with 73.8% of all
samples with the pathogenic B_1 combination (6319A:21801A:22
346G:25563 T) classified into the mixed group ‘‘Other” and the
protective C_1 combination (6319A:21801A:22346 N:25563G)
evenly distributed between Alpha, Omicron, Delta and Other
groups. This effect was observed in most of the significant patho-
genic and protective combinations we investigated (Supplemen-
tary Table S13). This co-evolution of protective and pathogenic
SNV further substantiates that variants should be monitored inde-
pendent of their phylogenetic clade membership and rather based
on their functional association with phenotype and other SNV. Fur-
ther in-vitro and in-vivo studies are needed to establish the func-
tional importance of interactions between these regions.

2.6. Predicted structural consequences of pathogenic mutations

In this section we investigate the potential consequences of the
identified VariantSpark mutations. We focused on the 31 unmoni-
tored pathogenic mutations to focus the discussion.

Interestingly, 29 of the 31 unmonitored pathogenic mutations,
and indeed 63 out of the 117 significant VariantSpark hits, resulted



Fig. 2. Network of 4-SNV combinations showing highly associative interactions. Coloured nodes indicate SNVs found in VBM. Size of node is proportional to the frequency
at which that SNV is involved in highly associated 4-SNV interactions.
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in an allele change to ‘‘N”. This indicates that any move away from
the original Wuhan strain has an influence on the disease outcome.
An observation that is consistent with a virus under substantial
selective pressure and evolutionary activity after the jump to a
new host. To investigate this further we use NextVariant, a script
to list the codon changes that are associated with such changes.

Table 2 lists the predicted consequences for any associated pro-
teins. These were predominantly amino-acid substitutions, but we
also found 1 deletion and two SNVs in intergenic regions. We found
that the mutations clustering around the 30-50 exonuclease had the
highest importance scores of all the significant pathogenic loci.
Interestingly, these mutations cluster around codons 413–415,
which represent the active site of the 30-50 exonuclease, containing
a metal binding domain. Again, this is consistent with evolutionary
pressure on a non-optimal active site for human hosts. We also
found 3 silent mutations. Previous studies have highlighted the
presence of synonymous mutations in nsp16 that show a high rate
of positive selection, suggesting that although such mutations may
not change the amino acid sequence, changes to the RNA sec-
ondary structure may affect other cellular functions [16,17].

To further assess structural implications of these mutational
changes we evaluated models of both crystallographic data aug-
mented with AlphaFold2 structure predictions [18] (Fig. 3). As both
the 30 to 50 exonuclease (nsp14) and 20-O-ribose methyltransferase
(nsp16) are found as independent allosteric complexes with nsp10
we modelled the respective heterodimers. Alphafold2 model pre-
dictions agreed remarkably well with crystallographic data with
RMSD differences of less than 0.95 Å to where crystallographic data
existed but had the advantage of including regions missing in the
diffraction data. Our modelling showed that the observed cluster
of mutations in nsp14 including 413 to 417 (residue sequence
GCDGG) occurs in the S-adenosyl methionine (SAM)-dependent
(guanine-N7) methyl transferase domain (N7-MTase) at the junc-
tion on the N-terminal domain and is adjacent to the zinc binding
motif from residues His 257, Cys261, His264 and Cys279. In the
case of nsp16, the cluster of mutations T48, Q49, C51, Q52 occurred
at the interface of nsp10, with T48 being adjacent to leucine 45 of
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nsp10 potentially altering the strength of the nsp10/16 complex
formation and subsequent activity kinetics. Orf7a accessory pro-
tein contains two putative adverse outcome associated mutation
at position Y40 and E41. This protein is thought to interfere with
a human defence protein tetherin, by glycosylation interference
which is thought to enhance viral escape and proliferation [19].
As no Orf7a/tetherin structure currently exists we were not able
to investigate this interaction further.

The structural analysis suggests that the locations of the
observed putative mutation sites could plausibly modulate the
activity of key viral proteins of nsp14, nsp16, and their interacting
partner nsp10. Though our sequence analysis does not provide
specific mutations, changes in the highlighted positions would be
expected to change the strength of protein–protein interactions
in the case of nsp10/14, or even alter the flexibility of inter-
domain interactions as in the case of nsp16. We are unable to
determine the effects that this may have on viral-host interactions
in the scope of this study.
3. Conclusion

New SARS-CoV-2 variants continue to emerge giving rise to the
need for a data-driven platform that can flag SNV with functional
consequences early. Our combination of machine learning and
structural modelling may offer such a solution. Specifically, CDC
started monitoring the Mu variant on Sep 21, 2021 and VariantS-
park flagged 12 mutations characterizing Mu working with Sep
14th data. Similarly, VariantSpark flagged C27513T SNV, which
WHO started monitoring as B.1.640 originating in Republic of
Congo.

Moreover, VariantSpark identified new SNV with statistically
significant association on disease outcome. It might therefore be
more informative to use these SNVs for tracking and differentiating
VBMs rather than lineage markers, which might not have func-
tional consequences. Sets of disease associated SNV, especially
when they are shown to interact with each other through a BitEpi



Fig. 3. Structural analysis of protein models. Alphafold models (verified with crystallographic data where possible). A) 30-50 exonuclease (nsp14) (cyan and blue) complexed
with nsp10 (yellow) showing relative positions of 413:417 cluster in the N7-MTase domain to Zn binding residues and other ion binding sites. B) Close up of the 413–417
cluster in nsp14 showing proximity of Zn binding domain. C) Structure of nsp10/nsp16 complex (from pdb; 6W4H and Alphafold models) showing nsp16 mutational cluster
(T48, Q49, C51, Q52) and its proximity to nsp10 binding, in particular with residue Leu45 form nsp10. D) Predicted Alphafold model of Orf7a accessory protein showing
putative mutation sites Y40 and E41. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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analysis, may provide insights into the molecular cause for the dif-
ferent capabilities and pathology of VBMs.

Our work shows protein model analysis, such as those provided
by crystallography and AlphaFold, can be a useful addition to
sequence analysis by providing structural context of mutations,
both within the protein and its binding partners. These insights
can help determine if the observations are plausible and may help
mechanistic interpretations.

For example, recent laboratory experiments have highlighted
protein residues crucial to the translation inhibition activity of
NSP140s exonuclease domain, such as C261 [20–22]. Using Alpha-
Fold we can see that the VariantSpark-identified mutations, Cys
414 and Asp 415, (Supplementary Table S5) are adjacent to
laboratory-evaluated C261 (Fig. 3, inset). It is likely that the muta-
2947
tions observed in epidemiological data have modulating effects on
the zinc finger motif and thus the translational inhibition capabil-
ity of SARS-CoV-2.

Using genomic, health, structural and molecular data, our study
provides further evidence supporting the importance of this region
as an attractive therapeutic target for SARS-CoV-2 [23] e.g. by
inhibiting this complex, which increases efficacy of antiviral drugs
such as remdesivir [24]. It also provides evidence for the ongoing
evolutionary activity of the virus in adapting to its new human
host. We noted the disease associated SNVs around the active site
of 30-50 exonuclease and the observation that any shift away from
the original Wuhan-allele had impact on disease outcome.

While this is the largest case-control dataset assembled to date,
it is far from being sufficient for the robust automatic surveillance
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of emerging VBM. More than 99% of GISAID samples were lost due
to the lack of annotations for patient outcome. This means that our
results may be impacted by sampling bias, as the samples included
in our study may not necessarily be representative of the whole
dataset. This emphasises the crucial need for improved clinical
annotations in databases such as GISAID. Ideally, location-
matched samples should be used to avoid reporting bias. For exam-
ple, we noticed collection sites, which submitted more samples
from deceased patients than asymptomatic patients. While this
seem to have been averaged out in our global analysis (see Sec-
tion 3.2), a local or country-specific analysis would not be possible.
Another caveat of our study is that we have used a single variable,
the viral genome, to predict disease outcome. In reality, patient
outcome would be the result of a complex interplay between viral
strain, hospital care and patient characteristics such as age,
immune system and comorbidities.

Despite the shortcoming of a limited dataset, it is encouraging
that our analysis identified mutations associated with known vari-
ants of concern, including the 25088 bp locus identified in previous
studies [6] as well as suggested novel mutations for monitoring.
With additional analysis of crystallographic structures augmented
with Alphafold models of protein complexes, we could predict the
importance of lesser-known mutations based on their structural
context, e.g. for NSP14. Our method of identifying single mutations
and 2-, 3- and 4-SNV combinations that significantly affect patient
outcome and are supported by protein modelling predictions may
offer a streamlined approach to quickly flag dangerous mutation
combinations and has the potential to supplement current variant
surveillance efforts. Future work should include in vitro assays
assessing functional consequences of the novel mutations identi-
fied in this study.
4. Methods

New SARS-CoV-2 sequences are added constantly to GISAID’s
central repository of SARS-CoV-2 genomes. We took a data freeze
on 14th Sep 2021 to work with 3,444,139 sequences. 3,306,730
of these sequences had ‘‘unknown” annotation for patient status
field.

4.1. Data wrangling

We started curating the remaining 1,37,409 sequences to iden-
tify datasets with severe disease outcomes and no/less disease out-
comes for cases and controls respectively. For cases, we used the
patient status of ‘‘deceased”, ‘‘severe”, ‘‘critical”, ‘‘dead”, ‘‘post-
mortem”, ‘‘death” and ‘‘ICU” with a total of 3639 sequences. For
control, we used the patient status of ‘‘Asymptomatic”, ‘‘mild”,
‘‘Mild clinical signs without hospitalization” and ‘‘recovered” with
a total of 7157 sequences. We then ran the 10,796 sequences to
quality control (QC) process and removed the incomplete
sequences (sequence length not 29000) and sequences not from
human source. After QC the final dataset comprised of 3411 cases
and 7109 controls with a total of 10,520 sequences with appropri-
ate patient status annotations.

4.2. Data reformatting

VariantSpark accepts the locus information in VCF format and a
corresponding label file associating VCF file sample names to phe-
notypes. To generate the VCF file for 4161 sequences we first
aligned these to WIV04 reference sequence using MAFFT [25]
(v7.471) alignment. The alignment was then converted to VCF for-
mat using the snp-sites (v2.3.3) [26] and the perl script was used to
reset the reference used by MAFFT. The vcf file compressed by
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bgzip was used as input to VariantSpark. Sample names were iso-
lated from the vcf file and were tagged against cases and controls
as 1 and 0 respectively.
4.3. Exploratory data analysis

Principal component analysis was conducted using the R pack-
age PCAtools [27]. We retained all principal components accounting
for 99.9% of the total variance for our dataset. Following this, the R
package umap [28] was used to perform UniformManifold Approx-
imation and Projection on the principal components derived from
the previous step. External cluster validation and DBSCAN cluster-
ing was conducted using the R package fpc [29] using an optimal
epsilon value of 0.45, and the threshold for minimum number of
points per cluster was set at 100. The python package DNA Fea-
tures Viewer [30] was used to produce images with SARS-CoV-2
protein regions.
4.4. VariantSpark and logistic regression association analyses

VariantSpark analysis was conducted on an AWS EMR through
the RONIN interface with the following configurations: a Ubuntu
18.04 LTS server to run a BioSpark cluster on 8 � c5n.large instance
with 5.25 Gb of RAM and 2vCPUs (total of 42 Gb of RAM and
16vCPUs). Hail 2.0 was used to construct matrix tables from our
VCF file and phenotype data for use in VariantSpark. The multi-
allelic VCF was split using bcftools [31] (version 1.12) to allow for
allele-specific associations. p-values for VariantSpark analysis were
computed using the R package RLocalFDR, which uses a Bayesian
approach to calculate thresholds for gini importance scores
(https://doi.org/10.1101/2022.04.06.487300). Firth’s logistic
regression was conducted in Hail 2.0, using the first 20 principal
components as covariates. Spearman’s rank correlation was used
to compare ranked hits between VariantSpark and logistic regres-
sion methods.
4.5. Odds ratio analysis

The odds ratio of each locus’ association with cases was calcu-
lated, including a 95% confidence interval.. The odds ratio repre-
sents the relative likelihood of a sample being a case, given that
it has a variant at a given locus. It is calculated as shown below,
where c1 and c0 are the numbers of cases with and without the
variant respectively, and n1 and n0 are the numbers of controls
with and without the variant respectively.

oddsratio ¼ c1 � n0

c0 � n1
ð1Þ

To give a confidence interval of 95% we then calculated the
upper and lower bound for this odds ratio using the following for-
mulae, where OR is the odds ratio as calculated above.

upper95%CI ¼ OR � e1:96�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
c0
þ 1
c1
þ 1

n0
þ 1
n1

p
ð2Þ
lower95%CI ¼ OR

e1:96�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
c0
þ 1

c1
þ 1

n0
þ 1
n1

p ð3Þ

These calculations were repeated for each locus, and were used
to classify a locus as protective, if the upper bound on the confi-
dence interval was below 1, or pathogenic, if the lower bound
was above 1. If the 95% confidence interval for a locus encom-
passed 1, the locus was discarded as not being insignificant.

https://doi.org/10.1101/2022.04.06.487300)
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4.6. NextVariant analysis

NextVariants script uses NCBI reference sequence NC_045512.2
as reference for SARS-CoV-2 genome. Using BioPython the script
then maps any variants with nucleotide positions to reference
sequence. Script then further identifies the corresponding gene,
consequence, and product from the CDS section of genbank file.
Consequences for ‘‘N” nucleotide is calculated based on codon
changes by replacing N with A,T,G,C.

4.7. BitEpi analysis

More detailed information regarding the functionality and
methodology of BitEpi has been described by Bayat et al. [9].
Briefly, BitEpi was used to identify 2-SNV, 3-SNV, and 4-SNV inter-
actions associated with worse disease outcomes between the 117
significant VariantSpark SNVs. 228 highly associative 2-SNV,
1102 highly associative 3-SNV, and 43 highly associative 4-SNV
were filtered based on thresholds of 95%, 99%, and 99.9% for 2-
SNV, 3- SNV, and 4-SNV alpha and beta association effect respec-
tively. Finally, after computing p-values for these filtered interac-
tions, interactions with significant p-values after Bonferroni
correction at 5% were kept. These interactions represent the final
set of statistically significant highly associated interactions. Once
we identify the 4-SNV combinations with significant beta and
alpha values using BitEpi, we look further into those interactions
by producing their corresponding contingency table. Using this
table, one could identify the ’risk’ and ’protective’ allele combina-
tions. While the 4-SNV contingency table can explain why beta
value is significant. To understand why alpha value is significant
we compare the best sub 3- SNV contingency table (highest 3-
SNV beta) with the 4- SNV contingency table. If [A, B, C, D] is the
4- SNV interaction then (A, B, C), (A, B, D), (A, C, D) and (B, C, D)
are possible sub 3- SNV combinations.

4.8. Structural modelling analysis

Crystallographic models of nsp14/nsp10 (pdb entry:7DIY [21]),
nsp16/nsp10 (pdb entry: 6W4H [32]), and Orf7a (pdb entry: 6W37
[33]) were visualized using VMD [34]. Additional model of the
same sequences was generated using Alphafold2 [18]. Alignments
of crystallographic data to AlphaFold models using VMD scripting
showed good agreement with RMSD values of less than 0.95 Å.
VMD was used for visual inspection of mutation sites and their
proximity to protein interfaces and ion binding sites.
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