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Abstract

Hypoxemia is a significant driver of mortality and poor clinical outcomes in conditions such

as brain injury and cardiac arrest in critically ill patients, including COVID-19 patients. Given

the host of negative clinical outcomes attributed to hypoxemia, identifying patients likely to

experience hypoxemia would offer valuable opportunities for early and thus more effective

intervention. We present SWIFT (SpO2 Waveform ICU Forecasting Technique), a deep

learning model that predicts blood oxygen saturation (SpO2) waveforms 5 and 30 minutes in

the future using only prior SpO2 values as inputs. When tested on novel data, SWIFT pre-

dicts more than 80% and 60% of hypoxemic events in critically ill and COVID-19 patients,

respectively. SWIFT also predicts SpO2 waveforms with average MSE below .0007. SWIFT

predicts both occurrence and magnitude of potential hypoxemic events 30 minutes in the

future, allowing it to be used to inform clinical interventions, patient triaging, and optimal

resource allocation. SWIFT may be used in clinical decision support systems to inform the

management of critically ill patients during the COVID-19 pandemic and beyond.

Author summary

Hypoxemia, or loss of blood oxygen saturation, is a dangerous condition that drives mor-

bidity and mortality in critically ill patients, including COVID-19 patients and patients

with brain injury or cardiac arrest. The ability to identify hypoxemia before it occurs

would expand the possibilities for effective clinical interventions. To this end, we present

SWIFT (SpO2 Waveform ICU Forecasting Technique), a deep learning model that can

predict blood oxygen saturation 5 and 30 minutes in the future in critically ill patients. In

testing, SWIFT identified more than 80% and 60% of hypoxemic events in critically ill

and COVID-19 patients, respectively. SWIFT can predict both the occurrence and
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magnitude of hypoxemic events, which provides clinical information that can help pre-

vent hypoxemia in critically ill patients. SWIFT can be used in clinical decision support

systems to improve the management of patients at risk for hypoxemia during the

COVID-19 pandemic and beyond.

Introduction

Hypoxemia, or a decrease in blood oxygen saturation, is a common symptom in critically ill

patients, with a multinational, multicenter study finding that hypoxemia is a significant risk

factor for mortality, with prevalence greater than 50% in ICU patients [1]. Severe hypoxemia

can cause permanent brain injury, end-organ shock and cardiac arrest, and even mild or mod-

erate hypoxemia contributes to increased mortality risk by decreasing resistance to infection

and wound healing [2].

Severe cases of COVID-19 are also characterized by hypoxemia and dyspnea (difficulty

breathing) which can rapidly progress to respiratory failure [3]. These patients often require

advanced life support measures including invasive mechanical ventilation, hospitalization in

ICUs and even extra-corporeal membrane oxygenation (ECMO). During the COVID-19 pan-

demic, ventilators and ICU beds have become scarce resources with insufficient capacity in the

hardest hit regions [4]. As the COVID-19 pandemic continues to exact a heavy mortality toll

with over half a million deaths directly attributed to the disease in the United States alone and

herd immunity by vaccination remains elusive, it is important to find ways to manage these

scarce resources and identify patients unable to maintain oxygen saturation without interven-

tion. Clinically, an important decision point in the management of COVID-19 patients is

determining whether the patient requires endotracheal intubation, a form of invasive ventila-

tion [3]. Triage systems using monitoring of blood oxygenation to inform life support mea-

sures are tremendously useful for directing resource allocation and have been demonstrated to

reduce mortality [5].

Given the host of negative clinical outcomes attributed to hypoxemia, identifying patients

likely to experience acute hypoxemia in the near future would offer valuable opportunities for

rapid intervention. Life support interventions ranging from supplemental oxygen to invasive

ventilation prior to the onset of hypoxemia can mitigate or prevent the morbidity and mortal-

ity associated with hypoxemia [2]. Moreover, identifying patients not at imminent risk of hyp-

oxemia represents an opportunity to conserve ventilators and ICU beds in the context of

resource shortages arising from a global pandemic.

To this end, we present SWIFT (SpO2 Waveform ICU Forecasting Technique), a neural

network that predicts the blood oxygen saturation (SpO2) waveform for critically ill patients, 5

and 30 minutes in the future. SWIFT is unique for several reasons. First, SWIFT predicts both

the occurrence and magnitude of hypoxemic events, and its prediction time horizon provides

enough time for potential clinical interventions prior to acute desaturation events. Prior stud-

ies have made predictions on short time horizons (20 seconds to 5 minutes), leaving little

room for potential clinical interventions [6–9]. Moreover, most other attempts at hypoxemia

prediction predict only a class value (hypoxemia vs. no hypoxemia, or mild hypoxemia vs.

severe hypoxemia vs. no hypoxemia) rather than an actual SpO2 value [6–8]. Clinically, there

is a large difference between a transient dip in SpO2 to 91% versus an acute desaturation to

75% SpO2, though both would be considered hypoxemia. SWIFT recognizes this difference,

hence providing important clinical information.
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Second, SWIFT employs a Long Short-Term Memory (LSTM) architecture with only prior

SpO2 values as inputs, hence allowing SWIFT to make predictions with limited, routinely

acquired and readily available data. LSTM models are a type of recurrent neural network well-

suited to modeling of time-series data that have shown promise in clinical applications [10–

12]. One prior study did use LSTM architectures with prior SpO2 values as inputs, but this

model was limited to classification of timepoints as either hypoxemic or not with a 5 minute

time horizon, and the total ROC-AUC was less than 0.75 [7]. In contrast, other SpO2 predic-

tion models have used complex, multifactorial data requiring extensive monitoring of patient

vitals, demographic data, or ventilator settings [8,9]. This limits their utility to only those

patients for whom all of this data is readily available.

Third, SWIFT predicts more than 80% of all hypoxemic events (sensitivity) with positive

predictive value (PPV) above 94% in two test-sets of ventilated and non-ventilated critically ill

patients, and more than 60% of all hypoxemic events with PPV above 98% in a test-set of

COVID-19 patients, across all timepoints for both the 5 minute and 30 minute time horizons.

SWIFT also provides waveform predictions with an average mean squared error less than

.0007 across all patient-stays. These results represent a marked improvement over recently

published prediction algorithms. Auto-regressive models with PPV >90% have been limited

to prediction time horizons less than 60 seconds [6], and ensemble-based machine learning

models to classify hypoxemic events 5 minutes in the future were estimated to capture only

30% of hypoxemic events [9]. To our knowledge, no other study has demonstrated waveform

prediction.

Finally, SWIFT is highly generalizable across hospital systems, timeframes, and patient con-

ditions. Though trained on only patients without COVID-19, it performs comparably on

patients who received mechanical ventilation during their ICU stay and those who did not,

and patients with and without a COVID-19 diagnosis. Other studies have been limited to spe-

cific groups such as pediatric patients on mechanical ventilation [8], orthopedic postoperative

adult patients [6], or patients undergoing surgery in the operating room [7–9].

Results

SWIFT is effective at predicting hypoxemia events (both occurrence and magnitude) across a

variety of patient populations (Ventilated patients, non-ventilated patients, patients with

COVID-19 diagnosis, critically ill patients without COVID-19 diagnosis). We show this

through performance evaluation of SWIFT for prediction of hypoxemia at individual time-

points 5 and 30 minutes into the future, and evaluation of SWIFT for direct SpO2 waveform

forecasting.

SWIFT overview

SWIFT utilizes an LSTM (Long Short-Term Memory) neural network architecture trained on

the SpO2 waveforms from critically ill patients in the eICU database [13] (Fig 1A). The eICU

database contains patients admitted to intensive care units across 208 United States hospitals

in 2014 and 2015. A similar data processing procedure was used to obtain another, distinct

test-set of patients from the Johns Hopkins JH-CROWN database, where all patients had

COVID-19 (Fig 1B). We trained two different models, one which predicts hypoxemia 5 min-

utes in the future (SWIFT-5) and one which predicts hypoxemia 30 minutes in the future

(SWIFT-30) (Fig 1C). Both models take the two previous timepoints of data (10 minutes prior

data for SWIFT-5, 60 minutes prior data for SWIFT-30) as inputs and predict SpO2 value for

the next time point. We used these predictions to forecast the exact SpO2 waveform, and to

classify individual timepoints as hypoxic events based on a threshold of 92% SpO2.
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We considered 92% SpO2 to be the threshold for hypoxemia, as SpO2 below 92% has been

shown to be associated with adverse events in a broad population of outpatient adults with

pneumonia [14], and is the low end of the National Institutes of Health’s recommended SpO2

target range for COVID-19 patients [15]. Moreover, 92% SpO2 is between the World Health

Organization’s hypoxemia treatment threshold (94%) and clinical emergency threshold (90%)

[16], and has been used as the hypoxemia cut-off in other prediction studies [8,9].

We demonstrate the SpO2 waveform and hypoxemia prediction capabilities of SWIFT on

three different test sets of patient-stays: patient-stays with and without the use of invasive ven-

tilation at any point in the stay from the eICU database, and a test set of critically ill COVID-

19 patients from the JH-CROWN database. While the eICU database consists of critically ill

patients with a variety of diagnoses, the JH-CROWN database consists of patients specifically

diagnosed with and admitted to hospital for COVID-19 at a single academic center and its

affiliated hospitals in 2020.

We hypothesized that patients requiring invasive ventilation at some point in their ICU

stay would have different profiles with respect to hypoxemia than those never requiring inva-

sive ventilation. A chi-squared test of independence between use of mechanical ventilation

and number of hypoxemic time-points in the dataset was statistically significant for all groups

(eICU 30 minute time-series, p = 1.4e-303; eICU 5 minute time-series, p = 0.0), hence motivat-

ing our treatment of eICU patient-stays utilizing invasive ventilation at any point as a distinct

test set from those patient-stays never utilizing invasive ventilation. We did not split the

JH-CROWN test-set into ventilator and non-ventilator test-sets since all patients had the same

diagnosis and the overwhelming majority were on ventilators, in contrast to the patients in the

eICU database. Importantly, the different patient populations studied vary dramatically with

respect to frequency of hypoxic events, duration of available time-series data, and reason for

Fig 1. Schematic illustrating data processing for (a) eICU patients and (b) JH-CROWN patients, and (c) model training and testing pipelines.

https://doi.org/10.1371/journal.pcbi.1009712.g001
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hospital admission (Table 1), yet our models are effective at recapitulating the patient’s SpO2

waveform over time and predicting hypoxemic events across these diverse patient populations.

SWIFT effectively predicts hypoxic events 5 and 30 minutes in the future

We used SWIFT on the SpO2 time-series of each patient-stay in the three test sets to predict,

based on the prior two time points, whether each time-point was expected to be a hypoxemic

event or not. Averaging across the value for each patient-stay, SWIFT-5 and SWIFT-30 both

achieved mean accuracy greater than 96% for both the eICU and JH-CROWN patient-stays

(Fig 2A), mean sensitivity greater than 73% for eICU patient-stays and greater than 59% for

JH-CROWN patient-stays (Fig 2B), mean specificity greater than 99% for both the eICU and

JH-CROWN patient-stays (Fig 2C) and mean PPV greater than 84% for eICU-patient stays

and greater than 97% for JH-CROWN patient-stays (Fig 2D). The quality of predictions made

for COVID patients is comparable to that of the predictions made on patients without

COVID, which is notable given that SWIFT was trained exclusively on non-COVID patients.

Interestingly, SWIFT-30 demonstrates performance comparable to SWIFT-5, despite the

much larger prediction time horizon.

While there are a few patient-stays for whom sensitivity and PPV are low (<50%), by and

large these models predict hypoxemic events effectively. In each test-set, for patients for whom

Table 1. Summary of patient characteristics used in model testing.

Characteristics eICU Ventilator– 30

minutes

eICU non-

Ventilator– 30

minutes

JH CROWN– 30

minutes

eICU Ventilator– 5

minutes

eICU non-

Ventilator– 5

minutes

JH CROWN– 5

minutes

# Patient Stays 310 288 298 310 288 298

Median Hypoxic

events/patient stay

9 1 79.5 55 4 481

Number patient-stays

with No Hypoxic

events

64 138 10 53 123 10

Number patient-stays

with all Hypoxic events

4 1 1 3 0 1

Median number of

timepoints per

patient-stay

133 79.5 1083 798 477 6497

Median Age at patient-

stay

62.0 (on admission) 65.0 (on

admission)

60.98 (on Dec 15,

2020 assuming 365

days/year)

62.0 (on admission) 65.0 (on

admission)

60.98 (on Dec 15,

2020 assuming 365

days/year)

% patient-stays with

Female patients

42.9% 49.3% 41.2% 42.9% 49.3% 41.2%

% patient-stays with

White/Caucasian

patients

81.3% 76.7% 26.2% 81.3% 76.7% 26.2%

Admissions Diagnosis Top 3:

1. CABG alone,

coronary artery

bypass grafting (42

stays)

2. Cardiac arrest (24

stays)

3. Emphysema/

bronchitis (15 stays)

Top 3:

1. Not recorded

(15 stays)

2. Sepsis,

pulmonary (14

stays)

3. Rhythm

disturbance (13

stays)

All patients with

COVID-19

Top 3:

1. CABG alone, coronary

artery bypass grafting

(42 stays)

2. Cardiac arrest (24

stays)

Emphysema/bronchitis

(15 stays)

Top 3:

1. Not recorded (15

stays)

2. Sepsis,

pulmonary (14

stays)

3. Rhythm

disturbance (13

stays)

All patients with

COVID-19

(Note: Demographic information on age, gender, and race only available for 294 of 298 patients in the JH-CROWN dataset)

https://doi.org/10.1371/journal.pcbi.1009712.t001
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sensitivity could be calculated (atleast one hypoxemic event occurred), patients with sensitivity

less than 0.5 had significantly different mean number of hypoxemic events than patients with

sensitivity greater than or equal to .5 (S1 Table, Welch’s t-test for identical means, p < 1e-4 for

all test-sets). The median number of hypoxemic events was also lower among patients with

sensitivity less than .5 for each test-set (S1 Table), This illustrates that patients for whom

SWIFT’s sensitivity was low also tended to be those with less hypoxemic timepoints overall.

Moreover, when all timepoints are aggregated across patient-stays, SWIFT classifies hyp-

oxic events with remarkable success (Fig 3). Across all time-points in all test-sets for both

SWIFT-5 and SWIFT-30 the False Positive rate is less than 0.65% and the False Negative Rate

is less than 4%. While the datasets are imbalanced with far less hypoxic timepoints than non-

hypoxic events, the high PPV and sensitivity demonstrate that SWIFT accurately classifies hyp-

oxic timepoints. Both SWIFT-5 and SWIFT-30 represent a substantial improvement over the

current state-of-the art method, Prescience, which uses machine learning to predict hypoxic

events in a 5 minute window, with a binary classifier [9]. Prescience predicts 44% of hypoxic

events (recall or sensitivity) with a precision (or PPV) of 30%. For a PPV of 70%, Prescience’s

sensitivity falls to 9%. In contrast, SWIFT uses a waveform forecasting approach to achieve

PPV above 94% and sensitivity above 80% across all timepoints in each of the eICU test sets

(ventilated and non-ventilated), and PPV above 98% and sensitivity above 60% across all time-

points in the JH-CROWN test set. We also tested SWIFT models trained with 1, 3, 4 or 5 prior

SPO2 inputs, and in aggregate these models had nearly identical aggregate specificity, with

some improvements in sensitivity for increased numbers of inputs (S2 Fig). We chose to focus

on models with 2 prior inputs as they exhibited strong performance with a limited amount of

input data required (10 minutes for SWIFT-5, 60 minutes for SWIFT-30).

Fig 2. (a) Accuracy, (b) Sensitivity, (c) Specificity, and (d) PPV for SWIFT-5 and SWIFT-30 tested on eICU

patients with and without ventilators, and JH-CROWN patients with COVID-19. In each box-and-whisker plot,

the individual datapoints come from evaluation of the model on each of the test-set patients. The box extends from Q1

to Q3. The orange line represents the median value and the green triangle represents the mean value. The upper

whisker extends to the highest value below Q3+1.5�(Q3-Q1), and the lower whisker extends to the lowest value below

Q1-1.5�(Q3-Q1). Points beyond the whiskers are considered outliers.

https://doi.org/10.1371/journal.pcbi.1009712.g002
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SWIFT effectively predicts the SpO2 waveform for individual patients

We used SWIFT to predict the SpO2 time-series of each patient-stay in the three test sets in

order to determine the magnitude of potential hypoxic events and the overall time-evolution

of transient hypoxic events. On average across all patient-stays, SWIFT-5 and SWIFT-30 both

achieved mean-squared-error (MSE) from the true patient time-series of less than .0007 (Fig

4A), and a Pearson correlation coefficient with the true patient time-series of greater than .95

(Fig 4B). This indicates that the waveform predictions used to predict hypoxic events are

extremely close to the true waveforms. Fig 5 shows examples of SWIFT-30’s best and worst by

waveform predictions by MSE (S1 Fig contains the same information for SWIFT-5), qualita-

tively demonstrating the accuracy with which SWIFT recapitulates SpO2 waveform.

This waveform prediction allows for the forecasting of the magnitude of hypoxic events

rather than their occurrence alone. This may have implications for patient management, espe-

cially in the context of limited ICU beds and shortages of ventilation machinery during the

COVID-19 pandemic [4].

Discussion

SWIFT is a Long Short-Term Memory neural network model capable of predicting the magni-

tude and occurrence of hypoxemic events 5 and 30 minutes in the future, using only prior

SpO2 values. We tested SWIFT on three different test sets of ICU patient-stays, including

patients both requiring and not requiring mechanical ventilation during their ICU stay, and

patients with and without COVID-19. Across all time points in these test-sets, SWIFT predicts

more than 80% of all hypoxemic events (sensitivity) with PPV above 94% in test-sets of

Fig 3. Confusion matrices aggregated across all timepoints for all patients for (a) eICU Ventilator– 30 minute, (b) eICU No

ventilator– 30 minute, (c) JH-CROWN– 30 minute, (d) eICU Ventilator– 5 minute, (e) eICU No ventilator– 5 minute, (f)

JH-CROWN– 5 minute.

https://doi.org/10.1371/journal.pcbi.1009712.g003
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critically ill patients, and more than 60% of all hypoxemic events with PPV above 98% in test-

sets of COVID-19 patients, for both the 5 minute and 30 minute time horizons. Additionally,

SWIFT-5 and SWIFT-30 accurately predicted SpO2 waveforms for each patient-stay with an

average MSE below .0007 and an average Pearson’s correlation coefficient greater than .95.

Fig 4. (a) Mean-Squared Error and (b) Pearson Correlation Coefficient for waveform predictions for eICU and

JH-CROWN patients. In each box-and-whisker plot, the box extends from Q1 to Q3. The orange line represents the

median value and the green triangle represents the mean value. The upper whisker extends to the highest value below

Q3+1.5�(Q3-Q1), and the lower whisker extends to the lowest value below Q1-1.5�(Q3-Q1). Points beyond the

whiskers are considered outliers.

https://doi.org/10.1371/journal.pcbi.1009712.g004

PLOS COMPUTATIONAL BIOLOGY Prediction of hypoxemic events in critically-Ill patients

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009712 December 21, 2021 8 / 15

https://doi.org/10.1371/journal.pcbi.1009712.g004
https://doi.org/10.1371/journal.pcbi.1009712


SWIFT may be especially useful in the context of the COVID-19 pandemic or future similar

pandemics with high numbers of patients experiencing hypoxemia and limited supplies of

ventilators and ICU beds. Strategies to reduce the demand for mechanical ventilation have

been identified as a priority for resource management during the pandemic [4]. To this end,

SWIFT can help identify patients likely to experience imminent hypoxemic events versus

patients likely to remain stable and offer insights into the magnitude of the potential hypox-

emic event. This can enable the increased management of patients off of ventilators, and if

needed, offer another data point to be used in the triaging of patients for therapy.

Beyond the COVID-19 pandemic, SWIFT could be easily deployed in real time, in low-

resource settings without access to complex clinical informatics or large amounts of memory

storage. Since SWIFT’s only model inputs are two previous values of SpO2, the barriers to use

are minimal. SpO2 can be assessed using simple, non-invasive pulse oximeters. Pulse oximetry

is nearly ubiquitous in hospitals and critical care units in the developed world, and substantial

effort has been dedicated to increasing the use of pulse oximetry in low resource settings [17].

Given the existing need for hypoxemia monitoring in low and middle income countries and

challenges in access to oxygen therapy, SWIFT’s predictive capabilities can play a crucial role

in identifying patients likely to experience hypoxemic events and in informing resource alloca-

tion decisions [18]. Specifically, since SWIFT-30 uses data sampled at 30 minute intervals

Fig 5. Examples of the best and worst fits by MSE for SWIFT-30 model tested on (a) eICU Ventilated patients–best fit,

(b) eICU Ventilated patients–worst fit, (c) eICU Non-Ventilated patients–best fit, (d) eICU Non-Ventilated patients–

worst fit, (e) JH-CROWN patients–best fit, (f) JH-CROWN patients–worst fit.

https://doi.org/10.1371/journal.pcbi.1009712.g005
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(rather than 5 minute intervals), it is especially suitable for scenarios in which high frequency

monitoring is not available.

Moreover, SWIFT provides benefits by waveform prediction of SpO2 rather than only binary

classification of events as provided by other existing models [7–9]. Studies have demonstrated

that pulse oximetry has high levels of false alarms, often for clinically insignificant reasons such as

patient movement or skin condition, which can contribute to alarm fatigue [19,20]. Alarm fatigue

may lead to slower or absent responses to truly dangerous events [21]. Since SWIFT provides a

prediction of SpO2 magnitude as much as 30 minutes in the future, minor anticipated hypoxemic

events can be distinguished from more severe ones, with sufficient time horizon to allow for deci-

sion making on this basis. While SWIFT cannot correct for errors in SpO2 readings caused by the

pulse oximetry device, it can anticipate transient dips hence preventing unnecessary response to

transient SpO2 dips that may occur for clinically insignificant reasons. This may have a beneficial

effect on controlling the phenomena of alarm fatigue.

Importantly, SWIFT generalizes well across patient groups. We did not observe substantial

differences in model performance between SWIFT-5 and SWIFT-30, nor between predictions

made on ventilated vs. non-ventilated patients and COVID-19 vs. generally critically ill

patients. The one exception was sensitivity, when aggregated across all timepoints–in the eICU

test sets, more than 80% of hypoxemic events were detected as compared to more than 60% in

the JH-CROWN test sets. This is unsurprising given that SWIFT was trained exclusively on

non-COVID-19 patients, and the JH-CROWN database consists only of COVID-19 patients.

Notably, the lung damage from SARS CoV-2 infection appears more severe than that from

Acute Respiratory Distress Syndrome (ARDS) secondary to most other etiologies, and we are

still in the early stages of understanding COVID-19 disease mechanistically. This difference in

degree of lung damage may contribute to the performance differences.

Moreover, these predictions appear to be generalizable across hospitals and dates (the eICU

database comprises patient-stays from 208 ICUs in 2014 and 2015, whereas the JH-CROWN

database consists of patients from one medical center in 2020). Our test-sets contained male

and female patients in roughly equal proportions, a range of admissions diagnoses, and sub-

stantial numbers of patients with non-white ethnicities (Table 1).

However, one limitation of SWIFT is that it was trained and tested primarily on older, criti-

cally ill patients. The median age of patients in each test-set was between 60 and 65 years old, and

all data came from critically ill patients. Hypoxemia is a consideration in much younger patients

as well, and future work will be needed to evaluate SWIFT-5 and SWIFT-30 on younger patients,

or to train new models with additional data. A second limitation is that we did not train race-spe-

cific models. Recent work has shown that occult hypoxemia (low arterial oxygen saturation

despite a pulse oximetry measurement between 92% and 96%) occurs far more frequently in

Black patients than White patients [22]. For this reason, there is racial bias in interpretation of

SpO2 values, which may not be well captured by our models (though our test sets are racially

diverse; the JH-CROWN test sets have ~75% non-White patients). Regardless, SWIFT currently

demonstrates high potential utility for simple, real-time prediction of hypoxemic events (occur-

rence and magnitude) 5 and 30 minutes in the future without the use of complex clinical infor-

matics. As part of a clinical decision support system, SWIFT has the potential to inform the

management of critically ill patients at risk for hypoxemia, including COVID-19 patients.

Methods

Data selection

First, we selected all patient ICU stays with mechanical ventilation at some point during the

ICU stay from the eICU database (n = 1326) [13]. The eICU database consists of critically ill
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patients treated in 208 intensive care units across the United States in 2014 and 2015. We

defined ICU stays with mechanical ventilation as distinct patientUnitStayID identifiers for

which a respiratory chart entry included phrases similar to ET TUBE, ETT, Endotracheal,

Trach, or Tracheostomy. Then, we randomly selected 1326 patientUnitStayID identifiers from

those without indication of mechanical ventilation. We partitioned the first 1000 patientUnit-
StayID identifiers from the mechanical ventilation and no mechanical ventilation groups into

a training set (n = 2000), and the last 326 from each group into two eICU test sets (eICU

mechanical ventilation n = 326, eICU no mechanical ventilation n = 326). Then, we queried

the vital signs time-series for each of these ICU stays, and excluded any ICU stays without cor-

responding SpO2 data recorded. This left 1933 stays in the training set, 326 stays in the

mechanical ventilation test set, and 311 stays in the no mechanical ventilation test set. Since it

is possible for a patient in the eICU database to have multiple ICU stays, we took the additional

step of removing all ICU stays from the test sets for which that patient had a different ICU stay

in the training set. This ensured that there was no overlap in patients between the train and

test sets despite being unique ICU stays. This left 1933 stays (corresponding to 1859 patients)

in the training set, 317 stays (corresponding to 285 patients) in the mechanical ventilation test

set, and 311 stays (corresponding to 306 patients) in the no mechanical ventilation test set.

Second, all patient stays from the JH-CROWN database up to December 15, 2020 were

selected (n = 301). The JH-CROWN database consists of COVID-19 patients seen in any

Johns Hopkins Medical Institution facility with confirmed or suspected COVID-19. Each

patient-stay in the JH-CROWN database corresponds to a unique patient (n = 301). Data

extraction was performed using PostgreSQL, and the Python libraries psycopg2 and pandas

[23].

Finally, those patients with entirely blank values for SpO2 were excluded. The eICU data-

base contains vital signs recorded at 5 minute intervals, whereas the JH-CROWN database rec-

ords vital signs at variable frequency. Therefore, the data in the JH-CROWN database was

interpolated to 5 minute intervals by replacing blank values of SpO2 with the last valid observa-

tion. In the patients selected from the JH-CROWN database, the median time between obser-

vations was 25 minutes. If the first SpO2 value was missing, it was backfilled with the first

available SpO2 value. Finally, those time series with less than 61 datapoints (5 hours) were

excluded. This left 1837 patient-stays for model training, and 310, 288, and 298 patient-stays in

the eICU Mechanical Ventilation, eICU No Mechanical Ventilation and JH-CROWN test sets

respectively (S3 and S4 Figs).

Data preparation

All SpO2 values were transformed using the following equation:

p ¼ 1 � exp
SPO2 � 100

10

� �

This transformed value was chosen to magnify differences between SpO2 values close to

100%. Next, a causal moving average filter with a window of 5 was applied to each patient’s

transformed SpO2 waveform (ie, the SpO2 values at the previous 4 timepoints and the current

timepoint were averaged together. The first 4 available timepoints necessarily did not have

smoothing applied). We chose this data smoothing technique since it is causal, meaning that it

can be applied in real time, and it reduces transient noise hence providing a less noisy signal

more suitable for clinical decision making. Other studies of hypoxemia prediction have also

applied averaging filters to time-series data prior to prediction [6,9]. The time series for each

patient was then down-sampled to 30 minute frequency for use with SWIFT-30 model which
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predicts SpO2 30 minutes in the future. For SWIFT-5, which predicts SpO2 5 minutes in the

future, no changes were made.

Finally, the smoothed time series data for each patient was rearranged into an input vector

X, and output vector Y where pn is SpO2 at timestep n:

X ¼

po p1

p1 p2

:

:

:

pn� 2 pn� 1

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

;Y ¼

p2

p3

:

:

:

pn

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

Finally, in the training set, all X vectors were concatenated and all Y vectors were

concatenated to create one training set input vector and one training set output vector to be

used in model training. In the 4 test sets, the patient-level input and output vectors were main-

tained to be used for model testing. Data preparation was performed in Python using standard

data science libraries [23–25].

Model training

A 3-fold cross validation procedure was used for hyperparameter optimization on the training

data to evaluate 2 different LSTM model architectures (a deep architecture with 5 LSTM hid-

den layers and a shallow architecture with 2 LSTM hidden layers; both models had a Batch

Normalization input layer and a Dense 1 neuron output layer and contained Dropout layers to

prevent overfitting) and 3 different learning rates (ADAM optimizer with learning rates .001,

.01 and .1). For both SWIFT-5 and SWIFT-30, the shallow architecture with learning rate .001

demonstrated the lowest average MSE across folds. For this selected architecture, the dropout

ratio was .1. The first LSTM hidden layer had 256 nodes and the second had 16 nodes. This

architecture was then used to re-train the final models on the full training set. The models

were trained for 100 epochs with a random 10% validation set at each epoch. To prevent over-

fitting, the model weights at the epoch with lowest validation loss were used for the final

SWIFT-5 and SWIFT-30 models. All model training was performed using the TensorFlow and

Keras libraries in Python [26,27].

Model testing

SWIFT-5 and SWIFT-30 were used to predict the transformed SpO2 waveform for each indi-

vidual patient-stay in each of the three test sets. Then, the mean-squared-error and Pearson’s

correlation coefficient were calculated between the true and predicted waveform for each

patient-stay. Pearson’s correlation coefficient could not be calculated for 1 patient-stay in the

JH-CROWN test set since the time series was constant and the correlation coefficient was

undefined. Next, each time point was classified as hypoxemic or not based on a threshold of

SpO2 92% (transformed SpO2 .55067). Each prediction was also checked against the same

threshold, and the sensitivity, specificity, accuracy, and PPV were calculated for each patient-

stay time series. Sensitivity was not calculated for those patient-stays with no hypoxic events;

Specificity was not calculated for those patient-stays with all hypoxic events; PPV was not cal-

culated for those patient-stays for which no predictions were positive for hypoxemia, since

these values are undefined in these cases. Finally, all timepoints in each test set were
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aggregated, and the false positive, true positive, false negative, and true negative rates were cal-

culated for each test set.

Supporting information

S1 Fig. Examples of the best and worst fits by MSE for SWIFT-5 model tested on (a) eICU

Ventilated patients–best fit, (b) eICU Ventilated patients–worst fit, (c) eICU Non-Ventilated

patients–best fit, (d) eICU Non-Ventilated patients–worst fit, (e) JH-CROWN patients–best

fit, (f) JH-CROWN patients–worst fit

(TIF)

S2 Fig. Sensitivity and Specificity aggregated across all timepoints for each test-set, for

SWIFT models using 1, 2, 3, 4 and 5 prior inputs. 2 prior inputs is the model architecture

used for SWIFT-5 and SWIFT-30 presented in the paper. For SWIFT-5, 2 prior inputs corre-

sponds to 10 minutes of prior data input, while for SWIFT-30, 2 prior inputs corresponds to

60 minutes of prior data.

(TIF)

S3 Fig. Inclusion/Exclusion Diagram for patient-stays from eICU Database.

(TIF)

S4 Fig. Inclusion/Exclusion Diagram for patient-stays from JH-CROWN Database.

(TIF)

S1 Table. Analysis of differences in number of hypoxemic events between test-set patients

classified with sensitivity less than .5 versus greater than or equal to .5.

(DOCX)
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