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Background. The 2014–2015 influenza season was distinguished by an epidemic of antigenically-drifted A(H3N2) viruses and
vaccine components identical to 2013–2014. We report 2014–2015 vaccine effectiveness (VE) from Canada and explore contributing
agent–host factors.

Methods. VE against laboratory-confirmed influenza was derived using a test-negative design among outpatients with
influenza-like illness. Sequencing identified amino acid mutations at key antigenic sites of the viral hemagglutinin protein.

Results. Overall, 815/1930 (42%) patients tested influenza-positive: 590 (72%) influenza A and 226 (28%) influenza B. Most
influenza A viruses with known subtype were A(H3N2) (570/577; 99%); 409/460 (89%) sequenced viruses belonged to genetic
clade 3C.2a and 39/460 (8%) to clade 3C.3b. Dominant clade 3C.2a viruses bore the pivotal mutations F159Y (a cluster-transition
position) and K160T (a predicted gain of glycosylation) compared to the mismatched clade 3C.1 vaccine. VE against A(H3N2) was
−17% (95% confidence interval [CI], −50% to 9%) overall with clade-specific VE of −13% (95% CI, −51% to 15%) for clade 3C.2a
but 52% (95% CI, −17% to 80%) for clade 3C.3b. VE against A(H3N2) was 53% (95% CI, 10% to 75%) for patients vaccinated in
2014-2015 only, significantly lower at −32% (95% CI, −75% to 0%) if also vaccinated in 2013–2014 and −54% (95% CI, −108% to
−14%) if vaccinated each year since 2012–2013. VE against clade-mismatched B(Yamagata) viruses was 42% (95% CI, 10% to 62%)
with less-pronounced reduction from prior vaccination compared to A(H3N2).

Conclusions. Variation in the viral genome and negative effects of serial vaccination likely contributed to poor influenza vaccine
performance in 2014–2015.
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The 2014–2015 influenza season in the northern hemisphere
had several distinguishing features including an early and in-
tense epidemic due to the A(H3N2) subtype; dominant circulat-
ing strains that were mismatched to vaccine; and vaccine that
was unchanged from 2013–2014 [1–4]. Compared with other
influenza types/subtypes, predominant A(H3N2) epidemics
are typically associated with a greater population burden of se-
rious outcomes, notably involving the elderly [5, 6]. Surveillance
indicators from Canada and elsewhere show that the 2014–2015
season was among the worst in recent years with respect to se-
rious outcome statistics [1, 2, 7, 8].

The test-negative design (TND) is an efficient form of case-
control study first piloted for influenza vaccine effectiveness
(VE) monitoring in 2004–2005 by Canada’s Sentinel Practitioner
Surveillance Network (SPSN) [9]. Since then, the TND has been
used for influenza VE estimation annually in Canada [10–12]
and has been adopted for this purpose by multiple countries
globally [9], including for mid-season assessment. In 2014–
2015, several countries used the TND to assess VE mid-season,
reporting negligible protection against the A(H3N2) epidemic
strain [13–17].

Over the past decade, the Canadian SPSN has also linked
patient clinical data to detailed genomic and antigenic charac-
terization of viruses collected from the same TND study partic-
ipants to gain insight into the impact of virologic changes on
VE [10, 11, 13]. Viral evasion of vaccine-induced antibody
protection largely occurs through evolution in the surface hem-
agglutinin (HA) protein [18, 19]. Historically, vaccine match
has been assessed antigenically by hemagglutination inhibition
(HI) assay [18], but sequencing of the HA gene can provide
more direct and nuanced insight into virus diversity and vaccine
relatedness [10, 11]. Genomic analyses are interpreted in the
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context of anticipated antigenic/immunogenic effects; however,
the correlation betweenmolecular-level changes andVE remains
uncertain, requiring further integrated analyses [10, 11, 19–24].

In addition to virologic considerations, host factors may also
influence VE. In particular, several studies have recently shown
that prior vaccination may be associated with reduced immuno-
genicity and VE [10, 11, 13, 25–29]. Previous modeling simula-
tions have suggested that negative interference from prior
influenza vaccination may be pronounced in the context of an-
tigenically drifted virus and successive seasons of homologous
(ie, identical) vaccine, as was the scenario in 2014–2015 [30].

We used the integrated platform of the Canadian SPSN to ex-
plore these agent–host factors and their impact on VE during
the 2014–2015 season, including variation in the viral genome
and the effects of serial vaccination.

METHODS

Canadian SPSN
The community-based SPSN includes general practitioners at
designated outpatient clinics in British Columbia, Alberta, On-
tario, and Quebec. Patients who presented to a sentinel site
within 7 days of influenza-like illness (ILI) onset were eligible
to participate in the VE study. ILI was defined as acute respira-
tory illness with fever and cough and at least 1 of the following:
sore throat, arthralgia, myalgia, or prostration. Fever was not re-
quired for elderly patients (aged ≥65 years). Epidemiologic data,
including current and up to 2 previous seasons’ vaccine receipt,
were collected from consenting patients/guardians using a stan-
dard questionnaire at specimen collection. Ethics review boards
in each participating province approved the study.

Influenza Vaccines
Influenza vaccines delivered in Canada for the 2014–2015 pub-
licly funded campaign beginning in October were mostly non-
adjuvanted, inactivated, split (68%) or subunit (22%) trivalent
influenza vaccines. An adjuvanted-subunit vaccine was also
publicly funded for community-based elderly adults in British
Columbia. Live attenuated influenza vaccine for individuals
aged 2–59 years, including trivalent and quadrivalent formula-
tions, was publicly funded and preferentially recommended for
children in British Columbia (2–8 years old), Alberta (2–17
years old), and Quebec (2–17 years old).

For the 2014–2015 northern hemisphere trivalent vaccine,
the World Health Organization (WHO) recommended the fol-
lowing components, which were the same as those used in
2013–2014 [3, 10, 11]: an A/Texas/50/2012(H3N2)-like (clade
3C.1) virus that is also antigenically related to the A/Victoria/
361/2011(H3N2)-like (clade 3C) prototype used in 2012–
2013; a B/Massachusetts/02/2012(Yamagata lineage) (clade 2)
virus with variable antigenic relatedness to the 2012–2013 B/
Wisconsin/1/2010(Yamagata lineage) (clade 3) vaccine; and

an A/California/07/2009(H1N1)pdm09-like virus unchanged
since 2009.

An egg-adapted, high-growth reassortant (HGR) version of
the WHO-recommended cell-passaged prototype is provided
to manufacturers for egg-based vaccine production; however,
egg-adaptation can introduce mutations in the HGR that may
also influence antigenicity/immunogenicity [10]. Egg-adapted
HGRs for 2014–2015 were identical to those for 2013–2014
and are called X-223A and BX-51B for the A(H3N2) and influ-
enza B components, respectively [11]. Both are changed from
the corresponding HGRs for 2012–2013 called IVR-165 and
BX-39, respectively [10].

Epidemiologic Analyses
Patients aged ≥1 year old at specimen collection (ie, age eligi-
ble for vaccine throughout the season) and meeting inclusion/
exclusion criteria shown in Figure 1 contributed to VE analy-
sis. Patients who self-reported receiving at least one 2014–2015
influenza vaccine dose ≥2 weeks before ILI onset were consid-
ered vaccinated. VE against medically attended, laboratory-
confirmed influenza was estimated by logistic regression as
(1 – odds ratio) × 100%, comparing self-reported vaccination
status between influenza test-positive cases and influenza
test-negative controls and adjusting for relevant confounders
(age group, sex, comorbidity, province, specimen collection
interval, and calendar time). Calendar time was based on
week of specimen collection and modeled using cubic B-spline

Figure 1. Vaccine effectiveness study inclusion and exclusion criteria for the 2014–
2015 season, Canadian Sentinel Practitioner Surveillance Network. aExclusions are not
mutually exclusive; specimens may have >1 exclusion criterion that applies. Counts for
each criterion will sum to more than the total number of specimens excluded. Abbre-
viations: ILI, influenza-like illness; PCR, polymerase chain reaction.
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functions with 3 equally spaced knots. Stratified VE estimates
were derived using logistic regression models with an interac-
tion term for vaccination status and the stratification variable
(eg, age group). Serial/repeat vaccination effects were assessed
through indicator-variable analyses based on self/guardian re-
port of vaccine receipt in 2013–2014 among participants aged
≥2 years and/or vaccine receipt in 2012–2013 among partici-
pants aged ≥3 years.

Virologic Characterization
Nasal/nasopharyngeal swabs were tested for influenza viruses
by reverse-transcription polymerase chain reaction at provincial
reference laboratories. Viruses contributing to VE analysis were
further characterized genetically and antigenically.

Genetic Characterization

Sanger sequencing of the viral HA genewas attempted directly on
all original patient specimens testing influenza-positive to estab-
lish clade designation and to detect amino acid differences be-
tween circulating viruses and the vaccine HGR at established
antigenic sites, labelled A–E for A(H3N2) [11, 20]. Amino acid
substitutions close to the receptor binding site (RBS) and involv-
ing antigenic site A and immunodominant antigenic site B of A
(H3N2) viruses are considered most relevant to antigenicity/im-
munogenicity [20, 21].Mutations at position 145 of antigenic site
A and positions 155, 156, 158, 159, 189, and 193 of antigenic site
B are emphasized because they have been associated with all
major A(H3N2) antigenic cluster-transition events since 1968
[22]. Substitutions associated with potential gain/loss of glycosyl-
ation are also emphasized for their potential effects in masking/
uncovering antibody epitopes [23, 24].Phylogenetic analysis used
the approximate likelihood method to determine clade distribu-
tion. Deduced amino acids of HA1 were aligned in FastTree [31]
and visualized in FigTree [32]. GenBank accession numbers are
as follows: KP701523-KP701743; KU729277-KU729659.

Antigenic Characterization

Viruses isolated in established mammalian cell lines (MDCK,
MDCK-SIAT1) or primary rhesus monkey kidney cells at provin-
cial reference laboratories were submitted to Canada’s National
Microbiology Laboratory (NML) for antigenic characterization
by HI assay as described elsewhere [33]. Virus isolation was at-
tempted on all influenza-positive specimens in all SPSN provinc-
es except Ontario where a shortage of reagents limited that
capacity. HI characterization was conducted on virus isolates
with sufficient hemagglutination titer using guinea pig erythro-
cytes for A(H3N2) and turkey erythrocytes for A(H1N1)
pdm09 and B(Yamagata) based on post-infection ferret antisera
raised against cell- and/or egg-passaged vaccine reference viruses
[18]. To address potential neuraminidase-mediated binding to
erythrocytes by A(H3N2) viruses, HI assays were conducted in
the presence of 20 nM oseltamivir-carboxylate following single
passage in MDCK-SIAT1 cells to improve viral titers where

indicated [33]. Antigenic relatedness of a sentinel isolate was de-
fined by ≤4-fold reduction in HI antibody titer compared with
the titer of the homologous reference strain [18].

RESULTS

Participant Characteristics
From November 1, 2014 to April 30, 2015, 1930 specimens met
inclusion/exclusion criteria (Figure 1). As with previous seasons
[10, 11], the largest proportion (63%) were collected from non-
elderly adults (aged 20–64 years; Table 1). However, compared
to the 2013–2014 season of A(H1N1)pdm09 dominance [11], a
greater proportion of patients in 2014–2015 were elderly adults
(13% vs 9%; P < .01), more notable among cases (14% vs 6%;
P < .01) than controls (12% vs 10%; P = .13).

Overall, 35% of patients were considered vaccinated, without
significant difference between cases (34%) and controls (36%;
P = .34; Table 1). Among patients who received the 2014–2015
influenza vaccine and were old enough to be vaccinated in previ-
ous seasons, 87% (564/651) of those aged ≥2 years had also re-
ceived vaccine in 2013–2014 and 82% (506/616) of those aged≥3
years had received vaccine each year since 2012–2013.

Influenza Detection
Influenza virus was detected in 815 (42%) specimens, including
590 (72%) influenza A and 226 (28%) influenza B, peaking at
>60% test positivity in late December (Table 2; Supplementary
Figure 1).

Of the 577 influenza A specimens with known subtype, vir-
tually all (570; 99%) were A(H3N2). Of 460/570 (81%) A
(H3N2) viruses sequenced, most (409; 89%) belonged to
clade 3C.2a or clade 3C.3b (39; 8%). None clustered with the
2014–2015 clade 3C.1 vaccine strain (A/Texas/50/2012) [3]
and very few (n = 3; <1%) clustered with the clade 3C.3a strain
(A/Switzerland/9715293/2013) recommended for the updated
2015–2016 northern hemisphere vaccine [4] (Table 2; Supple-
mentary Figure 2A).

Of the 199 influenza B specimens with known lineage, most
(193; 97%) were B(Yamagata). Of 165/193 (85%) B(Yamagata)
viruses sequenced, none clustered with the B(Yamagata) clade 2
vaccine strain for 2014–2015 (B/Massachusetts/2/2012) [3]. In-
stead, all clustered with the B(Yamagata) clade 3 vaccine strain
used in 2012–2013 (B/Wisconsin/1/2010) [10] (Table 2; Supple-
mentary Figure 2B).

VE Estimates
Overall and Clade-Specific VE

Overall adjusted VE against medically attended laboratory-con-
firmed influenza was 9% (95% confidence interval [CI], −14%
to 27%; Table 3). Adjusted VE against the predominant
A(H3N2) subtype was −17% (95% CI, −50% to 9%). Adjusted
VE against the clade 3C.2a epidemic strain was comparable at
−13% (95% CI, −51% to 15%), while adjusted VE against
clade 3C.3b viruses was higher but not statistically significant at
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Table 1. Profile of Participants Included in 2014–2015 Influenza Vaccine Effectiveness Evaluation, Canadian Sentinel Practitioner Surveillance Network

Characteristic Overall, n (%)

Distribution by Case
Status, n (%)

Vaccination Coverage Within
Strata, n (%)

Cases Controls P Valuea Vaccinated P Valuea

N (%) 1930 815 (42) 1115 (58) 684 (35)

Age group (y) .12 <.01

1–8 224 (12) 88 (11) 136 (12) 49 (22)

9–19 242 (13) 111 (14) 131 (12) 41 (17)

20–49 774 (40) 304 (37) 470 (42) 216 (28)

50–64 438 (23) 199 (24) 239 (21) 185 (42)

≥65 252 (13) 113 (14) 139 (12) 193 (77)

Median (range) 39 (1–103) 40 (1–103) 38 (1–94) .07 . . .

Sex .01 <.01

Female 1182 (61) 472 (58) 710 (64) 449 (38)

Male 748 (39) 343 (42) 405 (36) 235 (31)

Comorbidityb .43 <.01

No 1489 (77) 636 (78) 853 (77) 436 (29)

Yes 441 (23) 179 (22) 262 (24) 248 (56)

Province <.01 <.01

Alberta 560 (29) 220 (27) 340 (30) 232 (41)

British Columbia 292 (15) 99 (12) 193 (17) 91 (31)

Ontario 657 (34) 273 (34) 384 (34) 270 (41)

Quebec 421 (22) 223 (27) 198 (18) 91 (22)

Collection interval (d) <.01 .25

≤4 1432 (74) 654 (80) 778 (70) 497 (35)

5–7 498 (26) 161 (20) 337 (30) 187 (38)

Median (range) 3 (0–7) 3 (0–7) 3 (0–7) <.01 . . .

Calendar timec <.01 <.01

November 107 (6) 22 (3) 85 (8) 23 (22)

December 473 (25) 262 (32) 211 (19) 171 (36)

January 589 (31) 252 (31) 337 (30) 218 (37)

February 351 (18) 117 (14) 234 (21) 143 (41)

March 269 (14) 115 (14) 154 (14) 89 (33)

April 141 (7) 47 (6) 94 (8) 40 (28)

Received 2014–2015 influenza vaccine

Any vaccinationd 734/1980 (37) 300/836 (36) 434/1144 (38) .35 . . .

≥2 wk before onset 684 (35) 279 (34) 405 (36) .34 . . .

LAIV overalle 33/391 (8) 14/162 (9) 19/229 (8) .90 . . .

LAIV childrenf 31/64 (48) 13/34 (38) 18/30 (60) .08

Adjuvantedg 37/108 (34) 14/45 (31) 23/63 (37) .56 . . .

Prior vaccination history

2013–2014 vaccineh 758/1801 (42) 330/779 (42) 428/1022 (42) .84 564/758 (74) <.01

2012–2013 vaccinei 733/1719 (43) 333/757 (44) 400/962 (42) .32 530/733 (72) <.01

Abbreviation: LAIV, live attenuated influenza vaccine.
a Differences between cases and controls and vaccinated and unvaccinated participants were compared using the χ2 test or Wilcoxon rank sum test.
b Chronic comorbidities that place individuals at higher risk of serious complications from influenza, as defined by Canada’s National Advisory Committee on Immunization, include heart,
pulmonary, renal, metabolic, blood, cancer, and immune comprising conditions or those that compromise management of respiratory secretions, or morbid obesity. Questionnaire
answered “yes,” “no,” or “unknown” without specifying comorbidity.
c Based on month of specimen collection. Missing collection dates were imputed as the laboratory accession date minus 2 days, which is the average time period between collection date and
laboratory accession date for records with complete data for both fields.
d Participants who received seasonal 2014–2015 influenza vaccine <2 weeks before influenza-like illness (ILI) onset or for whom vaccination timing was unknown were excluded from the
primary analysis. They were included for assessing “any” immunization, regardless of timing, for comparison with other sources of vaccination coverage.
e Among participants aged 2–59 years who received 2014–2015 influenza vaccine ≥2 weeks before ILI onset and had complete data for type of vaccine (includes 2 adult recipients).
f Among participants aged 2–17 years who received 2014–2015 influenza vaccine ≥2 weeks before ILI onset and had complete data for type of vaccine.
g Among participants aged ≥65 years who received 2014–2015 influenza vaccine ≥2 weeks before ILI onset and had complete data for adjuvanted vaccine receipt.
h Children aged <2 years in 2014–2015 were excluded from 2013–2014 vaccine uptake analysis as they may not have been eligible for vaccination during the fall 2013 immunization campaign.
i Children aged <3 years in 2014–2015 were excluded from 2012–2013 vaccine uptake analysis as they may not have been eligible for vaccination during the fall 2012 immunization campaign.
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52% (95% CI, −17% to 80%). Adjusted VE against influenza B
(Yamagata) was statistically significant at 42% (95% CI, 10% to
62%), virtually identical with restriction to clade 3 viruses
(Table 3).

Prior Vaccination Effects

Compared with participants who were unvaccinated both sea-
sons, adjusted VE against A(H3N2) for those vaccinated in
2014–2015 but not 2013–2014 was 53% (95% CI, 10% to

Table 2. Influenza Virus Characterization by Type and Subtype, 2014–2015 Influenza Vaccine Effectiveness Evaluation, Canadian Sentinel Practitioner
Surveillance Network

Specimen Alberta, n (%) British Columbia, n (%) Ontario, n (%) Quebec, n (%) Overall, n (%)

N 560 292 657 421 1930

Influenza negative 340 (61) 193 (66) 384 (58) 198 (47) 1115 (58)

Influenza positive 220 (39) 99 (34) 273 (42) 223 (53) 815 (42)

Influenza Aa 165 (75) 84 (85) 215 (79) 126 (57) 590 (72)

A(H3N2) 161 (98) 81 (96) 206 (96) 122 (97) 570 (97)

A(H1N1)pdm09 2 (1) 1 (1) 3 (1) 1 (1) 7 (1)

Subtype unknown 2 (1) 2 (2) 6 (3) 3 (2) 13 (2)

Influenza Ba 55 (25) 15 (15) 58 (21) 98 (44) 226 (28)

Yamagata lineage 43 (78) 13 (87) 50 (86) 87 (89) 193 (85)

Victoria lineage 1 (2) 1 (7) 2 (3) 2 (2) 6 (3)

Lineage unknown 11 (20) 1 (7) 6 (10) 9 (9) 27 (12)

Antigenic characterizationb

Influenza A(H3N2)c,d 105/161 (65) 39/81 (48) 25/206 (12) 100/122 (82) 269/570 (47)

A/Switzerland/9715293/2013-likee,f,g 24 (23) 18 (46) 7 (28) 1 (1) 50 (19)

Insufficient titer to run HI assayh 81 (77) 21 (54) 18 (72) 99 (99) 219 (81)

Influenza A(H1N1)pdm09 0/2 (0) 1/1 (100) 3/3 (100) 1/1 (100) 5/7 (71)

A/California/7/2009-likei,j 0 1 (100) 3 (100) 1 (100) 5 (100)

Influenza Bk 26/55 (47) 12/15 (80) 20/58 (34) 83/98 (85) 141/226 (62)

B/Massachusetts/2/2012-likel 25 (96) 12 (100) 19 (95) 78 (94) 134 (95)

B/Brisbane/60/2008-likem 1 (4) 0 1 (5) 2 (2) 4 (3)

Insufficient titer to run HI assay 0 0 0 2 (2) 2 (1)

Genetic characterizationn

Influenza A(H3N2) 161 (100) 81 (100) 206 (100) 122 (100) 570 (100)

Clade 3C.2a 139 (86) 43 (53) 123 (60) 104 (85) 409 (72)

Clade 3C.3 1 (1) 1 (1) 6 (3) 1 (1) 9 (2)

Clade 3C.3a 0 1 (1) 2 (1) 0 3 (1)

Clade 3C.3b 6 (4) 26 (32) 7 (3) 0 39 (7)

Sequencing attempted but failed 15 (9) 10 (12) 68 (33) 17 (14) 110 (19)

Influenza B(Yamagata) lineage 43 (100) 13 (100) 50 (100) 87 (100) 193 (100)

Clade 3 (B/Wisconsin/1/2010-like) 39 (91) 13 (100) 37 (74) 76 (87) 165 (85)

Sequencing attempted but failed 4 (9) 0 13 (26) 11 (13) 28 (15)

Abbreviation: HI, hemagglutination inhibition.
a One participant coinfected with influenza A(H3N2) and influenza B has been included in totals for both influenza A and B.
b Antigenic characterization of viruses with sufficient hemagglutination titer was by HI assay.
c Culture isolation was attempted on all viruses detected in British Columbia, Alberta, and Quebec where 244/364 (67%) A(H3N2) detections could be successfully cultivated. In Ontario, 25/206
(12%) A(H3N2) detections were cultivated owing to a shortage of reagents and virus growth issues.
d Includes 234 clade 3C.2a, 25 clade 3C.3b, 4 clade 3C.3, and 2 clade 3C.3a viruses; 4 with unknown clade.
e Ferret antisera to cell-passaged reference viruses provided by the US Centers for Disease Control and Prevention (CDC).
f Of the 50 A(H3N2) viruses with sufficient hemagglutination titer, all 50 (100%) had ≤4-fold reduction to cell-passaged A/Switzerland/9715293/2013 virus. Of the 49/50 A/Switzerland/9715293/
2013-like viruses with sequencing results, 31 (63%) were clade 3C.2a, 15 (31%) were clade 3C.3b, 2 (4%) were clade 3C.3a, and 1 (2%) was clade 3C.3; 1 could not be sequenced.
g A subset of A(H3N2) viruses with sufficient hemagglutination titer were additionally compared against egg-passaged reference virus based on ferret antisera provided by the CDC. Of the 36 A
(H3N2) viruses with sufficient titer, 35 (97%) had ≤4-fold reduction to egg-passaged A/Switzerland/9715293/2013 virus and 1 (3%; clade 3C.3b) had 8-fold reduction. Of the 35/36 A/
Switzerland/9715293/2013-like viruses with sequencing results, 25 (71%) were clade 3C.2a, 7 (20%) were clade 3C.3b, 2 (6%) were clade 3C.3a, and 1 (3%) was clade 3C.3; 1 could not
be sequenced.
h Of the 216/219 viruses with insufficient titer to run HI assay and with sequencing results, 203 were clade 3C.2a, 10 were clade 3C.3b, and 3 were clade 3C.3.
i Ferret antisera produced to the egg-passaged reference virus at Canada’s reference laboratory (the National Microbiology Laboratory [NML]).
j Of the 5 A(H1N1)pdm09 viruses characterized by HI assay, all had reductions ≤4-fold to a cell-passaged A/California/07/2009 virus.
k Culture isolation was attempted on all viruses detected in British Columbia, Alberta, and Quebec where 121/168 (72%) influenza B detections could be successfully cultivated. In Ontario, 20/
58 (34%) influenza B detections were cultivated owing to a shortage of reagents and virus growth issues.
l Yamagata lineage, clade 2. Ferret antisera to cell-passaged reference virus provided by the CDC. Of the 135 B(Yamagata) lineage viruses characterized, 134 (99%) had ≤4-fold reduction and 1
(1%; not displayed) had 8-fold reduction to cell-passaged B/Massachusetts/02/2012 (clade 2) virus.
m Victoria lineage. Ferret antisera to the egg-passaged reference virus provided by the CDC.
n Genetic clade-level characterization based on sequencing of original patient specimen (provincial reference labs) or cultured isolate (NML).
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Table 3. Vaccine Effectiveness Estimates and 95% Confidence Intervals by Influenza Type, Subtype/Lineage, and Clade, 2014–2015 Season, Canadian Sentinel Practitioner Surveillance Network

Model Any Influenza Any Influenza A Any A(H3N2)
A(H3N2)

Clade 3C.2a
A(H3N2)

Clade 3C.3b Any Influenza B Any B(Yamagata) B(Yamagata) Clade 3

N 1930 1705 1685 1524 1154 1341 1308 1280

n case (% vac) 815 (34) 590 (39) 570 (39) 409 (40) 39 (18) 226 (23) 193 (24) 165 (23)

n control (% vac) 1115 (36) 1115 (36) 1115 (36) 1115 (36) 1115 (36) 1115 (36) 1115 (36) 1115 (36)

Primary analysis

Unadjusted 9 (−10–24) −10 (−36–10) −13 (−40–8) −15 (−45–9) 62 (12–83) 49 (29–63) 45 (22–61) 48 (23–64)

Age groupa 15 (−5–30) −5 (−31–16) −8 (−35–14) −7 (−38–17) 57 (−3–82) 54 (33–68) 50 (28–66) 50 (25–67)

Sex (female/male) 7 (−12–23) −13 (−39–8) −16 (−43–6) −18 (−49–7) 60 (8–83) 49 (29–64) 45 (22–61) 47 (23–64)

Comorbidity (no/yes) 7 (−12–24) −10 (−36–11) −13 (−40–8) −13 (−44–11) 61 (9–83) 46 (24–62) 43 (18–60) 45 (18–63)

Province (Alberta, British Columbia, Ontario, Quebec) 3 (−17–20) −12 (−38–9) −15 (−42–6) −20 (−52–5) NRb 39 (14–57) 33 (3–54) 36 (5–57)

Collection interval (≤4/5–7 d) 8 (−12–24) −12 (−38–9) −15 (−42–6) −17 (−48–8) 60 (10–83) 48 (28–63) 45 (21–61) 47 (22–64)

Calendar timec 12 (−6–28) −10 (−37–11) −14 (−43–8) −15 (−47–11) 62 (12–83) 53 (32–67) 50 (27–65) 51 (27–67)

Age, sex, comorbidity, province, interval, timec 9 (−14–27) −13 (−45–12) −17 (−50–9) −13 (−51–15) 52 (−17–80)d 45 (18–64) 42 (10–62) 42 (8–63)

Stratified analysis, by age group

1–19 y

Main effects and interaction onlye 2 (−55–39) −31 (−111–19) −34 (−117–17) −31 (−123–23) NRb 82 (25–96) 78 (7–95) 73 (−15–94)
Adjustedf −5 (−71–35) −57 (−167–7) −64 (−180–3) −56 (−182–14) NRb 84 (29–96) 80 (11–96) 76 (−10–95)

20–64 y

Main effects and interaction onlye 14 (−10–32) −4 (−36–20) −8 (−42–18) −7 (−46–22) NRb 47 (20–65) 45 (15–64) 46 (15–66)

Adjustedf 7 (−20–28) −8 (−45–20) −13 (−52–17) −10 (−57–22) NRb 33 (−6–57) 29 (−16–56) 30 (−17–58)
≥65 y

Main effects and interaction onlye 20 (−43–56) 17 (−54–56) 19 (−52–56) 20 (−54–59) NRb 31 (−93–75) 23 (−131–74) 31 (−135–80)
Adjustedf 20 (−47–57) 15 (−67–57) 17 (−64–58) 24 (−59–64) NRb 19 (−160–75) 17 (−187–76) 25 (−194–81)

Stratified analysis, by comorbidity

Participants without comorbidity

Main effects and interaction onlyg 8 (−15–27) −15 (−47–10) −18 (−51–8) −15 (−53–13) NRb 52 (28–68) 50 (23–68) 50 (21–69)

Adjustedh 6 (−20–27) −24 (−64–6) −28 (−69–4) −23 (−70–11) NRb 48 (17–67) 45 (11–67) 44 (6–67)

Participants with comorbidity

Main effects and interaction onlyg 6 (−38–36) 2 (−48–35) −2 (−54–33) −8 (−71–32) NRb 24 (−50–62) 15 (−75–58) 24 (−65–65)
Adjustedh 16 (−28–44) 14 (−36–46) 11 (−43–44) 11 (−50–48) NRb 37 (−37–71) 29 (−61–69) 32 (−63–72)

Abbreviations: % vac, percentage vaccinated; NR, not reported.
a Age group categories: 1–8, 9–19, 20–49, 50–64, ≥65 years.
b Model did not converge and/or sample sizes do not support reliable estimation.
c Calendar time was modeled by week of specimen collection using cubic B-spline functions with 3 equally spaced knots.
d Adjusted model for influenza A(H3N2) clade 3C.3b outcome not adjusted for province due to small number of cases within strata.
e Adjusted for age group (1–19, 20–64, ≥65 years) and vaccine × age group interaction.
f Adjusted for age group (1–19, 20–64, ≥65 years), sex, comorbidity, province, collection interval, calendar time (spline), and vaccine × age group interaction.
g Adjusted for comorbidity and vaccine × comorbidity interaction.
h Adjusted for age group, sex, comorbidity, province, collection interval, calendar time (spline), and vaccine × comorbidity interaction.
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75%), significantly lower at −32% (95% CI, −75% to 0%) for
participants also vaccinated in 2013–2014 (Figure 2A; Supple-
mentary Table 1A). In a separate model that also considered
vaccination in 2012–2013, VE was −54% (95% CI, −108% to
−14%) for participants serially vaccinated each year since
2012–2013 (Figure 2B; Supplementary Table 1A). A similar pat-
tern was observed with restriction to nonelderly adults (Supple-
mentary Table 1B).

For influenza B(Yamagata), VE was 62% (95% CI, 5% to
84%) among participants vaccinated in 2014–2015 but not
2013–2014, with lower VE (but with overlapping CIs) of

33% (95% CI, −9% to 59%) for participants also vaccinated
in 2013–2014 (Figure 3A; Supplementary Table 1A). When
vaccination in 2012–2013 was also considered, VE was compa-
rable at 29% (95% CI, −19% to 57%) for participants serially
vaccinated each year since 2012–2013 (Figure 3B; Supplemen-
tary Table 1A).

Virologic Characterization
Influenza A(H3N2)

Both clade 3C.2a and clade 3C.3b viruses bore multiple (10–12)
antigenic site amino acid mutations relative to the 2014–2015 A

Figure 2. Effect of prior 2012–2013 and/or 2013–2014 season influenza vaccine receipt on current 2014–2015 influenza vaccine effectiveness for influenza A(H3N2). Anal-
yses are based on the same exclusion criteria as primary analysis, adjusted for age group (<9, 9–19, 20–49, 50–64, ≥65 years), sex, comorbidity, province, collection interval,
and calendar time (spline). Calendar time was modeled by week of specimen collection using cubic B-spline functions with 3 equally spaced knots. A, The effect of prior 2013–
2014 vaccine receipt in participants aged ≥2 years in 2014–2015 and with complete data for 2013–2014 and 2014–2015 influenza vaccine receipt. B, The effect of prior 2013–
2014 and/or 2012–2013 vaccine receipt in participants aged ≥3 years in 2014–2015 and those with complete data for 2012–2013, 2013–2014, and 2014–2015 influenza
vaccine receipt. Abbreviations: CI, confidence interval; VE, vaccine effectiveness.
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(H3N2) HGR vaccine strain, including the following 6 shared
substitutions: N145S (site A; cluster transition), N128T/A
(site B; N128T is a potential gain of glycosylation in clade
3C.2a viruses), and P198S (site B) as well as V186G (site B),
F219S (site D), and N226I (site D) present in the egg-adapted
HGR rather than circulating viruses (Supplement Table 2A).

Sentinel clade 3C.2a strains additionally bore the following sub-
stitutions: N144S (site A; potential loss of glycosylation), F159Y
(site B; cluster transition), K160T (site B; potential gain of glyco-
sylation), Q311H (site C), and N225D (nonantigenic site, but
within the RBS; Figure 4A; Supplementary Table 2A) [34, 35].

Sentinel clade 3C.3b strains instead bore R142G (site A),
N122D (site A; potential loss of glycosylation), L157S (site B),
and the following site E substitutions: E62K, K83R, and R261Q
(Figure 4B; Supplementary Table 2A) [34, 35].

Culture isolates from 269/570 (47%) A(H3N2) viruses de-
tected by provincial laboratories were submitted to the NML
for antigenic characterization by HI assay, of which 234/269
(87%) belonged to clade 3C.2a (Table 2). Viruses collected
early in the season were antigenically distinct from the 2014–
2015 cell-passaged A/Texas/50/2012 (clade 3C.1) vaccine proto-
type [13]. After December 18, 2014, antisera to the A/

Figure 3. Effect of prior 2012–2013 and/or 2013–2014 season influenza vaccine receipt on current 2014–2015 influenza vaccine effectiveness for influenza B(Yamagata).
Analyses are based on the same exclusion criteria as primary analysis, adjusted for age group (<9, 9–19, 20–49, 50–64, ≥65 years), sex, comorbidity, province, collection
interval, and calendar time (spline). Calendar time was modeled by week of specimen collection using cubic B-spline functions with 3 equally spaced knots. A, The effect of
prior 2013–2014 vaccine receipt in participants aged ≥2 years in 2014–2015 and with complete data for 2013–2014 and 2014–2015 influenza vaccine receipt. B, The effect of
prior 2013–2014 and/or 2012–2013 vaccine receipt in participants aged ≥3 years in 2014–2015 and those with complete data for 2012–2013, 2013–2014, and 2014–2015
influenza vaccine receipt. Abbreviations: CI, confidence interval; VE, vaccine effectiveness.
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Switzerland/9715293/2013 (clade 3C.3a) prototype for the
2015–2016 vaccine became available [4], and culture isolates
were subsequently characterized only in relation to that. How-
ever, as we described in detail in Skowronski et al [33], only 50/
269 (19%) A(H3N2) virus isolates overall and only 31/234
(13%) belonging to clade 3C.2a could be successfully character-
ized by HI. All were considered antigenically related to the cell-
passaged A/Switzerland/9715293/2013 prototype as were 35
(97%) of a further subset of 36 sentinelA(H3N2) viruses also char-
acterized in relation to the egg-passaged prototype (Table 2) [33].

Influenza B(Yamagata)

Circulating clade 3 influenza B(Yamagata) viruses bore 6–7
antigenic site amino acid differences from the 2014–2015
B(Yamagata) clade 2 vaccine (Supplementary Table 2B).

Culture isolates from 141/226 (62%) influenza B viruses detect-
ed by provincial laboratories were submitted to the NML for HI
characterization, including 135 B(Yamagata), 4 B(Victoria), and
2 of unknown lineage. Of the 135 influenza B(Yamagata) clade 3
viruses successfully characterized, 134 (99%) were considered an-
tigenically related to the cell-passaged 2014–2015 clade 2 B/Mas-
sachusetts/2/2012 vaccine strain; 1 showed >4-fold reduction in
HI titer and was considered antigenically distinct.

DISCUSSION

In this analysis for the 2014–2015 influenza season in Canada,
overall VE was <10%, which is the lowest recorded in more
than a decade of annual monitoring by the Canadian SPSN
[12]. Suboptimal VE estimates have been highlighted previously,
notably during the 2010–2011 and 2012–2013 seasons of

Figure 4. Crystal structure of hemagglutinin (HA) of circulating A(H3N2) clade 3C.2a and clade 3C.3b viruses relative to the 2014–2015 egg-adapted high-growth reassortant
(HGR) vaccine strain. Three-dimensional structural model shows antigenic site substitutions in the HA1 of representative sentinel influenza A(H3N2) viruses compared with the
2014–2015 egg-adapted A/Texas/50/2012-like (clade 3C.1) HGR vaccine strain (X-223A) for (A) clade 3C.2a and (B) clade 3C.3b. The homology models of HAwere generated using
the SWISS-MODEL web-based automated modeling server [34]. The final images of the HA structures were generated using Pymol (Schrödinger, LLC) [35]. The trimeric HA protein
of A(H3N2) was constructed using the A/Victoria/361/2011 human A(H3N2) virus (PDB accession number 4WE8.1) with 97% identity to circulating strains. Antigenic sites (A–E) are
shown in pastel colors. Substitutions in antigenic sites are labelled, and those identifying clade designations are shown in cyan, those arising from egg passage and/or in the HGR
are shown in red, and other substitutions in sentinel viruses are shown in darker shading of the corresponding antigenic site color. Mutations at pivotal antigenic site B positions
159 (a cluster-transition position) and 160 (associated with a potential gain of glycosylation) are indicated with a red star, present in clade 3C.2a viruses but absent from clade 3C.3b
viruses relative to X-223A. (Panel A republished with modifications on permission of Oxford University Press from Skowronski DM et al [11], J Infect Dis 2015; 212(5).)
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predominant A(H3N2) activity in Canada and the United States
[10, 12, 26, 29, 36, 37] and in a recent meta-analysis of TND
studies globally reporting pooled average VE < 40% for
A(H3N2) viruses [38]. In the current 2014–2015 analysis, how-
ever, we found no vaccine protection against the dominant
A(H3N2) epidemic strain in Canada. Such historically low VE
requires in-depth examination of agent–host factors that may
have contributed.

Clade 3C.2a viruses that dominated in 2014–2015 were first
detected by the Canadian SPSN in January 2014 and comprised
about one-quarter of the few A(H3N2) viruses identified by the
network during the 2013–2014 season [11]. By autumn 2014,
clade 3C.2a viruses had become the predominant variant in
Canada, ultimately comprising about 90% of the 2014–2015
A(H3N2) epidemic, with mostly clade 3C.3b viruses compris-
ing the remaining 10% [13]. In clade-specific analyses, VE esti-
mates differed substantially between these 2 genetic subgroups.
Whereas the 2014–2015 vaccine provided no protection against
the clade 3C.2a epidemic strain, vaccination reduced the risk of
medically attended clade 3C.3b illness by about half. Although
not statistically significant, these differences in clade-specific VE
are consistent with the clade variation in VE also observed in
the United States [39].

Genomic analysis revealed several key differences between
sentinel clade 3C.2a and clade 3C.3b viruses, potentially in-
forming variation in VE findings. Both clades exhibited multi-
ple amino acid mutations at antigenic sites of the HA protein
and were considered antigenically distinct from the 2014–
2015 A/Texas/50/2012 (clade 3C.1) vaccine strain [3].However,
clade 3C.2a viruses were distinguished by additional F159Y mu-
tation affecting a major cluster-transition position at the highly
exposed tip of immuno-dominant antigenic site B [21, 22].
Serologic analyses have also highlighted mutation at position
159 as likely responsible for the 2014–2015 antigenic drift
[40]. In addition, clade 3C.2a viruses possess an adjacent
K160T mutation, conferring a potential glycosylation motif at
residues 158–160 of the HA [23, 24, 33]. Such site-specific gly-
cosylation can hinder antibody access to viral epitopes, a partic-
ular concern when affecting pivotal antigenic site B [23, 33, 40].

In our analysis, as elsewhere, only a small proportion of
A(H3N2) virus isolates, particularly those belonging to clade
3C.2a, could be successfully characterized by HI assay [1, 2,
33]. For the majority of A(H3N2) viruses that could not be char-
acterized, laboratories globally have imputed antigenic related-
ness on the basis of genetic sequencing [1, 2, 41]. However, as
shown in a recent analysis by the Canadian SPSN comparing
viral sequences before and after growth in cell culture, the mi-
nority (<15%) of clade 3C.2a virus isolates that could be HI
characterized may not be representative of viruses circulating
in nature [33]. Cell culture isolation introduced mutations re-
sulting in the full or partial loss of the potential glycosylation
motif at residues 158–160, a signature feature of clade 3C.2a

viruses potentially relevant to antibody binding [33]. Variability
and uncertainty in laboratory findings underscore the need to
more fully investigate genomic and antigenic indicators of vac-
cine–virus relatedness and their correlation with actual epide-
miologic measures of vaccine protection.

Participants who received the 2014–2015 vaccine without
vaccination the year before had significant protection against
A(H3N2) illness, whereas VE was significantly diminished in
those who had also received the identical 2013–2014 vaccine.
Reduced VE associated with prior vaccination has been report-
ed previously [10, 11, 26–29], including for 2014–2015 in mid-
season analysis against A(H3N2) by the Canadian SPSN [13]
and end-of-season analysis in a European multicenter case-con-
trol study [42], neither of which showed statistically significant
effects. Our findings also align with earlier modeling simula-
tions that predict negative interference from prior vaccination
when the antigenic distance between vaccine and circulating
strains is large but between consecutive vaccine components
is small [30]. Such effects are anticipated to be pronounced dur-
ing epidemics of antigenically drifted virus and successive sea-
sons of identical (but mismatched) vaccine antigen [30], as were
the particular conditions for A(H3N2) in 2014–2015.

We observed a greater negative dose-response pattern for
A(H3N2) in those who had additionally received the 2012–2013
vaccine that was also antigenically related to the 2013–2014 and
2014–2015 A(H3N2) vaccine components (Figure 2) [3, 10, 11].
Negative VE for A(H3N2), with 95% CIs less than zero, suggests
that participants whowere vaccinated every year since 2012–2013
were at significant 1.54 times (54%) increased risk of A(H3N2) ill-
ness compared with those consistently unvaccinated. Others have
also reported negative, but nonsignificant, point estimates of VE
against A(H3N2) during the 2014–2015 season, interpreted as
consistent with a true null effect, but without further exploration
based on prior serial vaccination over 2 seasons, as undertaken
here [14, 15].Statistically significant increased risk from prior sea-
sonal vaccinationwas reported during the 2009 pandemic context
of a novel virus subtype substantially mismatched to vaccine, but
has not previously been recognized in relation to seasonal influen-
za drift variants [43–48].Few other studies have examined the cu-
mulative effects of habitual influenza vaccination across several
seasons [27], and the precise virologic, immunologic, or epidemi-
ologic conditions required for such negative effects, if real, are un-
known. Pending additional investigation, our findings should be
interpreted cautiously. Among our participants vaccinated in
2014–2015, >80%were repeatedly vaccinated each year.We adjust-
ed for potential confounders but cannot rule out underlying differ-
ences between the repeatedly vaccinated and the much smaller
subset of infrequently vaccinated participants. VE estimates in
the latter subgroup may also be less stable owing to limited sam-
ple size.

Despite antigenic relatedness based on HI assay, the 2014–
2015 influenza B(Yamagata) clade 2 vaccine also provided
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suboptimal protection against the clade-mismatched circulating
B(Yamagata) clade 3 viruses (VE < 45%); similarly low VE was
reported in the United States [39]. This 2014–2015 VE estimate
is lower than the clade-specific VE of 60%–70% reported from
Canada during the 2013–2014 season using the same B(Yama-
gata) clade 2 vaccine against virtually identical circulating clade
3 viruses [11]. However, as with the A(H3N2) outcome, varia-
tion by prior vaccination history was observed. VE against B
(Yamagata) strains was higher among recipients of 2014–2015
vaccine alone (62%), comparable to the prior season’s estimate
[11] but reduced (with overlapping CIs) among repeat recipients
of the same clade 2 vaccine in 2013–2014 and 2014–2015 (33%).
However, in contrast to A(H3N2), further attenuation of VE was
not observed among those who additionally received the heter-
ologous but clade 3-matched 2012–2013 vaccine (Figure 3).

There are limitations to this analysis, including those related
to statistical power. As VE estimates on either side of the null
approach zero, sample size requirements to demonstrate statisti-
cally significant effects increase substantially. Ideally, clade-spe-
cific VE estimates would have been further stratified by prior
vaccination and other subgroup status to better understand
their separate effects; however, sample size did not support
that exploration. Vaccine status is based on a combination of
self-report and sentinel practitioner documentation that may
be subject to information bias, notably in recalling prior sea-
sons’ vaccination. Current and prior seasons’ vaccine coverage
among our test-negative controls was comparable to previous
reports by the SPSN [10, 11] and to other Canadian population
survey estimates [49]. Although we identified no obvious flags
for concern in our participant profiles, as for any observational
design we cannot rule out random variation, residual bias, or
confounding to explain findings.

In summary, integrated genetic, antigenic, and epidemiologic
analysis from Canada suggests that a combination of agent–host
factors, including viral genomic variation and repeat vacci-
nation effects, likely contributed to the historically low VE
observed during the 2014–2015 influenza season. Further inves-
tigation linking virologic and epidemiologic analyses is needed
to advance our understanding of these critical agent–host inter-
actions and to improve annual influenza vaccine reformulation
and program recommendations.
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