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Soil bacterial communities are altered by anthropogenic drivers such as
climate change-related warming and fertilization. However, we lack a predic-
tive understanding of how bacterial communities respond to such global
changes. Here, we tested whether phylogenetic information might be more
predictive of the response of bacterial taxa to some forms of global change
than others. We analysed the composition of soil bacterial communities
from perturbation experiments that simulated warming, drought, elevated
CO2 concentration and phosphorus (P) addition. Bacterial responses were
phylogenetically conserved to all perturbations. The phylogenetic depth of
these responses varied minimally among the types of perturbations and was
similar when merging data across locations, implying that the context of
particular locations did not affect the phylogenetic pattern of response. We
further identified taxonomic groups that responded consistently to each
type of perturbation. These patterns revealed that, at the level of family and
above, most groups responded consistently to only one or two types of
perturbations, suggesting that traits with different patterns of phylogenetic
conservation underlie the responses to different perturbations. We conclude
that a phylogenetic approach may be useful in predicting how soil bacterial
communities respond to a variety of global changes.

This article is part of the theme issue ‘Conceptual challenges in microbial
community ecology’.
1. Introduction
Soil bacterial communities play critical roles in ecosystem functioning such as
carbon transformation and stabilization, nutrient and biogeochemical cycling
and plant host defence. The composition of these communities is sensitive to a
variety of global changes, and such shifts can alter their functioning [1,2]. A pre-
dictive understanding of how these communities respond to their environment is
therefore of great interest. Among a variety of obstacles, the enormous diversity of
soil bacteria creates a challenge for making predictions.

Phylogenetic information might simplify this diversity by offering a structure
to its underlying biological variation or traits [3]. In particular, if large phylo-
genetic clades of bacterial taxa (such as amplicon sequence variants (ASVs) or
97% operational taxonomic units (OTUs)) respond in a similar manner, then
one could reduce the number of bacterial groups considered. In such a case, the
response would be said to be phylogenetically conserved, defined here as positive
or negative responses that are non-randomly distributed across the bacterial phy-
logenic tree [4]. The more deeply conserved the response (the greater genetic
depth at which descendant bacterial taxa show a similar response), the fewer
groups that one would need to track as they could be lumped into broader taxa
(figure 1a).
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Figure 1. Conceptual framework for the study’s three hypotheses. Bacterial taxa respond either positively (blue) or negatively (red) in their relative abundance
to a perturbation. (a) The responses to a perturbation might be phylogenetically conserved (left) or random (right). (b) Hypothesis 1: The depth of conservation
of the responses (the average phylogenetic depth of clades responding positively or negatively) varies by type of perturbation. Here, the response to pertur-
bation A is more deeply conserved than the response to perturbations B or C. (c) Hypothesis 2: The degree to which a bacterial response is context dependent
might depend on the type of perturbation. The degree of context dependency is assessed by comparing the difference between the average depth of responses
at individual locations (solid circles) and the depth of responses when the datasets are merged across locations (filled green diamonds). In this hypothetical
example, the context dependence of perturbation A is smaller than that of perturbations B and C. (d ) Hypothesis 3: The consistency of a clade’s response to
different perturbations. Clades might respond consistently (responding generally positively or negatively) to multiple perturbations, consistently to just one
perturbation, or inconsistently to all.
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More generally, such a phylogenetic signal demonstrates a
tendency for more closely related taxa to be more similar in
their traits than less closely related taxa [5]. Indeed, bacterial
traits are consistently phylogenetically patterned [3,6,7], despite
that horizontal gene transfer and rapid evolution may break up
any pattern [8,9]. Specifically, several recent studies have found
that bacterial responses to environmental changes are also
phylogenetically conserved [10–13] such that closely related
taxa respond more similarly to a perturbation than those
that are distantly related. We recently conducted an analysis
of soil bacterial response to experimental N addition at 13
locations across five continents [14]. The bacterial response to
added N at individual locations was phylogenetically con-
served across the tree of life; closely related bacterial taxa on
the tree responded more similarly to N addition than distantly
related taxa. Further, we found that the phylogenetic pattern of
responseswas context independent [14]. Phylogenetic clades gen-
erally responded in the samedirection (positively or negatively)
in different locations, even as the baseline environment or
surrounding microbial community varied. As a result, we
could identify the taxonomy of larger phylogenetic clades that
responded to N addition in the same direction in a variety of
experimental locations. Yet increased N availability is just one
way that soil ecosystems may change in the future [15–17]. We
therefore wanted to expand on this prior work to consider
whether a phylogenetic approach might be more predictive of
bacterial responses for some global changes than others.

To do this, here we re-analysed publicly available data on
soil bacterial community composition from field experiments
that simulated a variety of global changes, including warming,
drought, elevated atmospheric CO2 concentration, P addition
and increased soil pH. This wider collection of types of exper-
iments allowed us to test three new hypotheses. First, we
hypothesized that the responses to each type of perturbation
would vary in the depth atwhich they are conserved (figure 1b).
While a response is not a trait itself, we reasoned that the degree
of conservation is based on the bacterial traits underlying the
response, which do vary [3]. For instance, previous studies
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suggest that N uptake rate is more deeply conserved than the
preference for soil temperature [3,18,19]. However, a systematic
comparison of the phylogenetic depth of responses acrossmany
perturbation types has not been done.

Second, we hypothesized that the degree to which a bac-
terial response is context dependent depends on the type of
perturbation (figure 1c). We tested this hypothesis by compar-
ing the average depth of responses at individual locations to
the depth of responses when the datasets for each treatment
type were merged (as in [14]). If the bacterial responses were
highly context dependent, then the averaged phylogenetic
depth in the merged dataset would be shallower than the indi-
vidual locations. We reasoned that the importance of
the surrounding context might depend on the degree to
which a perturbation directly impacted bacterial physiology
and growth. For instance, increased drought might directly
select for bacteria with drought-adaptation traits such as the
ability to accumulate osmolytes, produce exopolysaccharides
or form thick cell walls [20–23]. Similarly, P addition might
directly select for bacteria with traits for enhanced P acqui-
sition [24,25]. By contrast, the primary effects of elevated
CO2 and warming on soil bacteria might be mediated through
the response of the surrounding plant community through
changes in litter or root exudate chemistry [26,27]. Thus, the
bacterial traits selected for by the perturbation may depend
on the baseline nutrient environment at each location. In
addition, we expected that variation in the experimental
manipulations across studies might increase the context
dependency of response. For instance, the warming exper-
iments increased temperature between 1.5 and 5°C for
anywhere between 1 year and 20 years; by contrast, the P
addition experiments all received the same amount and type
of P for 2–4 years.

Finally, we hypothesized that, while a clade’s response to
different perturbations would not generally be correlated
[28,29], some clades might be consistently sensitive to environ-
mental changes and therefore several types of perturbations
(figure 1d). This pattern might occur if a clade is adapted to
responding positively to environment change––for instance,
possessing traits that allowa bacterium to turn on reproduction
quickly, persist under stressful conditions or use a wide range
of substrates [20,30]. Alternatively, a clade might respond
consistently negatively if members are highly specialized to
their preferred environment, such that any change in their
conditions results in a decline in abundance.
2. Material and Methods
(a) Study inclusion criteria
We searched for published studies that assessed soil bacterial com-
munity composition within global change field experiments. The
experiments manipulated the soil environment by warming, rain
exclusion (drought), elevating atmospheric CO2 concentration, P
addition and liming (increasing pH). Each studymet the following
criteria: (i) published before 1 June 2019, (ii) included at least three
replicates for manipulation and control (non-addition) plots, (iii)
used high-throughput amplicon sequencing containing the V4,
V3–V4 or V4–V5 region of 16S rRNA genes in bacteria, and (iv)
sampled fromsurface soil (within top 15 cm).We identified 27pub-
lished studies but excluded 14 because the raw sequence datasets
and/or accompanying metadata were not publicly deposited or
otherwise obtainable ((table 1; electronic supplementary material,
table S1). Ultimately, we included data from six locations for
warming, seven locations for drought, six locations for elevating
atmospheric CO2 concentration and six locations for P addition
(table 1; electronic supplementary material, figure S1). Although
we had only one location for liming, we included the data because
soil acidification is also a global problem [42] and bacterial pH
preference is thought to be a particularly deeply conserved trait
[3]. The specific samples used at each location are summarized in
electronic supplementary material, table S1.

(b) Sequence processing
Sequence data (FASTQ-formatted raw sequence or FASTA-for-
matted denoised sequence files) and associated metadata were
either shared by the original authors or downloaded from
public databases. All of the datasets were sequenced on the Illu-
mina MiSeq or Roche 454 platforms. In general, results from
these platforms are comparable [43], and the sequencing error
rates of both platforms are low relative to sequence differences
between our OTU classifications (see below).

To allow comparisons across studies, we reanalysed
the sequencedata in aconsistentmanner.We trimmedall sequences
to the V4 region of 16S rRNA genes that corresponds to the region
amplified with 515F (GTGYCAGCMGCCGCGGTAA)/806R
(GGACTACNVGGGTWTCTAAT) primers, after removing the
primers and sequences outside of the target region with the Cut-
adapt toolkit [44]. The UPARSE pipeline [45] was used to merge
the paired-end sequences of FASTQ-formatted raw sequence files,
conduct quality filtering and cluster the sequences into OTUs.
A minimum overlap of 20 bp was set for merging the sequences.
A maximum per sequence expected error frequency value of 1.0
was set for quality filtering the sequences. Singleton sequences
were removed. Paired-end sequences from all locations within a
perturbation experiment (e.g. for all warming studies or for all
drought studies) were merged and clustered into OTUs at ≥ 97%
sequence similarity, and chimeric sequences were removed at
the step of OTU clustering. Taxonomy of the representative
sequence of each OTU was assigned within QIIME using the RDP
classifier [46] at 80% confidence threshold trained on the latest
version of SILVA database (v. 132, https://www.arb-silva.de/
download/archive/qiime/). OTUs assigned as chloroplasts or
mitochondria, unassigned at kingdom level, and Archaea were
removed. The archaeal OTUs were relatively rare and archaeal
16S rRNA genes are known to be preferentially amplified among
the primer pairs used [47].

Using a 97% OTU definition (rather than ASVs as in [48])
allowed us to compare the same taxon across many locations,
which was key to our analysis. However, we also tested the sensi-
tivity of our results by reanalysing thewarming experiments using
ASVs with the DADA2 pipeline (v. 1.12) [48]. The values of τD, the
mean phylogenetic depth of clades across a tree of life sharing
either positive or negative responses to a particular perturbation
(figure 1b and see below), were 0.5–0.6 times lower when using
the ASV pipeline; this result is to be expected because the abun-
dance of each ASV is generally lower than each OTU and the
response ratios of low abundance taxa would be subject to a
high degree of noise. However, the τD values based on 97%
OTUs andASVs for each experimental locationwere strongly posi-
tively correlated for both positive (R2 = 0.88) and negative (R2 =
0.83) responses. This tight correlation suggests that our conclusions
are robust to the OTU definition used [2].

(c) Overall community composition responses at
each location

We first tested whether the perturbations altered overall commu-
nity composition at each location. Because we obtained a variable
number of sequence reads per sample within each location,
the sequence data were rarefied to the lowest number of reads
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Table 1. Characteristics of study locations and number of replicate plots and OTUs used in this study (control, treatment).

perturbation location habitat (country) treatment duration
no. replicate
plotsa

no.
OTUs

warming Che [31] grassland (China) plus 1.57°C 6 years 4, 4 2046

DeAngelis_1 [32] temperate forest (USA) plus 5°C 5 years 4, 4 1138

DeAngelis_2 [32] temperate forest (USA) plus 5°C 8 years 4, 4 1062

DeAngelis_3 [32] temperate forest (USA) plus 5°C 20 years 4, 4 1046

Waghmode [33] cropland (China) plus 1.5°C 7 years 6, 6 2298

Zhang [29] grassland (China) plus 2°C 1 year 6, 6 1372

drought Bastida_1 [34] forest (Spain) rainfall exclusion 6 years 6, 6 1631

Bastida_2 [34] forest (Spain) rainfall exclusion 6 years 6, 6 1698

Bouskill_1 [35] forest (Puerto Rico) rainfall exclusion 4 years 3, 3 934

Bouskill_2 desert (USA) rainfall exclusion 3–10 months 10, 20 1730

Fernandes_1 [36] desert soil crust (USA) rainfall exclusion 3 years 10, 10 1903

Fernandes_2 [36] desert soil crust (USA) rainfall exclusion 3 years 10, 10 2453

Zhang [29] grassland (China) rainfall exclusion 1 year 6, 6 1612

elevated CO2 Deng [37] grassland (USA) 368 ppm, 560 ppma 10 years 12, 12 1058

Raut_1 [38] grassland (USA) 380–250 ppm, 500–380 ppma 9 years 11, 16 1082

Raut_2 [38] grassland (USA) 380–250 ppm, 500–380 ppma 9 years 18, 14 1051

Raut_3 [38] grassland (USA) 380–250 ppm, 500–380 ppma 9 years 12, 12 956

Xia [39] grassland (New

Zealand)

ambient, 475 ppma 12 years 3, 3 708

Yang [40] grassland (USA) ambient, ambient + 275 ppma 4 years 4, 4 1447

P addition Leff_1 [24] grassland (Switzerland) 100 kg P ha−1 yr−1 as

Ca(H2PO4)2

3 years 6, 3 2069

Leff_2 [24] grassland (Australia) 100 kg P ha−1 yr−1 as

Ca(H2PO4)2

3 years 6, 3 1307

Leff_3 [24] grassland (South

Africa)

100 kg P ha−1 yr−1 as

Ca(H2PO4)2

3 years 6, 3 1232

Leff_4 [24] grassland (South

Africa)

100 kg P ha−1 yr−1 as

Ca(H2PO4)2

2 years 3, 3 1530

Leff_5 [24] grassland (South

Africa)

100 kg P ha−1 yr−1 as

Ca(H2PO4)2

2 years 6, 3 1545

Leff_6 [24] grassland (Australia) 100 kg P ha−1 yr−1 as

Ca(H2PO4)2

4 years 6, 3 1275

liming Guo [41] paddy (China) 7500 kg ha−1 of CaCO3 >1 year 4, 4 945
acontrol plots, treatment plots.
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per location to account for the variation of samples within each
location (table 2). The Bray–Curtis dissimilarity metric was
used to calculate compositional differences between each
sample from the rarefied OTU tables with the vegan package
[49] in the R environment (v. 3.6.0, http://www.R-project.org).
We tested for differences in bacterial community composition
between manipulation and control plots with a permutational
multivariate analysis of variance (PERMANOVA) test with 999
permutations using the vegan package. Note that our PERMA-
NOVA results could differ from the original study; such
discrepancies could arise because we sometimes used only a
subset of samples based on the treatment of interest, as well as
differences due to sequence processing.
(d) Individual operational taxonomic unit responses at
each location

To quantify the response of bacterial OTUs to a perturbation at
each location, we used the full sequence dataset (not rarefied)
and the DESeq2 package [50] in the platform of the phyloseq pack-
age [51] in the R environment. We used DESeq2 in a limited way
that differs from its typical use for RNA-Seq data. Specifically,
we used it to (i) normalize the sequence counts by sample within
a location by replacing the original counts with variance stabilized
counts and (ii) calculate the log2-fold ratio of averaged relative
abundance in manipulation plots relative to control plots for
each taxon. Before calculating the response ratios, we first removed

http://www.R-project.org
http://www.R-project.org


Table 2. Permutational multivariate analysis of variance (PERMANOVA) and consenTRAIT results comparing control and treatment plots by each study location. Bold
values indicate a significant response ( p< 0.05); bold italicized values indicate a highly significant response ( p< 0.005). The consenTRAIT statistic (τD) is given for
both positive and negative responding consensus clades, defined as clades in which >90% of the descendant OTUs show the same direction of response.

perturbation location

PERMANOVA consenTRAIT

no. of rarefied sequences R2 τD of positive response τD of negative response

warming Che [31] 14 577 0.131 0.020 0.021

DeAngelis_1 [32] 9370 0.286 0.020 0.017

DeAngelis_2 [32] 6226 0.206 0.018 0.017

DeAngelis_3 [32] 8285 0.165 0.017 0.019

Waghmode [33] 13 408 0.218 0.022 0.021

Zhang [29] 2275 0.100 0.022 0.020

merging locations — — 0.019 0.018

drought Bastida_1 [34] 9702 0.195 0.019 0.020

Bastida_2 [34] 9647 0.130 0.019 0.020

Bouskill_1 [35] 1225 0.168 0.019 0.018

Bouskill_2 5933 0.045 0.017 0.020

Fernandes_1 [36] 35 695 0.335 0.018 0.019

Fernandes_2 [36] 38 303 0.111 0.018 0.021

Zhang [29] 2228 0.118 0.023 0.022

merging locations — — 0.017 0.019

elevated CO2 Deng [37] 211 0.043 0.018 0.021

Raut_1 [38] 2729 0.058 0.019 0.022

Raut_2 [38] 2168 0.067 0.021 0.022

Raut_3 [38] 2065 0.098 0.022 0.019

Xia [39] 2054 0.202 0.020 0.018

Yang [40] 5790 0.179 0.018 0.019

merging locations — — 0.019 0.019

P addition Leff_1 [24] 27 667 0.123 0.019 0.019

Leff_2 [24] 16 881 0.191 0.019 0.019

Leff_3 [24] 17 984 0.150 0.020 0.018

Leff_4 [24] 18 855 0.146 0.018 0.017

Leff_5 [24] 15 168 0.191 0.017 0.018

Leff_6 [24] 18 855 0.069 0.017 0.020

merging locations — — 0.016 0.019

liming Guo [41] 3230 0.177 0.024 0.020
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rare OTUs present in less than half of all the plots within a location
(electronic supplementarymaterial, table S1), as the response ratios
of low occupancy, low abundance taxa would be subject to a high
degree of noise. For seven locations where this filtering process left
very few OTUs (fewer than 900), we relaxed this criterion to use
OTUs present in two or more plots (electronic supplementary
material, table S1). Note that we did not use DESeq2 to test for stat-
istical significance (as the program is often used) but exported the
normalized log2-fold ratios for further analyses.
(e) Phylogenetic conservation of responses at each
location

To assess whether the response to each perturbation was phylo-
genetically conserved at an individual location, representative
sequences of each OTU (the most abundant sequence within each
OTU from the experiments) were aligned using the DECIPHER
package [52]. A neighbour-joining (NJ) phylogenetic tree was
inferredwith bootstrap analysis (100 replicates) using the phangorn
package [53]. We then applied a consenTRAIT analysis [4] (using
the castor package [54]) to test whether an OTU’s response to
perturbation was related to the bacterial phylogeny.

The consenTRAIT algorithm identifies phylogenetic clades
in which the direction of the response is conserved (consensus
clades) and calculates the average depth of those clades from a phy-
logenetic tree. If the response is significantly conserved, then
the average phylogenetic depth of those clades is greater than a
distribution of randomly distributed responses. The consenTRAIT
approach only considers binary traits (here,whether the response is
positive or negative). A positive or negative response was assigned
for each OTU on the NJ phylogenetic tree based on the log2-fold
ratio exported from DESeq2. The tree was traversed from the
root to the tips, recording the deepest nodes where more than



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

375:20190242

6
90% of the descending tips (OTUs) shared the same directional
response (a ‘consensus’ clade). The genetic depth (the average
distance of the node to its descending tips) and size (total
number of the descending tips) of each consensus clade was calcu-
lated. The genetic depth of clades with a single descending tip
(OTU)was calculated as half the branch length to the nearest neigh-
bour as previously recommended [4]. Finally, the mean genetic
depth, τD, of the consensus clades sharing either positive or nega-
tive responses was calculated (electronic supplementary material,
figure S2). To assess the statistical significance of phylogenetic con-
servation of responses, simulated τD values were calculated by
randomizing the responses among the tips 1000 times. The prob-
ability of phylogenetic conservation (non-randomness) of the
distribution of positive and negative responses was calculated as
the fraction of simulated τD values that were greater than or equal
to the observed τD.

We used NJ trees for the consenTRAIT analysis, because the
genetic scale of these trees roughly represents sequence dissimi-
larity. However, to consider whether our results were robust to
the phylogenetic reconstruction method, we tested for a corre-
lation between NJ and maximum-likelihood (ML) trees for each
perturbation. A ML tree with 100 bootstrap replications was con-
structed with RAxML v8.0, using the GTR+Gamma distribution
model [55] at the CIPRES science gateway (v. 3.3, http://www.
phylo.org/index.php/).

( f ) Phylogenetic conservation of responses across
locations

To assesswhether the responses were context dependent, we ident-
ified 1364 (warming), 1557 (drought), 1284 (elevated CO2) and 1079
(P addition) OTUs that were present in three or more experimental
locations. (Note these OTUs were from the pool of non-rare OTUs
in each location; electronic supplementary material, table S1.) For
each of these widespread OTUs, we averaged the response values
across locations. This procedure treats the results of each location
equally, regardless of differences in methods and sequencing
effort. Unlike a typical diversity metric (e.g. a metric of richness
or phylogenetic diversity), the response ratio parameter that we
estimate for each taxon in a location should not be biased by
sequencing effort, although it will presumably get more accurate
with more sequencing. For each perturbation experiment, we
then created a NJ tree of these widespread OTUs and performed
the consenTRAIT analysis as above with this merged dataset.

Because the responses of widespread OTUs were significantly
phylogenetically conserved, we next identified the taxonomy of
clades whose response to perturbation was significantly more
positive or negative than expected by chance using the RDP classi-
fications with the SILVA database (version 132). Notably, this
version of SILVA uses the Genome Taxonomy Database (GTDB),
which classifies taxonomy based on monophyletic lineages and
normalizes taxonomic ranks based on phylogenetic depth [56].
We then calculated the number of OTUs that had a positive or
negative response at each phylum, class, order, family or genus
level. We performed a two-tailed exact test [57] against the
equal distribution of positive and negative responses within
each taxonomic group. To compare these results with our previous
study about bacterial responses to N addition where the older
SILVA database (v. 128) was used [14], we re-identified the
taxonomy of those clades with the new SILVA version.
3. Results
(a) Overall bacterial community composition
After reanalysing the sequence data in a consistent way across
all datasets, we first tested whether the perturbations altered
overall community composition. Bacterial community compo-
sition had a mixed response to the perturbation types. The
perturbations significantly altered bacterial composition
(PERMANOVA; p<0.05) in fewer than 50% of the locations
(11 of 26 locations), although if locations of marginal signifi-
cance are included ( p<0.1), this number increases to 60%
(16 of 26 locations, table 2). Where composition significantly
shifted, the perturbation explained between 5.8 and 28.6% of
compositional variation.

(b) Phylogenetic conservation of bacterial responses at
individual locations

In contrast with overall composition, bacterial responses were
significantly conserved within the majority of locations across
all perturbation types. For instance, the responses to soil warm-
ing were conserved at all six locations; the mean genetic depth
(τD) of the consensus clades (the clades inwhichmore than 90%
of the descendant OTUs show the same response direction) for
both or either of the responses (positive and negative) was
greater than expected given a randomized distribution of
responses (permutation test; p<0.05, table 2). The responses
to the other perturbations were phylogenetically patterned in
6 of 7, 5 of 6 and 3 of 6 locations, for drought, elevated CO2

and P addition, respectively. The response to the single soil
liming experiment was also phylogenetically patterned
(table 2). Aswe found previously [14], the consenTRAIT results
were robust to the phylogenetic reconstruction method
(neighbour-joining or maximum-likelihood), as expected
from the high correlation between trees for the different
locations and perturbation types (electronic supplementary
material, table S2). Notably, the phylogenetic analysis was
more sensitive than the community analysis; the locations
that displayed overall shifts in bacterial composition were a
subset of those that showed significant phylogenetic conserva-
tion. This discrepancy likely arises because the phylogenetic
analysis gives equal weight to all taxa, whereas the community
analysis primarily considers the most abundant taxa.

While the responses to the perturbations were phylogeneti-
cally conserved, there was less evidence that the degree of
conservation varied by perturbation type, in contrast with
our first hypothesis (figure 1b). The mean depth of the consen-
sus clades responding positively or negatively (τD) ranged
from 0.017 to 0.024 across all perturbations and all locations
(table 2), equivalent to an average sequence dissimilarity in
the 16S rRNA gene amplicon of 3.4–4.8% among OTUs.
These values differed among the perturbation types (one-
way ANOVA; p=0.05, figure 2). This difference was driven
by the deeper level of conservation of the elevated CO2

response than of the N addition response (post hoc Tukey
test: p=0.03), whereas the depth of conservation of responses
to N addition, P addition, drought and warming experiments
substantially overlapped. The soil liming experiment showed
the deepest response of any study location, but as the only
experiment of its type, we excluded it from the statistical test.

(c) Context dependence of the bacterial responses
To investigate the context dependence of the responses, we
next quantified the average responses of widespread OTUs
across locations. Widespread OTUs (present in at least three
locations) accounted for more than 50% of the sequences at
all locations except one (Bouskill_2) (electronic supplementary
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material, figure S3). The average responses of thesewidespread
OTUs were also phylogenetically conserved for all pertur-
bations (excluding liming; permutation test; p<0.05, table 2
and figure 3), indicating that the context of the particular
location and experiment did not overshadow the phylogenetic
signal of the responses observed at individual locations. How-
ever, contrary to our second hypothesis (figure 1c), the degree
of context dependence did not vary by perturbation. For all
perturbations, the depth (average τD of positive and negative
responses) of the clades conserved across locations was exactly
0.001 smaller (only 0.2% difference in 16S rDNA sequence)
than the mean of the individual locations (diamond symbols
in figure 2).

(d) Correlations of responses among perturbation types
Finally, while the average genetic depth of consensus clades (τD)
was relatively shallow for all perturbations, some deep clades
(defined by the GTDB taxonomy) responded consistently to
some perturbations. For instance, all major phyla present
responded consistently to at least one type of perturbation;
the direction of the OTU responses within the phylum was
significantly more negative or positive rather than random
(figure 4; electronic supplementary material, table S3). In parti-
cular, more than 80% of OTUs within the phyla Cyanobacteria,
Rokubacteria and WPS-2 responded consistently to a pertur-
bation (figure 4; electronic supplementary material, table S3).
As one would expect, these patterns were generally even stron-
ger at the class and order levels; for example, the classes
Acidobacteriia, Blastocatellia and Holophagae appear to be
driving the overall negative response to drought within the
phylum Acidobacteria.

Contrary to our third hypothesis (figure 1d ), however, there
was little evidence that a clade that responds positively or
negatively to one type of perturbation will also respond to
other perturbations. In fact, there were relatively few instances
where the same taxonomic group responded consistently to
more than one perturbation type (figure 4). This result did
not seem to be driven by differences in the taxonomic diversity
present among the experiments; OTU richness within the taxo-
nomic groups was largely similar across perturbation types
(figure 4). For example, many OTUs in the Planctomycetes
and Proteobacteria were present in more than one pertur-
bation, but most of the taxonomic groups within these phyla
showed consistent responses to only one type of perturbation.

Among the taxonomic groups that responded significantly
to two or more perturbations, the responses were often in both
directions, showing a positive response to some perturbations
and a negative response to others. For instance, the orders
Propionibacteriales and Solirubrobacterales within the
Actinobacteria responded negatively to warming and posi-
tively to N addition. Similarly, the family Sphingobacteriaceae
(phylum Bacteroidetes) responded in opposing directions to
drought (negative) and N addition (positive). The only group
that seemed to defy this trend was the phylum Acidobacteria.
As a whole, the phylum responded negatively to drought,
elevated CO2 and N addition.
4. Discussion
Our re-analysis of field experiment data provides several indi-
cations that phylogenetic information can be used to predict
the response of soil bacteria to global changes. Overall, bac-
terial responses were phylogenetically conserved within the
majority of locations across all perturbation types. More
specifically, the depth of conservation of these responses did
not vary much by perturbation type, inconsistent with our
first hypothesis. Further, the degree of context dependence
did not depend on the type of perturbation, countering our
second hypothesis, but indicating that the results from a var-
iety of perturbation experiments in one location can help
predict bacterial community responses in other locations.

Contrary to our third hypothesis, however, there was little
evidence of clades that were generally sensitive to pertur-
bations. Indeed, at a broad taxonomic level, most groups
responded consistently to only one or two types of pertur-
bations, suggesting that responses to different perturbations
are generally due to different traits rather than common traits
that broadly increase or decrease a clade’s sensitivity to
environmental change. A notable example is the response to
N and P addition. Although one might hypothesize that
some shared traits might explain the response to nutrient
addition generally, only one family within the order Oligoflex-
ales responded consistently (negatively) to both treatments.
This result is consistent with previous studies that found that
different taxa (OTUs) from the same community responded
to different perturbations (e.g. heat shock versus cold shock
[28] and warming versus drought [29]). Our study suggests
that this trend might hold true for broader taxonomic groups
across a range of locations and perturbations.

However, the lack of a correlation between a taxonomic
group’s sensitivity to one perturbation versus its response to
others might ultimately make predictions easier. Further, the
result that few taxonomic groups showed consistent responses
to more than one perturbation might mean that the interactive
effects of multiple global changes on microbial composition
might be minimal. On the other hand, the evidence of legacy
effects on microbial composition, where the community
response to one perturbation influences the response to future
perturbations [11,28,35,58], perhaps suggests the opposite.
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Additional research on the phylogenetic patterns of responses
to co-occurring perturbations is therefore needed, as future
environmental changes will not occur in isolation [59].

The phylogenetic patterns described above provide several
insights into the traits underlying the responses of soil bacteria
in the face of a perturbation [60–62]). First, the depth of phylo-
genetic conservation of all responses fell within a narrow
range. The average depth across perturbations (τD= 0.018–
0.020) corresponds to a 3.6–4.0% divergence in the 16S rRNA
gene amplicon, or approximately the level of a bacterial
genus [63]. The one exception was a study that manipulated
pH by liming (τD=0.022), and pH preference appears to be
quite deeply conserved relative to other traits [3]. All of these
values are relatively shallow compared with traits such as
methanogenesis (τD=0.071), but much more conserved than
organic phosphorus acquisition or carbon substrate utilization,
for example. We expect that the response to a perturbation
would be governed by a suite of traits that vary in conservation
depth. For instance, the response to drought might involve a
deeply conserved trait such as spore formation and cell wall
type [18] as well as shallower traits such as salt tolerance or
biosynthesis of organic osmotic solutes [64].

The patterns in phylogenetic responses also suggest that
there is not a common suite of traits involved in responding
to most perturbations, as indicated by the lack of correlation
in responses among the types of experiments. Instead, the
underlying traits responsible for a conserved response seem
to be specific to each perturbation type, even though the
degree of conservation among the bacterial responses was
similar. It is also important to note that the responses to
some perturbations might not be due to direct effects of
changes in abiotic conditions, but to indirect effects of changes
in plant communities and soil and litter chemistry. For
instance, warmingmight increase nutrient availability through
the enhanced supply of plant root exudates or decrease nutri-
ent availability through the drying of soil and suppression of
litter decomposition [65,66]. Such indirect effects might also
explainwhy itmight be easier to observe phylogenetic patterns
of bacterial responses in these experimental studies versus
along biogeographic gradients [67].

Finally, the phylogenetic responses provide clues about
the traits of rare and understudied taxa. For instance, the
uncultivated candidate phylum WPS-2, first observed in
polluted soil via clone library analysis [68], responded
negatively to warming. WPS-2 has a global distribution but
most samples containing WPS-2 with high abundance were
collected typically from cold environments [69], such as
Antarctica soil [70] and Greenland ice [71]. The uncultivated
candidate phylum Rokubacteria, first observed in an alpine
meadow via clone library analysis [72], responded positively
to elevated CO2. Metagenomic assemblies suggest that
the order Rokubacteriales has the potential for a versatile,
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mixotrophic metabolism [73]. Elevated CO2 might increase
the release of root exudates to soil, enhance nutrient avail-
ability and shift the ecological strategy of the soil bacterial
community to a higher contribution of fast-growing r-selected
taxa [27].

Of course, there are notable limitations to these results, and
these caveats point to future areas of research. Perhaps themost
importantly, we could only obtain sequence data from a small
number of experiments for each type of perturbation. These
experimental locations represent a limited number of ecosys-
tems and geographic regions. Indeed, some experiments
were located quite close to one another, and all of the elevated
CO2 and P addition experimentswere conducted in grasslands.
Thus, the degree to which the bacterial responses are context
dependent might increase with the inclusion of additional
experiments from a broader range of soil biomes. By contrast,
a wider representation of soil communities would increase
the degree of phylogenetic representation across bacterial phy-
logeny and improve our ability to predict the responses of
particular taxa or clades to particular perturbations.
75:20190242
5. Conclusion
The enormous diversity of soil bacteria would seem to over-
whelm attempts to make detailed predictions about their
responses to global change. Nevertheless, this study provides
additional evidence that efforts to compile databases of
microbial traits [74], classify responses to within experiments
[2] and develop new statistical methods [75] make this a
tractable goal. A critical next step, however, is to connect
shifts in community composition to the functional processes
soil bacteria carry out. Many potential functions (as predicted
through genomic traits) are phylogenetically conserved [4,74],
and new techniques estimating taxon-specific process rates
find that these measures are also phylogenetically patterned
[10,19]. Finally, recent evidence suggests that phylogeny has a
stronger effect than the environment on bacterial processes
such as growth rate and carbon assimilation [76]. This result
suggests that, like their responses in abundance, bacterial pro-
cess rates might not be overly context dependent. In this case,
phylogenetic patterns of bacterial responses and their func-
tional traits could be combined to predict how global changes
will alter ecosystem functioning, as has been proposed for
both microbial and plant communities [62,77].
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