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Abstract: Autism spectrum disorder is characterized by neurological, psychiatric and medical
comorbidities—some conditions co-occur so frequently that comorbidity in autism is the rule rather
than the exception. The most common autism co-occurring conditions are intellectual disability,
language disorders, attention-deficit hyperactivity disorder, epilepsy, gastrointestinal problems,
sleep disorders, anxiety, depression, obsessive-compulsive disorder, psychotic disorders, oppositional
defiant disorder, and eating disorders. They are well known and studied. Migraine is the most
common brain disease in the world, but surprisingly only a few studies investigate the comorbidity
between autism and migraine. The aim of this narrative review is to explore the literature reports
about the comorbidity between autism and migraine and to investigate the common neurotransmitter,
immune, anatomical and genetic abnormalities at the base of these two conditions.
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“I had noticed both ‘migraine” and ‘autism’ listed on the top of my son’s forms and I began
to suspect that all of this paperwork had far more to do with the neurologist’s interests in my
son’s autism than with a genuine concern for his migraine problems”.

Anderson, J. L. (2013). A dash of autism. The philosophy of autism.

1. Introduction

Autism spectrum disorder (ASD) is a complex neurobehavioral and neurodevelopmental condition
characterized by difficulties in social interaction and communication, restricted and repetitive patterns
of behavior, interests and activities and altered sensory processing (see panel 1) [1].

The prevalence of autism has significantly increased during the last two decades from 2-5/10,000
to 1/59 children (1 in 37 boys and 1 in 151 girls), the frequency in males is four times greater than
females [2].

According to a dimensional view of ASD, it is a heterogeneous neurodevelopmental condition
characterized by a spectrum of behaviors and traits and by a complex etiopathogenesis [3]. In addition,
to complicate the complex picture of autism, there are a lot of co-occurring conditions, some of
these are so frequent that it is difficult to understand if they are a comorbidity or a coexisting
trait. Most common ASD comorbidities are: neurodevelopmental disorders (intellectual disability,
language disorders, attention-deficit hyperactivity disorder, tic disorders, motor abnormality); general
medical conditions (epilepsy, gastrointestinal problems, immune dysregulation, genetic syndromes,
sleep disorders); psychiatric disorders (anxiety, depression, obsessive-compulsive disorder, psychotic
disorders, substance use disorders, oppositional defiant disorder, eating disorders, personality
disorders) [4,5].

Patients with ASD who have such a multidimensional impairment often have greater behavioral
abnormalities and worse long-term outcomes [6]. Some authors refer to this condition as “autism-plus”
or “multiple complex developmental disorder” [7,8].
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Migraine is the most predominant primary headache and represents the most prevalent
neurological disease, the third most prevalent illness in the world, the third cause of disability
in under 50s and it affects about 1 billion people worldwide [9,10].

According to the International Classification of Headache Disorders, 3rd edition beta ICHD-3
beta), people suffering from migraine experience attacks lasting 4-72 h which are typically unilateral,
pulsating, with a moderate or severe intensity, aggravated by physical activity and associated with
nausea, vomiting and/or photophobia and phonophobia. In some patients, head pain is preceded
by visual, sensory or other central nervous system symptoms, this presentation is known as aura
(see panel 2) [11].

Both people with autism and people with migraine share an atypical sensory processing.
Hyper- and hyposensory reactivity can combine differently across individuals with ASD, it can range
from mild to severe forms, it can be visible early in development and persist in adulthood. Sensory
processing abnormalities seem to have a double impairment both in the registration and modulation of
sensory stimuli [12].

Sensory abnormalities reflect neurochemical and neuroanatomical alterations, among them
GABAergic signaling is often frequently affected [13]. Several studies have detected different structural
abnormalities such as volume changes in primary sensory regions, the thalamus as a relay station for
most senses, anterior cingulate cortex, insula, amygdala, hippocampus, and cerebellum [14].

Similarly, individuals with migraine have an impaired perception and processing of unimodal
and multimodal sensory inputs, both during and after migraine attacks [15]. People with migraine
during and between migraine attacks have atypical stimulus induced activations of the brainstem
and of cortical and subcortical regions that participate in sensory processing. For instance, a resting state
functional connectivity MRI study evidenced a stronger connectivity between the periaqueductal gray
and thalamus, insula, supramarginal, precentral, and postcentral gyri in individuals with migraine [16].
Migraineurs also show an increased cortical hyperexcitability both during and between migraine
attacks [17].

Sensory processing impairment could have a genetic component because in siblings of affected
people dysfunctional sensory traits have been found to a greater extent than the general population [18].

Although ASD and migraine are very common neurological conditions and despite common
findings about their sensory processing impairment, there is a lack of evidence about their
co-occurrence [19,20] and only a few works in the scientific literature face this apparently
unusual comorbidity.

Panel 1. DSM-5 Autism Diagnostic Criteria [1]

A.  Persistent deficits in social communication and social interaction across multiple contexts,
as manifested by the following, currently or by history.

B. Restricted, repetitive patterns of behavior, interests, or activities, as manifested by at least two of
the following, currently or by history.

C.  Symptoms must be present in the early developmental period (but may not become fully
manifest until social demands exceed limited capacities or may be masked by learned strategies
in later life).

D.  Symptoms cause clinically significant impairment in social, occupational, or other important
areas of current functioning.

E.  These disturbances are not better explained by intellectual disability (intellectual developmental
disorder) or global developmental delay. Intellectual disability and autism spectrum disorder
frequently co-occur; to make comorbid diagnoses of autism spectrum disorder and intellectual
disability, social communication should be below that expected for general developmental level.
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Panel 2. ICHD-3 beta migraine criteria [11]

Migraine without aura

A.  Atleast five attacks fulfilling criteria B-D.
Headache attacks lasting 4-72 h (untreated or unsuccessfully treated).

&

C.  Headache has at least two of the following four characteristics:

1 unilateral location;

2. pulsating quality;

3. moderate or severe pain intensity;

4.  aggravation by or causing avoidance of routine physical activity (e.g., walking or
climbing stairs).

D.  During headache at least one of the following:

1. nausea and/or vomiting;
2. photophobia and phonophobia.

E.  Not better accounted for by another ICHD-3 diagnosis.
Migraine with aura

A.  Atleast two attacks fulfilling criteria B and C.
B.  One or more of the following fully reversible aura symptoms:

1 visual;

2 sensory;

3. speech and/or language;
4.  motor;

5 brainstem;

6 retinal.

C.  Atleast three of the following six characteristics:

at least one aura symptom spreads gradually over >5 min;
two or more aura symptoms occur in succession;

each individual aura symptom lasts 5-60 min;

at least one aura symptom is unilateral;

at least one aura symptom is positive;

SN o

the aura is accompanied, or followed within 60 min, by headache.

D.  Not better accounted for by another ICHD-3 diagnosis.

2. Aims and Methods

This narrative review evaluates the scientific literature evidence about the co-occurrence between
ASD and migraine in the hope of shedding some light on this poorly explored association.

We want to better delineate the main state-of-the-art research findings about the comorbidity
between ASD and migraine suggesting the possible related pathophysiological mechanisms
and evaluating if patients with ASD are vulnerable to under-recognition and undertreatment
of migraine.

To this end, several articles published over the years were reviewed by performing a search
using the following syntax “autism” (Title/Abstract) OR “Asperger” (Title/Abstract) OR “pervasive
developmental disorders” (Title/Abstract) AND “migraine” (Title/Abstract). References were identified
through electronic database searching in CENTRAL, Ovid MEDLINE, Embase, PsycINFO.

The final database search was run on July 2020.
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3. Co-Occurring ASD-Migraine Epidemiology

Many physicians who care for people with ASD believe that headache is a marginal uncommon
issue rather than a very prominent problem. There are, in the literature, only a few studies that aim to
grasp the scale of the phenomenon by analyzing the comorbidity between ASD and migraine (Table 1).
However, despite the limited number of studies and their restricted samples, they seem to describe a
different scenario.

Table 1. Autism spectrum disorder (ASD)-migraine comorbidity studies.

ASD Sample Rate of Migraine Other Findings

105 adults
Underwood et al., 2019 [21] (76 healthy controls) with 42.7% (vs. 20.5% of controls)
no intellectual disability

Victorio, 2014 [22] 18 children 61% 44% without aura; 5,6% with aura and 11% both types

High rate (89.5%) of psychiatric comorbidities
(depression 62.9%; anxiety 55.2%)

Sullivan et al., 2014 [23] 81 children 28.4% more generalized anxiety and sensory hyperreactivity

Underwood et al. in their cohort study of 2019 aimed to examine the phenotypic and genetic
characteristics of a sample of adults with ASD and their comorbidities—they found a higher rate of
psychiatric comorbidities (89.5% of cases) than in controls. The most frequent comorbid diagnoses
were depression (62.9%) and anxiety (55.2%). Moreover, authors demonstrated an increased reported
rate of migraine: 42.7% of individuals with ASD reported a lifetime history of migraine compared
to 20.5% of controls (p = 0.012). There was also a higher rate of epilepsy and seizures compared to
controls and an association between migraine and epilepsy was confirmed (p = 0.028) [21].

In 2014, Victorio in his study on a small sample of eighteen patients with autism found migraine
in 61% (11/18) of patients. Eight patients had migraine without aura, one had migraine with aura
and two patients had both migraine with and without aura, three patients had combined migraine
and tension type headache and three had chronic daily headache. The onset age widely varies between
5-16 years [22].

In 2014, Sullivan et al. in their sample of patients with autism evidenced migrainous
symptomatology in 28.4% of cases. There were no differences in gender, in age or in autism
severity between migraineurs and nonmigraineurs. However, children with ASD and migraines
significantly showed more generalized anxiety and sensory hyperreactivity suggesting a possible
subtype of ASD [23].

4. Sensitivity to Pain in ASD

Some authors suggest that a possible explanation of the unusual association between migraine
and ASD is to be sought in the hyposensitivity to pain of individuals with ASD [24-26].

Sensory anomalies are a hallmark of autism. A global hypersensitivity or hyposensitivity are
the most common sensory anomalies, but sometimes some individuals can be hypersensitive in some
sensory modalities and hyposensitive in others [27]. In the context of pain sensitivity, another element
that should not be underestimated is the difficulty and the different modality of individuals with ASD
to communicate pain sensation.

A literature review by David ]. Moore highlighted some interesting data about sensitivity to
pain in ASD. The evidence about insensitivity to pain, for example, is based on clinical accounts or
self/parent report modalities full of interpretations and selective reporting biases [28].

A study with proper systematic examinations and protocols to evaluate pain thresholds showed
that ASD group had reduced pain thresholds compared to the control group. Therefore, rather than
insensitivity to pain, ASD individuals seem to be hypersensitive to pain and insensitivity could
represent a peculiar characteristic of a neurobiological subtype of ASD [29]. Moreover, a reduced
sensory—tactile threshold could explain the tactile defensiveness usually seen among children with
ASD [30].
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Interestingly, migraineurs and people with ASD seem to have both an increased pain sensitivity
and an increased sensitivity to other sensory stimuli [31].

However, the clinical experiments about pain sensitivity in ASD mainly investigate the tactile
thermal and pain sensitivity, while migraine headache has a different, partly clarified, complex
pathophysiology leading to the activation of meningeal nociceptors [32]. Unfortunately, there is a
lack of literature evidence about the differences in pathogenesis and perception of migrainous pain in
people with ASD compared to healthy individuals.

A further crucial element to be considered is that pain in humans has an undeniable emotional
and social dimension. Thus, the expression of pain includes several manifestations such as facial
expression changes, verbal activity, posture, movement and behavior. It is therefore reasonable to
expect differences in reports of pain by subjects with ASD.

Nevertheless, recent studies have examined the pain reactions in children with ASD finding no
significant difference in the number of facial, behavioral and physiological reactions between children
with ASD and typically developing children [33,34].

In order to overcome the possible communication barriers, Failla et al. investigated the neural
responses to pain in individuals with ASD using functional magnetic resonance imaging. Similarly to
the aforementioned evidence, they found no statistically significant difference in pain ratings and neural
pain signature responses during acute pain, while they observed a reduction in neural pain signature
responses during sustained pain and after stimulus offset [35].

5. Excess of Endogenous Opioids Theory

The opioid system plays a crucial role in the nociception, in the analgesia and in the response to
stress, as well as to affective processing, pleasure, reward, mood and the sense of well-being [36].

Some authors have suggested an excess of endogenous opioids to sustain the alleged reduced
sensitivity to pain [37].

An exogenous opioid supply is able to determine behavioral effects, such as insensitivity to pain,
stereotypical behavior, affective lability and reduced socialization [38,39].

However, subsequent studies failed to replicate the findings of opioid peptide excess putting
this theory in doubt [40]. Moreover, some authors rather than individuating an excess of endogenous
opioid neuropeptides related the reduced sensitivity to pain to different physiological and biological
stress responses of patients with ASD [41]. Nevertheless, a recent systematic review reaffirmed that there
was not sufficient evidence that an endogenous opioid imbalance has an impact on the core symptoms
of autism in the majority of cases, although an exogenous administration of opioid antagonists can
improve hyperactivity and restlessness in some subgroups of ASD children [42].

Most opioid analgesics are used as a second or third tier treatment for migraine. Most common
opioid analgesics target the p-opioid receptor, but p-opioid agonists usually have low efficacy and they
can contribute to the progression of migraine to a chronic and refractory condition [43].

However, some preclinical studies suggest that other members of the opioid receptor family can
be better alternatives to p-based approaches.

d-receptors are mainly expressed in several regions involved in headache, including trigeminal
and dorsal root ganglia, trigeminal nucleus caudalis, cortex, hippocampus, hypothalamus
and amygdala. Their expression in limbic regions supports their role in emotional regulation [44].

b agonists have fewer rewarding behaviors and less physical dependence, respiratory depression
and constipation compared to p-agonists. Moreover, literature evidence showed promising effects in
multiple chronic pain models, including nitroglycerin evoked hyperalgesia, conditioned place aversion
and cortical spreading depression [45].

Moreover, the positive effects of d-agonists on emotional modulation may be beneficial in
migraineurs considering the high comorbidity between headache and emotional disorders [46].
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The k-receptors are highly expressed in regions related to mood, motivation and pain such
as the cerebral cortex, hippocampus, hypothalamus, nucleus accumbens, periaqueductal grey,
spinal cord and dorsal root ganglia [47].

k-receptor inhibitors emerged as an effective and well-tolerated therapeutic option for headache,
probably limiting the k-opioid peptide dynorphin recognized as a marker of stress that is considered
the most common migraine trigger [48].

6. Serotonin Theory

Militerni el al. proposed an alternative theory to explain the reduced pain reactivity in individuals
with ASD. They found a significant reduction in serotonemia in children with ASD and an abnormal
pain reactivity [24]. Both autism and migraine are characterized by serotonergic abnormalities and by
a hyperexcitable cortex [49]. However, ASD is characterized by insufficient or excessive serotonin
signaling, suggesting a bidirectional serotonin involvement [50].

There is evidence that children with ASD have a lower initial capacity to produce serotonin in
the central nervous system but they maintain a constant level of production, whereas this capacity
declines with age in children with a normal neurodevelopment. Therefore, individuals with autism
develop hyperserotonemia [51].

Serotonin plays a crucial role in promoting synaptogenesis and the formation of dendritic spines
in cortical and striatal neurons [52]. Both high and low anormal serotonin levels in the brain during
corticogenesis have been demonstrated to cause a disruption of synaptic connectivity, a potential
neurobiological mechanism of ASD [53,54].

Serotonin is also a crucial neurotransmitter in the etiopathogenesis of migraine so that it is classically
considered a “low serotonin syndrome”. In fact, patients with migraine have a reduction in levels of
serotonin and tryptophan (precursor of serotonin) [55]. Most of serotonin is produced in the periphery,
especially in the gastrointestinal system by enterochromaffin cells that release it in the bloodstream
and its serum levels are regulated by the uptake into platelets [56]. The chronic peripheral low serotonin
level reflects dysfunctions not only in blood platelets, but primarily in the brain [57]. The low serotonin
state determines enhanced cortical spreading depression waves and increased neuronal activation
within the trigeminal nucleus caudalis [58]. This mechanism is responsible for the cascade of events
that ultimately leads to the activation of pain-sensitive trigeminovascular fibres probably thanks to an
increased cortical excitability and sensitivity of the trigeminovascular pathway [59,60].

Therefore, a role of the disrupted serotonin system in the cortical control of nociceptive processing
in patients with autism cannot be excluded. In fact, there is anecdotal evidence that sumatriptan
(primarily a 5-HT1d receptor agonist used as an antimigraine medication) improves both symptoms of
autism and migraine headaches when taken by patients suffering from both disorders [61].

Lastly, there are no reports about the effects on headache of selective serotonin reuptake inhibitors
(SSRIs) primarily prescribed to treat depression, anxiety and obsessive-compulsive behaviors which
are often comorbid with ASD [62].

Together with the dysfunction of serotonergic system-altered immune responses (see below) play a
role in the pathogenesis of ASD. Both systemic and central proinflammatory immune stimuli contribute
to the activation of the cerebral kynurenine pathway that was involved in several neurological
disorders [63].

The kynurenine pathway is a metabolic pathway leading to the production of nicotinamide
adenine dinucleotide and other active metabolites, from the degradation of more than 90% of
the tryptophan metabolism.

The activation of the kynurenine pathway diverts tryptophan from the 5-HT synthesis route
and depletes systemic tryptophan. Moreover, in people with ASD, kynurenic acid is significantly lower
and kynurenine aminotransferase activity is decreased indicating high levels of neurotoxicity [64].

Nonetheless, some evidence suggests an interesting role of the kynurenine pathway in
the pathogenesis of migraine. Kynurenic acid has a neuroprotective role blocking glutamate release,
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that is a neurotransmitter crucial in the migraine pathogenesis and plays a central role in the genesis of
cortical spreading depression [65].

Moreover, kynurenines are important in the transmission of sensory impulses in the trigeminovascular
system through NMDAR and AMPAR receptors. Additionally, there is evidence that kynurenine
metabolites show significant serum reductions in patients with chronic migraine similarly to patients with
ASD [66]. Nevertheless, adequate levels of kynurenic acid seem to reduce the sensitivity of the cerebral
cortex to cortical spreading depression [67].

7. The Neuroinflammation Theory

Another dysregulated system in common in people with migraine and in people with autism is
the immune response.

Increasing evidence shows that neuroinflammation is involved in the etiopathogenesis of
neuropsychiatric disorders [68]. In autism an increased number of reactive microglia and astrocytes
has been reported in postmortem tissues and in animal models [69]. Numerous studies investigate
the immune-mediated response in autism often with contrasting results. However, in autism, a chronic
inflammation seems to be in accordance with to the cytokine profile including both inflammatory
and anti-inflammatory agents. A recent systematic review and meta-analysis, aiming to investigate
the characteristics of the abnormal cytokine profile, found the following anomalies: interleukin
(IL)-1beta (p = 0.001), IL-6 (p = 0.03), IL-8 (p = 0.04), interferon-gamma (p = 0.02), eotaxin (p = 0.01)
and monocyte chemotactic protein-1 (p = 0.05) were significantly higher in patients with ASD, while
concentrations of transforming growth factor-p1 were significantly lower (p = 0.001) [70].

Brain inflammation is also strongly linked to several pain disorders [71].

There is poor modern evidence to suggest a role of the neuronal inflammatory response in
conjunction with acute migraine attacks. It would seem that repeated episodes of cortical spreading
depression lead to a brain inflammation response [72]. This response is called by some authors
“neurogenic neuroinflammation”, which is a sterile inflammation caused by a continuous stimulation of
Cand Ab fibres leading to the release of neural mediators, mainly calcitonin gene-related peptide (CGrP)
but also substance P provoking a trigeminal sensitization [73]. This cascade leads to the activation
of glial cells and the alteration of several cytokine levels such as tumor necrosis factor (TNF), IL-13
and IL-6 which have been linked to migraine pathophysiology [74], similarly to the alterations found
in patients with ASD.

Theoharides et al. proposed a link between autism and migraine in the involvement of mast cells.
Corticotropin-releasing factor and neurotensin are significantly increased in the serum of ASD children
and stimulate mast cells located perivascularly close to neurons and microglia to produce neurotoxic
mediators [75]. Mast cells have also been implicated in the pathogenesis of migraine by participating in
neurogenic inflammation [76]. Mast cells could act as a “mirror” of heterogeneous triggers stimulating
microglia and they together secrete inflammatory molecules contributing to the risk of developing
ASD and migraine [75].

8. Autism as a Minicolumnopathy

Numerous studies have clarified that the pathogenic mechanisms behind ASD have a wide
and heterogeneous genetic component [77]. This genetic vulnerability causes different and nonspecific
neuroanatomical abnormalities such as disorganized gray and white matter, abnormal neuronal
connectivity, regional anomalies of brain structure, differences in the number and volume of neurons,
increased neuropil, vascular and glial abnormalities [78].

However, these patterns of atypical brain architecture show marked heterogeneity across
individuals with ASD.

Some authors suggest that certain migratory and proliferative defects are at the root of
etiopathology of autism. They consider ASD a minicolumnopathy. A minicolumn is a structural
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elementary unit of the neocortex composed principally by pyramidal cells with its own ecosystem of
afferent, efferent and interneuronal connections [79].

Minicolumns in autism are abnormal, they are smaller and increased in total numbers and they
present anirregular peripheral neuropil space. The peripheral neuropil space surrounds the minicolumn
core and contains GABAergic interneurons, which are thought to protect the minicolumn by excessive
excitatory inputs of neighboring minicolumns with repercussions on excitatory/inhibitory balance.
This mechanism may in part explain the decreased seizure threshold seen in patients with autism [80,81].
A reduction in GABAergic inhibitory activity would be responsible for the high incidence of seizures
and for hypersensitivity which is typical of patients with autism [82].

According to Casanova et al., minicolumnopathy in autism, the resultant excitatory/inhibitory
imbalance and serotonergic abnormalities are the common keys to explain the autism core
symptoms and gastrointestinal symptoms frequent in patients with ASD. In the light of this theory,
the gastrointestinal phenomenology in patients with ASD is nothing more than a migraine
equivalent—i.e., an abdominal migraine [83]. An abdominal migraine is a frequent cause of chronic
and recurrent abdominal pain in children and it is often accompanied by other symptoms such
as headache, pallor, anorexia, nausea, vomiting, photophobia, partial bowel obstruction and irritable
bowel syndrome [84].

Therefore, this theory is supported by a common wide clinical phenomenology between
migraineurs and patients with autism especially gastrointestinal complaints (see below).

9. Dysfunctional Gut-Brain Axis

Although headache and local pain do not represent frequent causes of complaints in children
with ASD, there is a wide range of gastrointestinal signs and symptoms present both in migraine
and autism.

Gastrointestinal problems are the most frequent medical condition associated with autism [85]
and they are correlated with autism severity, worse behaviors and they can trigger regression in children
with ASD [86]. The most frequent symptoms are alterations in bowel habits, mainly constipation,
recurrent abdominal pains, bloating, nausea or vomiting, reflux and diarrhea. Moreover, these recurrent
attacks often occur in a setting of phonophobia/photophobia and they are associated with autonomic
symptoms such as pallor and flushing [87].

The causes of this gastrointestinal symptomatology are to be found in a dysfunctional
gut-brain axis.

There is much literature evidence that children with autism have an altered gut microbiota,
particularly in the relative amount of bacterial phyla [88]. The dysbiosis is associated in patients with
ASD with an alteration of the intestinal mucosa barrier with a consequent increased permeability
to exogenous molecules [89]. These molecules pass into the blood stream and they could be able to
provoke a system immune response that alters the blood-brain barrier causing neuroinflammation
with excessive microglial activation and increased proinflammatory cytokines [90].

Moreover, some bacterial species (Lactobacillus, Streptococcus, and Lactococcus) are able to produce
serotonin and short-chain fatty acids altering the serotoninergic balance which is associated with
gastrointestinal symptoms and this neurotransmitter plays a significant role in the etiology of migraine
and autism representing a link in the brain—gut microbiome axis in ASD pathophysiology [91]
(see also above).

Evidence also suggests complex and not entirely clear relationships between migraine
and the gut-brain axis. Several factors influence both the gut-axis and central nervous system
as cytokines (IL-1f3, IL-6, IL-8, and TNF-«x), gut microbiota, neuropeptides as serotonin, CGRP,
substance P, vasoactive intestinal peptide, and neuropeptide Y that can have an antimicrobial impact
on the gut microbiome [92].

Moreover, there is a high comorbidity between chronic migraine and gastrointestinal disorders
such as helicobacter pylori infection, irritable bowel syndrome, inflammatory bowel disease and celiac
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disease, and there is evidence that in some cases the eradication of helicobacter pylori or a gluten-free
diet or other diet strategies (probiotics, omega-3, fibers, vitamin D) may have an impact on the migraine
course [93-96].

10. Genetic Susceptibility

Migraine and autism partly share a common genetic load provoking the involvement of neural
networks which are coming sharply into focus.

A recent study by Sener et al. has investigated the expression of pain candidate genes in children
with ASD. They found alterations in the mRNA in the peripheral blood of patients with ASD in
the expression of HTR1E, OPRL1, OPRM1, TACR1, PRKG1, SCN9A and DRD4 genes supporting
the relationship between an altered sensitivity to pain and autism [97].

Neurodevelopmental disorders have, almost invariably, a complex polygenic susceptibility that
sometimes involves shared heritable factors with migraine.

The strong genetic evidence about migraine disorders regards hemiplegic migraine, which is a
rare monogenic subtype characterized by migraine with aura associated with hemiparesis mainly due
to mutations in three genes—CACNAT1A, ATP1A2 and SCN1A (other pathogenic variants are found in
PRRT2, PNKD, SLC2A1, SLC1A3, SLC4A4 genes) [98].

Interestingly, there is literature evidence that all the three abovementioned genes or their homologs
are involved in familial or sporadic forms of autism. However, no headache symptomatology
was reported in association with autism for SCN1A [99,100] or ATP1A2 [101] genes, although we do
not know if it was investigated. Only for CACNAT1A and their homolog genes (i.e., CACNA1C gene
responsible for Timothy syndrome) was the coexistence between autism and migraine reported [102,103].

Familial hemiplegic migraine mutations in SCN1A are commonly missense and cause
gain-of-function effects such as a retarded inactivation, increased threshold-near persistent current,
faster recovery and higher availability during repetitive stimulation [104].

On the contrary, heterozygous loss-of-function mutations in the SCN1A gene provoke severe
myoclonic epilepsy in infancy in which patients have autism-spectrum behaviors [105].

Various ion channel gene defects altering normal ion flux across the neuronal membrane cause
harmful effects to the generation of action potentials, abnormalities in early brain development, in gene
expression and in cell morphology [106].

Channelopathies, the diseases caused by the disturbed function of ion channel subunits, have
become, supported by growing literature evidence, significantly more relevant in the pathogenesis
of neurodevelopmental disorders. Calcium signaling plays a crucial role in the pathogenesis of
neuropsychiatric diseases, including migraine headache, cerebellar ataxia, autism, schizophrenia,
bipolar disorder and depression [107], but sodium, potassium and chloride channels are also
implicated [99,108]. Channelopathies result in an altered excitation/inhibition balance that is responsible
for the brain dysmaturation typical of neurodevelopmental disorders [109,110]. This imbalance
determines a neuronal hyperexcitability leading to seizures and epilepsy that are highly comorbid with
ASD and make the brain more susceptible to cortical spreading depression, the pathophysiological
mechanism at the base of aura symptoms [111].

For instance, most missense variants of calcium channels have gain-of-function effects, provoking
increased Ca®* influx and determining enhanced glutamatergic neurotransmission, neuronal
hyperexcitability and increased susceptibility to cortical spreading depression [112].

Mutations of calcium channels and the dysregulation of their functions are also able to impair
the synaptic plasticity and the regulation of synaptic strength in a wide range of neuropsychiatric
diseases including ASD [107].

11. Conclusions

Even if autism and migraine are two common neurological conditions, only a few studies
investigate their comorbidity. These studies, despite a small sample of patients with autism, indicate a
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high rate of migrainous symptomatology. Individuals with autism frequently have an altered pain
sensitivity that could distort their perception of headaches. Moreover, the social dimension of pain
could be impaired in people with autism with unforeseeable consequences in reports of pain.

Autism and migraine share common pathophysiological changes: neurotransmission dysregulation,
especially of the serotoninergic system; altered immune response causing neurogenic neuroinflammation;
abnormal findings especially in the cortical minicolumn organization and in the dysfunctional gut-brain
axis; shared susceptibility genes.

Regarding the comorbidity between autism and migraine, it seems clear that further
epidemiological studies are needed to take into account the true scale of this poorly explored association.
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