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ABSTRACT
Background: Dietary diversity is essential for human health. The gut
ecosystem provides a potential link between dietary diversity, host
metabolism, and health, yet this mechanism is poorly understood.
Objectives: Here, we aimed to investigate the relation between
dietary diversity and the gut environment as well as host metabolism
from a multiomics perspective.
Methods: Two independent longitudinal Chinese cohorts (a dis-
covery and a validation cohort) were included in the present
study. Dietary diversity was evaluated with FFQs. In the discovery
cohort (n = 1916), we performed shotgun metagenomic and 16S
ribosomal ribonucleic acid (rRNA) sequencing to profile the gut
microbiome. We used targeted metabolomics to quantify fecal and
serum metabolites. The associations between dietary diversity and
the microbial composition were replicated in the validation cohort
(n = 1320).
Results: Dietary diversity was positively associated with α diversity
of the gut microbiota. We identified dietary diversity–related gut
environment features, including the microbial structure (β diversity),
68 microbial genera, 18 microbial species, 8 functional pathways,
and 13 fecal metabolites. We further found 332 associations of di-
etary diversity and related gut environment features with circulating
metabolites. Both the dietary diversity and diversity-related features
were inversely correlated with 4 circulating secondary bile acids.
Moreover, 16 mediation associations were observed among dietary
diversity, diversity-related features, and the 4 secondary bile acids.

Conclusions: These results suggest that high dietary diversity is
associated with the gut microbial environment. The identified key
microbes and metabolites may serve as hypotheses to test for
preventing metabolic diseases. Am J Clin Nutr 2022;116:1049–
1058.

Keywords: dietary diversity, gut microbiota, metabolomics, gut
environment, bile acids, host metabolism

Introduction
A healthy diet is critical for preventing metabolic diseases

(1). A most important aspect of a healthy diet is consuming
diverse foods, which is universally recommended by various
dietary guidelines (2, 3). Dietary diversity is associated with
a lower risk of metabolic diseases such as obesity and type 2
diabetes (T2D) (4, 5). A randomized controlled trial suggested
that increasing healthy dietary diversity facilitates long-term
weight loss among adults with overweight or obesity (6).
Although previous studies have indicated that dietary diversity is
beneficial for human health, its underlying mechanism is poorly
understood.

The intestinal tract is a complex ecological system that links
dietary exposures and host metabolic health. The intestinal tract
contains a mix of food substrates, digestive juices, digested
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products, and microbes (7, 8). Diet plays a key role in shaping
the gut microbiome; the gut microbiome in turn affects food
digestion and absorption, producing functional metabolites for
the host (7, 9). However, little is known about how dietary
diversity may affect the gut environment (including microbes,
functional pathways, and metabolites) and its subsequent impact
on host metabolic health. The system involving the intercon-
nections among dietary diversity, the gut ecosystem, and host
metabolism remains a black box.

Therefore, we systematically examined the longitudinal asso-
ciations between dietary diversity and gut environment profiles
in a deeply phenotyped prospective cohort: the Guangzhou
Nutrition and Health Study (GNHS) (10). First, we identified
dietary diversity–related gut environment features, including
microbial diversity, composition, functions, taxa, and fecal
metabolites. Second, we evaluated the associations of dietary
diversity and gut environmental features with host circulating
metabolites. Last, we validated the associations between dietary
diversity and the α diversity, structure, and genera of the gut
microbial community with data from another population-based
longitudinal cohort study: the China Health and Nutrition Survey
(CHNS) (11).
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Methods

Study participants

We included data from 2 ongoing population-based cohorts
in the present study: the GNHS and the CHNS (10, 11). In
the GNHS, 4048 participants were recruited from Guangzhou,
China during 2008–2013 and then followed up every 3 y. Fecal
and blood samples for multiomics assessments were collected
during a follow-up visit between 2014 and 2018. We excluded
participants who reported antibiotic use within 1 wk preceding
the sample collection day, those with cancer, and those with T2D
at baseline, because these diseases’ status or medications may
have a substantial influence on the gut microbiome (12, 13). Thus,
a total of 1916 GNHS participants were included in our analyses
(the discovery cohort) (Supplemental Figure 1). The CHNS
included participants recruited from 8 provinces across China
and all participants have been followed up every 4 y since 1989;
thereafter, 8 more provinces/megacities were included up to 2018
(11). A total of 1320 CHNS participants were included in our
analyses (the validation cohort), with FFQs administered in 2011
and 2015 and the gut microbiome profiled in 2015 (Supplemental
Figure 1, Supplemental Methods).

The GNHS was approved by the Ethics Committee of
the School of Public Health at Sun Yat-sen University
(2018048) and the Ethics Committee of Westlake University
(20190114ZJS0003). The CHNS was approved by the Ethics
Committee of the National Institute of Nutrition and Food Safety
of the Chinese Center for Disease Control and Prevention (no.
201524) and the Institutional Review Board of the University
of North Carolina at Chapel Hill (no. 07-1963). All participants
provided written informed consent.

Dietary assessment and calculation of the dietary diversity
score

Dietary information was collected via semiquantitative FFQ at
baseline and at a follow-up visit. In the discovery cohort, we used
a validated FFQ with 79 food items (14, 15). In the validation
cohort, we used another validated FFQ with 74 food items (16,
17). We converted food items to standard servings according to
the Chinese Dietary Guidelines in both cohorts (2). According
to the literature and local dietary habits, we evaluated dietary
diversity with the dietary diversity score (DDS) (4, 5, 18). Briefly,
the food items were aggregated into 6 major food groups: grains,
vegetables, fruits, dairy and dairy products, legumes and legume
products, and meat and alternatives (Figure 1, Supplemental
Table 1). If a participant consumed ≥2 servings of a particular
food group per week, intake of this food group was considered
habitual and assigned 1 point (5). Otherwise, the score for that
food group was 0. The total DDS was calculated by summing the
scores of all 6 major food groups, ranging from 0 (low dietary
diversity) to 6 (high dietary diversity). We classified participants
into 2 groups by their DDS: the high DDS (sufficient dietary
diversity, DDS = 6) and low DDS groups (insufficient dietary
diversity, DDS ≤ 5), because the number of participants with
a total DDS ≤ 4 was small. Moreover, we further classified
participants according to DDS stability, namely, into a stable
high DDS group (high total DDS at both baseline and follow-
up) and a stable low DDS group (low total DDS at both baseline
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mailto:zhengjusheng@westlake.edu.cn
mailto:chenyum@mail.sysu.edu.cn


Diet diversity, gut environment, host metabolism 1051

Discovery cohort Validation cohort

204 fecal metabolites
49 fatty acids,
43 amino acids, 8 carnitines,
31 bile acids, 28 organic
acids, 16 benzenoids,
15 carbohydrates,
4 phenylpropanoic acids,
4 pyridines, 3 indoles,
1 nucleoside, 2
peptidomimetics

16S rRNA sequencing
10 phyla, 120 genera,
246 ASVs
Metagenomics sequencing
154 species,
372 pathways

Gut
environment

sssssssss

iti

211 serum metabolites
51 fatty acids, 46 amino acids,
30 organic acids, 26 bile
acids, 18 carnitines,
15 carbohydrates,
14 benzenoids, 3 indoles,
4 phenylpropanoic acids,
2 pyridines, 1 nucleoside,
1 organooxygen compound

Host
metabolism

Grains

Vegetables

Fruits

Legumes

Dairy

Meat and alternatives

Major food groups

DDS ≤ 4
DDS = 5
DDS = 6
No repeated FFQ

Dietary diversity score

Av
er

ag
e

6.
1

ye
ar

s

Baseline
(2008–2013)

Follow-up
(2014–2018, n = 1916)

3)

Baseline DDS

Follow–up
(2015, n = 1320)

Dietary diversity

GNHS

Baseline
(2011)

16S rRNA sequencing

No filter：
51 phyla,
1831 genera,
12,845 ASVs

Prevalence > 10%
146 genera,
442 ASVs

Av
er

ag
e 

4.
1

y

DDS

DDS ≤ 4
DDS = 5
DDS = 6 

li

CHNS

Glycemic and inflammatory
phenotypes
Fasting glucose, insulin,
HbA1c, HOMA–IR, IL–1β, IL–2,
IL–4, IL–6, IL–8, IL–10, IL–
12P70, IL–13, IFN–γ, TNF–α

Gut
environment

FIGURE 1 Study design: associations of dietary diversity with the gut microbiome, fecal metabolites, and host metabolism. We profiled the fecal
metagenome, performed 16S rRNA sequencing of fecal samples, and conducted targeted metabolomics of fecal and serum samples from the discovery cohort
(GNHS, n = 1916). We also performed fecal 16S rRNA sequencing in the validation cohort (CHNS, n = 1320). In both cohorts, dietary information was
collected via FFQs administered at baseline and at a follow-up visit (2014–2018 for the GNHS and 2015 for the CHNS) when fecal samples were collected. We
classified the FFQ items into 6 major food groups to calculate the DDS: grains, vegetables, fruits, legumes and legume products, dairy and dairy products, and
meat and alternatives. ASV, amplicon sequence variant; CHNS, China Health and Nutrition Survey; DDS, dietary diversity score; GNHS, Guangzhou Nutrition
and Health Study; HbA1c, glycated hemoglobin; rRNA, ribosomal RNA.

and follow-up). We also calculated DDSs within the 6 individual
food groups using the same method (Supplemental Methods).
According to the literature, we additionally calculated the plant-
based diet index (PDI) and Chinese Healthy Eating Index (CHEI)
(19, 20).

16S ribosomal ribonucleic acid gene sequencing and shotgun
metagenomic sequencing

In the GNHS, the V3–V4 hypervariable region of the 16S
ribosomal RNA (rRNA) gene was amplified and sequenced.
Moreover, we performed shotgun metagenomic sequencing
among 1148 participants in the GNHS. In the CHNS, the V4
region of the 16S rRNA gene was sequenced (Supplemental
Methods).

Measurement of fecal and serum metabolites

We quantified the concentrations of 204 fecal metabolites
and 211 serum metabolites among 957 GNHS participants.
Targeted metabolomics measurements were performed by a triple
quadrupole system (Supplemental Methods) (21).

Measurement of glycemic and inflammatory phenotypes

Glycemic phenotypes included fasting blood glucose (FBG),
fasting insulin, glycated hemoglobin (HbA1c), HOMA-IR, and
glucose metabolic status (22). For glucose metabolic status,

participants were divided into 3 groups: normal glucose tolerance
(n = 825), impaired glucose regulation (FBG ≥ 6.1 and
<7.0 mmol/L; n = 51), and T2D (FBG ≥ 7.0 mmol/L, HbA1c
concentration ≥ 6.5%, or self-reported use of medication for
diabetes; n = 81) (22); and these T2D cases were incident cases
of T2D between the baseline and follow-up visits. In addition,
we randomly selected 300 GNHS participants to assess blood
inflammatory biomarkers (using blood samples collected at the
same time point as those for measuring blood metabolites),
including IFN-γ , TNF-α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10,
IL-12p70, and IL-13 (Supplemental Methods).

Statistical analysis

All statistical analyses were performed using Stata 15.0
(Stata Corp) or R version 4.0.3 (R Foundation for Statistical
Computing). The intraclass correlation coefficient (ICC) (R
package “irr”) was calculated to estimate the associations of total
DDS between baseline and follow-up in both cohorts. We used
Spearman correlation analysis to investigate the cross-sectional
correlations of the dietary diversity scores with the PDI and
CHEI. In the GNHS, linear regression models were used to
investigate the associations between each DDS (total DDS or
the DDS of each food subgroup) and the α-diversity of the
gut microbiota, adjusted for age, sex, BMI, total energy intake,
physical activity, education level, household income, smoking
status, alcohol drinking status, use of antihypertensive drugs, and
lipid-lowering drugs. A permutational multivariate analysis of



1052 Xiao et al.

variance (PERMANOVA) (R package “vegan”) was performed
to estimate the β-diversity dissimilarity based on the Bray–Curtis
distance.

In the GNHS, we identified DDS-related microbial genera
(based on 16S rRNA sequencing) and species (based on
metagenomics data) by 2 steps, because the relative abundances
of bacteria were not normally distributed (23, 24). We included
taxa present in >10% of the samples and with a relative
abundance > 0.01% in the analysis. First, we used linear
discriminant analysis effect size (LEfSe) to identify taxa across
the high and low DDS groups (23). Then we used linear and
logistic regression to assess the associations of the DDS with
the ln-transformed relative abundances (linear regression) and
prevalence (logistic regression) of the identified microbial taxa
(24). P < 0.05 was considered statistically significant for either
linear or logistic regression. For the diversity of individual food
groups, we used LEfSe to identify discrepant genera between the
highest and lowest scores at baseline. Moreover, we identified
DDS-related microbial functional pathways by linear regression.
P values were corrected using the Benjamini–Hochberg false
discovery rate (FDR). FDR < 0.25 was considered statistically
significant for the pathway analysis. All linear/logistic regression
analyses in the GNHS were adjusted for the same covariates as
the α-diversity analysis.

To better understand the impact of dietary diversity on the
functional readout of the gut microbiota, we then character-
ized the associations between dietary diversity and the fecal
metabolome. We used weighted correlation network analysis
(WGCNA) to obtain the coexpressed metabolite modules and
reduce the number of tests conducted with the metabolomics data
(25). In addition, we used linear regression to identify DDS-
related metabolite features, including WGCNA modules and
specific metabolites. Statistically significant associations were
reported at P < 0.05 and FDR < 0.25. To gain deeper insights
into the contribution of dietary diversity to host–gut interactions,
we explored the associations between the DDS, DDS-related
features, and circulating metabolites using similar strategies as
the aforementioned fecal metabolome analysis.

We calculated the DDS microbiota feature score (DMS),
DDS fecal metabolite feature score (DFS), and DDS pathway
feature score (DPS), which represented the corresponding
DDS-related gut environment features (Supplemental Methods).
Then we used bidirectional mediation analyses to investigate
the associations among the DDS, DDS-related features, and
circulating metabolites (26). The analysis was performed with
the “RMediation” package (27). We used Spearman correlation
analysis to investigate the associations of identified circulating
metabolites with glycemic and inflammatory phenotypes, ad-
justed for age and sex.

In the CHNS, multivariate mixed-effects linear regression was
used to investigate the associations between each DDS variable
and α-diversity metrics. The random effects in these mixed
models were the sample collection provinces or megacities,
and the fixed effects were age, sex, BMI, total energy intake,
physical activity, education level, household income, smoking
status, alcohol drinking status, use of antihypertensive drugs, and
the urbanization index. We adjusted for the urbanization index
and sample collection regions in our model because both factors
showed a strong association with variation in the gut microbiome
(28). We examined the associations between the baseline or

stable total DDS and the significant microbial genera identified
in the GNHS by using mixed-effects linear or logistic regression
models, adjusted for the same list of potential confounders as the
aforementioned α-diversity analyses in the CHNS (details in the
Supplemental Methods).

Results

Characteristics of the study populations

Table 1 and Figure 1 show the characteristics of the included
participants. The GNHS participants were middle-aged and
elderly adults, with a mean ± SD age of 59.2 ± 6.7 y at baseline,
and 6.1 y of follow-up (Table 1, Figure 1). The participants
habitually consumed a mean ± SD 5.4 ± 0.67 groups of foods
at baseline; no participant scored < 3 (Figure 1). Between
the 2 time points (baseline and follow-up), the ICC (presented
with the 95% CI) of the total DDS was 0.43 (0.36, 0.50); 297
individuals maintained a stable (i.e., DDS did not change) high
DDS (DDS = 6) and 367 individuals maintained a stable low
DDS (DDS < 6) between the 2 time points.

In the CHNS, the mean ± SD age of the participants in
2011 was 48.2 ± 12.3 y (Table 1). Most participants habitually
consumed 6 (34%) or 5 (49%) groups of foods, and some
habitually consumed <5 groups of foods (17%) (Figure 1). The
ICC (95% CI) of the total DDS between the 2 visits (2011 and
2015) was 0.42 (0.36, 0.48). A total of 194 individuals maintained
a stable high DDS and 700 individuals maintained a stable low
DDS between the 2 time points.

Correlation of dietary diversity with other dietary patterns

In the discovery cohort (GNHS), we found that the diversities
of fruits, vegetables and legumes were positively correlated with
the PDI, whereas the diversities of dairy and meat and alternatives
were inversely correlated with the PDI (Supplemental Table 2)
(all P < 0.01). Moreover, the total DDS and the diversity scores
of all 6 individual food groups were positively correlated with the
CHEI (Supplemental Table 2) (all P < 0.01).

Dietary diversity was associated with gut microbial diversity
and overall composition

In the discovery cohort (GNHS), we found that both baseline
and stable total DDS were associated with α-diversity. A higher
baseline total DDS was associated with higher microbial α-
diversity metrics [Figure 2A, P-trend = 0.02 for observed
operational taxonomic units (OTUs) and Shannon index]. The α-
diversity between the baseline high DDS and low DDS groups
remained significantly different (observed OTUs, P = 0.02;
Shannon index, P = 0.03). We also found significant associ-
ations between the stable DDS groups and α-diversity metrics
(Supplemental Figure 2A, P-trend = 0.04 for observed OTUs;
P-trend = 0.01 for Shannon index and Pielou’s evenness). In
the validation cohort, we observed positive associations between
the baseline total DDS and 2 microbial α-diversity parameters
(Figure 2A, DDS = 5 compared with DDS = 4, Shannon index,
P = 0.01; Pielou’s evenness, P = 0.002) but not the other 2
parameters (Figure 2A, observed OTUs or Faith’s phylogenetic
diversity).
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TABLE 1 Characteristics of the participants according to the baseline DDS1

GNHS CHNS

High DDS (score = 6) Low DDS (score < 6) High DDS (score = 6) Low DDS (score < 6)

Participants, n 1024 892 444 876
Age, y 59.1 ± 6.6 59.3 ± 6.8 45.9 ± 13.5 49.4 ± 11.5
Men, n (%) 277 (27.1) 332 (37.2) 199 (44.8) 423 (48.3)
BMI, kg/m2 23.0 ± 2.8 23.4 ± 3.0 24.3 ± 4.5 24.3 ± 4.9
Total energy intake, kcal/d 1788 ± 514 1716 ± 513 2223 ± 1066 1964 ± 1390
Physical activity, MET-h/d 45.8 ± 25.2 44.9 ± 25.7 27.5 ± 23.3 34.5 ± 27.4
Current alcohol drinking, n (%) 66 (6.4) 73 (8.2) 175 (39.4) 324 (37.0)
Current smoking status, n (%) 108 (10.5) 182 (20.4) 106 (23.9) 243 (27.7)
Antihypertensive drug users, n (%) 40 (3.9) 51 (5.7) 44 (9.9) 81 (9.2)
Lipid-lowering drug users, n (%) 39 (3.8) 57 (6.4)

1Values are mean ± SD for continuous variables and n (%) for dichotomous variables. CHNS, China Health and Nutrition Survey; DDS, dietary
diversity score; GNHS, Guangzhou Nutrition and Health Study; MET, metablic equivalent.

The PERMANOVA indicated that β-diversity between the
high and low DDS groups also significantly differed (Figure 2B,
P = 0.005 for baseline DDS; Supplemental Figure 2B, P = 0.007
for stable DDS). In the validation cohort, the gut microbial
community significantly differed between the high and low DDS

groups (Figure 2B, P = 0.001 for baseline DDS; Supplemental
Figure 2B, P = 0.001 for stable DDS).

Regarding the diversity of individual food groups, we found
that the baseline fruits diversity score was positively associated
with microbial α-diversity in the discovery cohort (Figure 2C,
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FIGURE 3 Dietary diversity–related microbial species, functional pathways, and fecal metabolites in Guangzhou Nutrition and Health Study participants.
(A) Distribution of identified microbial species between the baseline or stable high DDS and low DDS groups. (B) Enriched metagenomic functional pathways
in the stable DDS groups and the bacterial species (contribution percentage > 10%) contributing to each pathway. (C) Concentrations (z score) of fecal
metabolites in the stable DDS groups (n = 308). (A) The species were identified by 2 steps. First, we used linear discriminant analysis effect size to screen
for discrepant species. Second, we used linear and logistic regression to further assess the association of each total DDS with the relative abundance and
prevalence of the microbial taxa identified in the first step, respectively. (B) We performed a linear regression analysis to estimate the associations between
the total DDS and the microbial functional pathways. (C) We used linear regression models to identify the associations between the DDS and specific fecal
metabolites. n = 620 for the high baseline DDS group, n = 528 for the low baseline DDS group, n = 154 for the stable high DDS group, and n = 192
for the stable low DDS group. (A) ∗P < 0.05 for either linear or logistic regression. (C) ∗P < 0.05 and FDR < 0.25. AA, arachidonic acid; ARGININE-
SYN4-PWY, l-ornithine de novo biosynthesis; CITRULBIO-PWY, l-citrulline biosynthesis; DDS, dietary diversity score; DGLA, dihomo-γ -linolenic acid;
DPA, docosapentaenoic acid; FDR, false discovery rate; LDA, linear discriminant analysis; NAD-BIOSYNTHESIS-II, NAD salvage pathway II; PWY0-1298,
superpathway of pyrimidine deoxyribonucleosides degradation; PWY-4984, urea cycle; PWY-5101, l-isoleucine biosynthesis II; TRPSYN-PWY, l-tryptophan
biosynthesis; UDPNAGSYN-PWY, UDP-N-acetyl-d-glucosamine biosynthesis I.

P-trend < 0.05 for all metrics). In the validation cohort, we
found a similar trend (Figure 2C, Shannon index and Pielou’s
evenness). Moreover, we found significant associations of the
baseline legumes diversity (r2 = 0.13%, P = 0.01) and fruits
diversity (r2 = 0.22%, P = 0.001) with overall microbial
composition in the GNHS (Figure 2D). In the validation cohort,
diversity in all 6 food groups was significantly associated with
microbial β-diversity (Figure 2D, all P = 0.001). The diversity
of baseline grains, vegetables, dairy, legumes, fruits, and meat
and alternatives explained 0.43%, 0.56%, 0.41%, 0.40%, 0.29%,
and 0.45% of the variation in the structure of the gut microbiota,
respectively (Figure 2D).

Dietary diversity, microbial taxa, and functional pathways

We identified 68 microbial genera that were correlated with the
total DDS or specific food subgroup DDSs in the GNHS (Supple-
mental Figure 3A, Supplemental Table 3). Baseline total DDS
was positively associated with the genera Anaerotruncus and
Veillonella and an unclassified genus within the Pasteurellaceae

family but inversely associated with the genus Paraprevotella
(Supplemental Figure 3A). In the subsequent analysis (stable
high compared with low DDS), the genus Anaerotruncus was
enriched in the stable high DDS group. An unclassified genus
within the Burkholderiaceae family was enriched in the stable
low DDS group. These associations between baseline DDS and
the genera Anaerotruncus and Veillonella were replicated in the
CHNS data (Supplemental Figure 3B, C).

Among the diversities of the 6 individual food groups, fruits
diversity was associated with the largest number of microbial
genera (a total of 33 genera) in the GNHS, followed by the
diversities of meat and alternatives, dairy, and legumes, at 16,
14, and 14 genera, respectively (Supplemental Table 3). Among
all the identified genera (68 total), 17 shared an association
with the diversities of ≥2 different food groups (Supplemental
Table 3). The genera Anaerostipes, Lachnospiraceae UCG-010,
and Ruminococcaceae UCG-013 were enriched in participants
who consumed a high diversity of fruits and dairy. The genus
Fusobacterium was enriched in participants who consumed a low
diversity of dairy, fruits, and vegetables (Supplemental Table 3).
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Next, we used shotgun metagenomic sequencing data to
identify DDS-related species and functional pathways in the
GNHS participants. We found that 18 species (P < 0.05) and
8 pathways (P < 0.05 and FDR < 0.25) were significantly
associated with the baseline or stable DDS (Figure 3A, B,
Supplemental Tables 4 and 5); of these, 4 species were
significantly associated with both baseline and stable DDSs
(Figure 3A, P < 0.05). Three Bacteroides species (Paraprevotella
spp., Paraprevotella clara, Paraprevotella xylaniphila) and 1
Proteobacteria species (Oxalobacter formigenes) were enriched
in both the baseline low DDS and stable low DDS groups
(Figure 3A, P < 0.05). Two Bacteroides species (Bacteroides
vulgatus and Bacteroides ovatus) were enriched in the stable
high DDS groups (Figure 3A). Within the 2 genera (i.e.,
Anaerotruncus and Veillonella) validated based on the 16S data,
we also identified 2 species (Veillonella atypica and Veillonella
spp.) within the Veillonella genus and 1 species (Anaerotruncus
colihominis) within the Anaerotruncus genus enriched in the high
DDS group by LEfSe (Figure 3A, Supplemental Table 4).

Three pathways, the l-ornithine de novo biosynthesis
(ARGININE-SYN4-PWY), urea cycle (PWY-4984), and l-
citrulline biosynthesis (CITRULBIO-PWY) pathways, involved
in the function of the bacterial urea cycle were enriched in
the stable high DDS group (Figure 3B, Supplemental Table
5). The l-isoleucine biosynthesis II (PWY-5101) pathway was
enriched in the stable high DDS group. In addition, 4 pathways,
including l-tryptophan biosynthesis (TRPSYN-PWY), UDP-N-
acetyl-d-glucosamine biosynthesis I (UDPNAGSYN-PWY), the
superpathway of pyrimidine deoxyribonucleosides degradation
(PWY0-1298), and the NAD salvage pathway II (NAD-
BIOSYNTHESIS-II), were enriched in the stable low DDS group
(all P < 0.05 and FDR < 0.25, Figure 3B, Supplemental Table 5).
Notably, we did not find any pathway with FDR < 0.05. Seven
microbial species related to DDS contributed to these identified
pathways (Figure 3B), such as Bacteroides uniformis for
pathway ARGININE-SYN4-PWY and Klebsiella pneumoniae
for pathway NAD-BIOSYNTHESIS-II.

Dietary diversity was associated with fecal fatty acid,
organic acid, and pyridine metabolism

We clustered the 204 fecal metabolites into 12 WGCNA
modules (Supplemental Figure 4A, Supplemental Table 6).
Supplemental Figure 4A and B show the associations of each
DDS variable with the WGCNA modules and metabolites
not clustered by WGCNA (gray module). We found that the
stable DDS was positively associated with the pink module
(Supplemental Figure 4A, P = 0.02). This module contained
9 long-chain unsaturated fatty acids (Figure 3C, Supplemental
Table 6), of which the concentrations of palmitoleic acid (16:1n–
7), dihomo-γ -linolenic acid (DGLA, 20:3n–6), Docosahexaenoic
acid (DHA, 22:6n–3), n–3 docosapentaenoic acid (n–3 DPA,
22:5n–3), and adrenic acid (ADA, 22:4n–6) were significantly
higher in the stable high DDS group than in the stable low
DDS group ( Figure 3C, P < 0.05). For metabolites within the
nonclustered module, we observed that 1 pyridine (picolinic acid,
P = 0.003), 1 organic acid (α-hydroxyisobutyric acid, P = 0.04),
and 2 saturated fatty acids [myristic acid (14:0), P = 0.01; capric
acid (10:0), P = 0.02] were enriched in the high baseline total
DDS group (Supplemental Figure 4B).

Dietary diversity and gut environment features were linked
to host secondary bile acid metabolism

In total, 211 serum metabolites were clustered in 11 WGCNA
modules (Supplemental Figure 5, Supplemental Table 7).
We observed 91 associations between the DDS-related features
(including 18 identified microbial species, 8 functional pathways,
and 13 fecal metabolites) and the 11 WGCNA modules (P < 0.05,
Supplemental Figure 5A, B). For the DDS, we found an inverse
correlation between the stable DDS and the red WGCNA module
(Supplemental Figure 5A, P = 0.04). For the DDS-related
features of the gut environment, 19 DDS-related features were
linked with the red WGCNA module (Supplemental Figure 5B,
all P < 0.05).

The red WGCNA module mainly contained conjugated
secondary bile acids and aromatic amino acid derivatives
(Figure 4A, Supplemental Table 7). Furthermore, we found 332
associations between the stable DDS or DDS-related features
of the gut environment and specific circulating metabolites
enriched in the red WGCNA module. The stable DDS was
inversely associated with 4 circulating secondary bile acids:
glycodeoxycholic acid (GDCA; P = 0.01), taurodeoxycholic
acid (TDCA; P = 0.04), glycolithocholic acid 3-sulfate (GLCA-
3S; P = 0.02), and nordeoxycholic acid (NorDCA; P = 0.01)
(Figure 4A). Most DDS-associated features, such as fecal DGLA
concentration, DHA concentration, B. ovatus abundance, and
B. vulgatus abundance, were inversely associated with the 4
secondary bile acids (Figure 4A, P < 0.01 and FDR < 0.01).
Moreover, many features linked to low DDS, such as the
abundances of P. clara and Coprococcus catus, were positively
associated with the concentrations of GDCA, TDCA, NorDCA,
and GLCA-3S (Figure 4A, P < 0.01 and FDR < 0.01 for all).

We calculated the DMS, DFS, and DPS, which represented the
global features of DDS-related gut microbiota, fecal metabolites,
and functional pathways, respectively. We found a complex,
bidirectional relation among the DDS, DFS/DMS, and the 4
circulating secondary bile acids (Figure 4B, C, Supplemental
Tables 8 and 9). On the one hand, the DFS and DMS mediated
the effects of the DDS on the 4 circulating bile acids (all P-
mediation < 0.05). On the other hand, GDCA, TDCA, NorDCA,
and GLCA-3S mediated the effect of the DDS on the DFS or
DMS (P-mediation < 0.05 for all) (Figure 4B, C, Supplemental
Tables 8, 9).

Circulating secondary bile acids were linked to host
glycemic and inflammatory phenotypes

In the cross-sectional analysis, we found that GDCA was
positively associated with HOMA-IR (P = 0.02), fasting insulin
(P = 0.01), and TNF-α (P = 0.048, Figure 4D). TDCA was
positively associated with fasting insulin (P = 0.04), IL-8
(P = 0.048), and TNF-α (P = 0.02). NorDCA was positively
associated with glucose metabolic status (normal status to disease
status, P = 0.046, Figure 4D).

Discussion
In this large-scale multiomics study, we found that dietary

diversity was positively associated with α-diversity of the human
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(B, C) Relations between the stable DDS, scores on gut environment features, and secondary bile acids according to bidirectional mediation analysis (n = 306).
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5101, l-isoleucine biosynthesis II; TRPSYN-PWY, l-tryptophan biosynthesis; UDPNAGSYN-PWY, UDP-N-acetyl-d-glucosamine biosynthesis I; WGCNA,
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gut microbiome and associated with microbial community struc-
ture. We further revealed associations between dietary diversity
and 68 microbial genera, 18 microbial species, 8 functional
pathways, and 13 fecal metabolites in the gut. The findings related

to α- and β- diversity of the gut microbiota and 2 microbial
genera were validated in another independent prospective cohort.
Furthermore, a total of 332 direct associations of dietary diversity
and related features with circulating metabolites indicated a
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complex interplay among diet, the gut microbiome, and host
metabolism. To the best of our knowledge, this study is the largest
population-based study to provide comprehensive insights into
the associations of dietary diversity with gut environment features
and host metabolism.

In the present study, we found that high dietary diversity–
related features of the gut environment might play key roles in
maintaining host health. In general, a higher α-diversity of the
gut microbiota is associated with better health (29). Consistent
with previous studies (30), we observed a positive association
of total dietary diversity and fruits diversity with α-diversity of
the gut microbiota (30). Notably, we did not find any significant
association between vegetable diversity and α/β- diversity of the
gut microbiota; the associated bacterial genera were also limited
in the discovery cohort. These results differ from those in the
European population (31), possibly because of differences in
cooking habits between these populations, because vegetables are
usually deeply cooked in the Chinese culture.

The benefits of high dietary diversity for cardiometabolic
health may be partly attributed to specific gut microbial
taxa and metabolites. For example, the 2 validated genera,
Anaerotruncus and Veillonella, may lower inflammation and
benefit cardiometabolic health (32, 33). B. ovatus is inversely
associated with BMI (34), and B. vulgatus has been found to
protect against coronary artery disease (35). In addition, dietary
diversity was positively associated with fecal n–3 PUFAs, which
are known anti-inflammatory substrates and help prevent chronic
diseases, including cardiovascular disease and T2D (36).

Notably, previous studies have reported some harmful effects
of these low DDS–related microbial features. For instance,
Dorea longicatena is enriched in individuals with obesity and is
positively associated with insulin resistance (34). Fusobacterium
mortiferum belongs to the Fusobacterium genus, which is
enriched in individuals with colon cancer and T2D (14, 37).
Moreover, we found that dietary diversity was inversely asso-
ciated with the microbial TRPSYN-PWY pathway. In previous
studies, tryptophan was positively associated with T2D incidence
(38).

Dietary diversity was closely correlated with 4 circulating
secondary bile acids (GDCA, TDCA, NorDCA, and GLCA-
3S). Secondary bile acids can regulate host glucose and lipid
metabolism by activating farnesoid X receptor and G-protein-
coupled bile acid receptor 1 (39). A recent study found that
GDCA and TDCA were positively associated with T2D (40).
GDCA, GLCA-3S, and TDCA are conjugated secondary bile
acids (8), and previous studies have reported that conjugated
deoxycholic acid and lithocholic acid are positively associated
with insulin resistance (41). Consistent with these findings,
we found a positive association between GDCA and insulin
resistance in the present study. In addition, we found that high
concentrations of NorDCA were associated with worse glucose
metabolic status. TDCA was positively associated with IL-8 and
TNF-α, which were positively associated with T2D in previous
studies (42, 43). Taken together, these results highlight the
potential of high dietary diversity in shaping the gut environment
and circulating bile acid profiles for better health status.

Our study has several strengths. First, to the best of our
knowledge, this study is among the first to provide a multiomics
analysis of the associations between dietary diversity, gut
environment features, and circulating metabolites. Second, the

use of repeated measures of diet using FFQs minimized diet
alterations during the long-term follow-up. Third, the results
were replicated in an independent cohort with a wider age range
(19–80 y old) and in wider regions of China, which suggests
that the findings are robust and generalizable. However, our
study also has several limitations. First, the observational study
design prevented us from establishing definite causal relations
among dietary diversity, features of the gut environment, and
circulating metabolites and could not eliminate the influence of
residual confounding factors. Second, dietary intake was assessed
by FFQs, which are subject to the influence of recall bias and
measurement error. The associations may be confounded by other
dietary characteristics, such as the plant-based dietary pattern
or the Healthy Eating Index. In addition, the ICCs of dietary
diversity between the 2 time points were low, suggesting that
diet may change over time; thus, a more frequent longitudinal
profile of dietary diversity is needed. Given the potential for
measurement errors on the FFQ, a more reliable instrument (such
as a 7-d food diary) would help to accurately categorize routine
dietary diversity over time. Third, our shotgun metagenomics
and metabolomics analyses were exploratory, with less stringent
thresholds (such as FDR < 0.25), and these results have not been
replicated in another independent cohort.

In conclusion, our study highlighted the potential role of
high dietary diversity in shaping and maintaining a healthy gut
environment and regulating circulating metabolites. We deter-
mined key gut microbes, metabolites, and functional pathways
that linked dietary diversity, the gut environment, and host
metabolic health in 2 deeply phenotyped Chinese populations.
The identified features of the gut microbiome may be used as
biomarkers of a healthy gut ecosystem or as potential intervention
targets for preventing metabolic diseases in the future.
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