## Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

# Poly[ $\left(\mu_{3}\right.$-3,5-dinitrobenzoato$\left.\kappa^{3} O^{1}: O^{1}: O^{3}\right)\left(\mu_{2}\right.$-hydroxido- $\left.\kappa^{2} O: O\right)$ copper(II)] 

B. Sinha, ${ }^{\text {a }}$ G. C. Dey, ${ }^{\text {a }}$ B. Sarkar, ${ }^{\text {a }}$ A. Roy, ${ }^{\text {a }} \ddagger$ Seik Weng $\mathbf{N g}^{\mathrm{b}, \mathrm{c}}$ and Edward R. T. Tiekink ${ }^{\mathrm{b} *}$<br>${ }^{\text {a }}$ Department of Chemistry, North Bengal University, Dt. Darjeeling, West Bengal 734 013, India, ${ }^{\text {b }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ${ }^{\text {c}}$ Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia<br>Correspondence e-mail: edward.tiekink@gmail.com

Received 24 February 2014; accepted 25 February 2014

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; $R$ factor $=0.027 ; w R$ factor $=0.077$; data-to-parameter ratio $=8.5$.

The title complex, $\left[\mathrm{Cu}\left\{\mu_{3}-\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{3}\left(\mathrm{NO}_{2}\right)_{2}-3,5\right\}(\mu-\mathrm{OH})\right]_{n}$, features zigzag chains in which successive pairs of $\mathrm{Cu}^{\mathrm{II}}$ atoms are connected by OH bridges and bidentate carboxylate ligands, leading to six-membered $\mathrm{Cu}(\mathrm{O})(\mathrm{OCO}) \mathrm{Cu}$ rings. The zigzag chains are connected into a three-dimensional architecture by $\mathrm{Cu}-\mathrm{O}$ (nitro) bonds. The coordination geometry of the $\mathrm{Cu}^{\text {II }}$ atom is square-pyramidal, with the axial position occupied by the nitro O atom, which forms the longer $\mathrm{Cu}-\mathrm{O}$ bond. Bifurcated hydroxy-nitro $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds contribute to the stability of the crystal structure.

## Related literature

For related $\mathrm{Cu}^{\text {II }}$ structures featuring $\mathrm{Cu}\left(\mu_{2}\right.$-carboxylate $)\left(\mu_{2^{-}}\right.$ hydroxyl)Cu rings, see: You et al. (2005); Chen et al. (2006); Xiao et al. (2006). For additional structural analysis, see: Addison et al. (1984).


## Experimental

Crystal data
$\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}\right)(\mathrm{OH})\right]$
$M_{r}=291.66$
Orthorhombic, Pna2 $_{1}$
$a=7.4665$ (2) $\AA$
$b=17.7858(5) \AA$
$c=6.6821(2) \AA$

## Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011)
$T_{\text {min }}=0.873, T_{\text {max }}=1.000$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.077$
$S=1.05$
$\Delta \rho_{\max }=0.45 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.67 \mathrm{e}^{-3}$
1324 reflections
155 parameters
1 restraint
H-atom parameters constrained
$V=887.37(4) \AA^{3}$
$Z=4$
$\mathrm{Cu} K \alpha$ radiation
$\mu=3.87 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.25 \times 0.20 \times 0.15 \mathrm{~mm}$

3156 measured reflections 1324 independent reflections 1318 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.017$

Table 1
Selected bond lengths ( $\AA$ ).

| $\mathrm{Cu}-\mathrm{O} 1$ | $1.9689(18)$ | $\mathrm{Cu}-\mathrm{O}^{\mathrm{ii}}$ | $2.5871(18)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Cu}-\mathrm{O} 7$ | $1.899(2)$ | $\mathrm{Cu}-\mathrm{O}^{\mathrm{i}}$ | $1.900(2)$ |
| $\mathrm{Cu}-\mathrm{O} 2^{\mathrm{i}}$ | $1.9675(18)$ |  |  |

Symmetry codes: (i) $-x,-y+1, z-\frac{1}{2}$; (ii) $x-\frac{1}{2},-y+\frac{1}{2}, z$.

Table 2
Hydrogen-bond geometry ( $\AA^{\circ},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| O7-H1 $\cdots \mathrm{O}^{\text {iii }}$ | 0.84 | 2.52 | $3.190(3)$ | 137 |
| O7-H1 $^{\mathrm{iii}}$ | 0.84 | 2.57 | $3.271(2)$ | 142 |

Symmetry code: (iii) $-x-\frac{1}{2}, y+\frac{1}{2}, z-\frac{1}{2}$.
Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

This research was supported by High Impact Research MoE grant UM.C/625/1/HIR/MoE/SC/03 from the Ministry of Higher Education Malaysia.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5386).

[^0]
## metal-organic compounds

## References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.

Agilent (2011). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Chen, H.-J., Zhang, J., Feng, W.-L. \& Fu, M. (2006). Inorg. Chem. Commun. 9, 300-303.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Xiao, H. P., Li, X.-H., Shi, Q., Zhang, W.-B., Wang, J.-G. \& Morsali, A. (2006). J. Coord. Chem. 61, 2905-2915

You, Z.-L., Liu, W.-S., Zhu, H.-L. \& Fun, H.-K. (2005). Transition Met. Chem. 30, 1-4.

## supplementary materials

# Poly $\left[\left(\mu_{3}-3,5\right.\right.$-dinitrobenzoato- $\left.\kappa^{3} O^{1}: O^{1}: O^{3}\right)\left(\mu_{2}\right.$-hydroxido- $\left.\kappa^{2} O: O\right)$ copper (II)] 

B. Sinha, G. C. Dey, B. Sarkar, A. Roy, Seik Weng Ng and Edward R. T. Tiekink

## 1. Chemical context

## 2. Structural commentary

The title complex was synthesised employing hydrothermal methods, and X-ray crystallography revealed it to be threedimensional. The crystallographic asymmetric unit comprises a $\mathrm{Cu}^{\mathrm{II}}$ cation, and 3,5-dinitrobenzoate and hydroxide anions, Fig. 1. Zigzag rows of $\mathrm{Cu}^{\mathrm{II}}$ ions are aligned along the $c$ axis (glide symmetry) with pairs of $\mathrm{Cu}^{\mathrm{II}}$ ions being bridged by a hydroxide and two O atoms of the carboxylate ligand leading to chains of six-membered rings. Neighbouring chains are linked via $\mathrm{Cu}-\mathrm{O}$ (nitro) bonds, which are longer than the remaining $\mathrm{Cu}-\mathrm{O}$ bonds, Table 1. The resulting $\mathrm{O}_{5}$ donor set defines an axially distorted square pyramidal coordination geometry, with the nitro-O atom in the axial position, as quantified by the value of $\tau=0.01$ which compares to the $\tau$ values of 0.0 and 1.0 for ideal square pyramidal and trigonal bipyramidal geometries, respectively (Addison et al., 1984). Additional stability to the architecture is provided by bifurcated $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ (nitro) hydrogen bonds, Table 2.
Similar strings of $\mathrm{Cu}\left(\mu_{2}\right.$-carboxylate) ( $\mu_{2}$-hydroxyl) Cu of varying dimensionality have been noted in other $\mathrm{Cu}^{\text {II }}$ structures (e.g. Chen et al., 2006; You et al., 2005; Xiao et al., 2006).

## 3. Supramolecular features

## 4. Database survey

## 5. Synthesis and crystallization

To a pulverised mixture of 3,5-dinitrobenzoic acid $(0.1688 \mathrm{~g}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} .3 \mathrm{H}_{2} \mathrm{O}(0.1932 \mathrm{~g})$ and melamine ( 0.1002 g ), all obtained from commercial sources in AR grade, distilled water ( 1.5 ml ) was added. The mixture was stirred for 30 min to get a suspension. The reaction mixture was then sealed in a 10 ml Teflon-lined stainless steel autoclave and heated at 423 K for 45 h . The autoclave was subjected to natural cooling (for 5 h ) to room temperature. The product containing blue crystals suitable for single crystal X-ray diffraction was collected by filtration and washed with adequate distilled water. The initial pH of the suspension was 5 and there was no apparent change in the pH when the reaction was over. The blue product was not formed in the absence of melamine which suggests that melamine acted as a base in this reaction. The product decomposed with explosion with green flashes above 553 K .

## 6. Refinement

The H atoms were geometrically placed $(\mathrm{O}-\mathrm{H}=0.84 \AA$ and $\mathrm{C}-\mathrm{H}=0.95 \AA)$ and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2-$ $1.5 U_{e q}(\mathrm{O}, \mathrm{C})$.

## supplementary materials



Figure 1
The asymmetric unit of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 70\% probability level.


Figure 2
A view approximately normal to the zigzag chain along the $c$ axis in the title compound. The coordinating nitro groups from carboxylates belong to other chains are shown as " $\mathrm{O}_{2} \mathrm{NC}$ ", for reasons of clarity.


Figure 3
A view of the unit-cell contents of the title compound in projection down the $c$ axis, the axis along which the zigzag chains are propagated. The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as orange dashed lines.

## Poly[ $\left(\mu_{3}-3,5\right.$-dinitrobenzoato- $\left.\kappa^{3} O^{1}: O^{1}: O^{3}\right)\left(\mu_{2}\right.$-hydroxido- $\left.\kappa^{2} O: O\right)$ copper(II)]

## Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}\right)(\mathrm{OH})\right]$
$M_{r}=291.66$
Orthorhombic, $\mathrm{Pna}_{1}$
Hall symbol: P 2c -2n
$a=7.4665$ (2) $\AA$
$b=17.7858$ (5) $\AA$
$c=6.6821$ (2) $\AA$
$V=887.37(4) \AA^{3}$
$Z=4$

## Data collection

Agilent SuperNova Dual
diffractometer with an Atlas detector
Radiation source: SuperNova (Cu) X-ray
Source
Mirror monochromator
Detector resolution: 10.4041 pixels $\mathrm{mm}^{-1}$
$\omega$ scan
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.077$
$S=1.05$
1324 reflections
155 parameters
1 restraint
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

```
\(F(000)=580\)
\(D_{\mathrm{x}}=2.183 \mathrm{Mg} \mathrm{m}^{-3}\)
\(\mathrm{Cu} K \alpha\) radiation, \(\lambda=1.54184 \AA\)
Cell parameters from 2719 reflections
\(\theta=5.0-74.1^{\circ}\)
\(\mu=3.87 \mathrm{~mm}^{-1}\)
\(T=100 \mathrm{~K}\)
Prism, blue
\(0.25 \times 0.20 \times 0.15 \mathrm{~mm}\)
```

$T_{\text {min }}=0.873, T_{\text {max }}=1.000$
3156 measured reflections
1324 independent reflections
1318 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=74.3^{\circ}, \theta_{\text {min }}=5.0^{\circ}$
$h=-6 \rightarrow 9$
$k=-20 \rightarrow 21$
$l=-7 \rightarrow 8$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0617 P)^{2}+0.2234 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.45 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.67 \mathrm{e}^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0078 (6)
Absolute structure: Flack (1983), 360 Friedel pairs
Absolute structure parameter: 0.06 (5)

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$-factors $(\mathrm{gt})$ etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $A^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\mathrm{eq}}$ |
| :--- | :--- | :--- | :--- | :--- |
| Cu | $0.00521(5)$ | $0.502896(17)$ | $0.50002(17)$ | $0.00920(17)$ |


| O1 | $0.0918(2)$ | $0.40286(10)$ | $0.5811(3)$ | $0.0146(4)$ |
| :--- | :--- | :--- | :--- | :--- |
| O2 | $0.0673(3)$ | $0.39533(9)$ | $0.9179(3)$ | $0.0136(4)$ |
| O3 | $-0.0991(3)$ | $0.14441(11)$ | $1.1700(3)$ | $0.0155(4)$ |
| O4 | $-0.0088(2)$ | $0.04569(11)$ | $1.0096(4)$ | $0.0186(4)$ |
| O5 | $0.2389(2)$ | $0.07033(9)$ | $0.3473(3)$ | $0.0141(4)$ |
| O6 | $0.3041(2)$ | $0.18099(10)$ | $0.2336(3)$ | $0.0187(4)$ |
| O7 | $-0.1161(2)$ | $0.51396(9)$ | $0.7481(3)$ | $0.0105(4)$ |
| H1 | -0.2242 | 0.5270 | 0.7463 | $0.016^{*}$ |
| N1 | $-0.0260(3)$ | $0.11347(12)$ | $1.0269(4)$ | $0.0124(5)$ |
| N2 | $0.2439(3)$ | $0.13903(11)$ | $0.3632(3)$ | $0.0119(4)$ |
| C1 | $0.0847(3)$ | $0.36866(12)$ | $0.7455(4)$ | $0.0099(4)$ |
| C2 | $0.0984(3)$ | $0.28424(13)$ | $0.7318(4)$ | $0.0110(5)$ |
| C3 | $0.0397(4)$ | $0.23927(14)$ | $0.8891(4)$ | $0.0121(5)$ |
| H3 | -0.0025 | 0.2611 | 1.0100 | $0.014^{*}$ |
| C4 | $0.0445(4)$ | $0.16166(14)$ | $0.8649(4)$ | $0.0109(5)$ |
| C5 | $0.1101(4)$ | $0.12656(13)$ | $0.6959(4)$ | $0.0108(5)$ |
| H5 | 0.1135 | 0.0734 | 0.6839 | $0.013^{*}$ |
| C6 | $0.1710(3)$ | $0.17364(13)$ | $0.5442(4)$ | $0.0113(5)$ |
| C7 | $0.1637(3)$ | $0.25149(13)$ | $0.5565(4)$ | $0.0111(5)$ |
| H7 | 0.2024 | 0.2819 | 0.4478 | $0.013^{*}$ |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Cu | $0.0143(3)$ | $0.0092(2)$ | $0.0042(3)$ | $0.00052(10)$ | $0.00062(13)$ | $0.00047(15)$ |
| O1 | $0.0228(10)$ | $0.0118(8)$ | $0.0092(9)$ | $0.0025(6)$ | $0.0030(7)$ | $0.0015(7)$ |
| O2 | $0.0210(10)$ | $0.0118(8)$ | $0.0081(9)$ | $0.0024(7)$ | $-0.0017(7)$ | $-0.0004(7)$ |
| O3 | $0.0177(9)$ | $0.0182(9)$ | $0.0105(9)$ | $-0.0005(8)$ | $0.0047(7)$ | $-0.0002(7)$ |
| O4 | $0.0268(11)$ | $0.0112(8)$ | $0.0179(10)$ | $-0.0027(6)$ | $0.0038(8)$ | $0.0013(10)$ |
| O5 | $0.0173(9)$ | $0.0119(8)$ | $0.0129(9)$ | $0.0024(6)$ | $-0.0015(7)$ | $-0.0019(7)$ |
| O6 | $0.0258(10)$ | $0.0180(9)$ | $0.0122(9)$ | $-0.0006(7)$ | $0.0079(9)$ | $0.0013(8)$ |
| O7 | $0.0124(9)$ | $0.0129(7)$ | $0.0061(8)$ | $0.0010(6)$ | $-0.0013(8)$ | $-0.0012(8)$ |
| N1 | $0.0134(10)$ | $0.0153(10)$ | $0.0085(12)$ | $0.0000(8)$ | $-0.0008(8)$ | $0.0025(9)$ |
| N2 | $0.0131(10)$ | $0.0150(9)$ | $0.0075(10)$ | $0.0030(7)$ | $-0.0005(8)$ | $-0.0006(8)$ |
| C1 | $0.0092(10)$ | $0.0126(11)$ | $0.0080(11)$ | $0.0015(8)$ | $-0.0009(10)$ | $-0.0015(10)$ |
| C2 | $0.0111(10)$ | $0.0121(11)$ | $0.0099(12)$ | $0.0004(9)$ | $-0.0028(11)$ | $0.0014(11)$ |
| C3 | $0.0124(11)$ | $0.0158(13)$ | $0.0080(12)$ | $0.0018(9)$ | $-0.0014(10)$ | $-0.0014(10)$ |
| C4 | $0.0116(11)$ | $0.0130(12)$ | $0.0081(12)$ | $-0.0019(9)$ | $-0.0010(11)$ | $0.0033(9)$ |
| C5 | $0.0118(11)$ | $0.0109(11)$ | $0.0098(13)$ | $0.0012(9)$ | $-0.0010(9)$ | $-0.0007(9)$ |
| C6 | $0.0113(11)$ | $0.0144(10)$ | $0.0081(13)$ | $0.0010(8)$ | $-0.0022(9)$ | $-0.0003(8)$ |
| C7 | $0.0121(11)$ | $0.0117(10)$ | $0.0095(12)$ | $-0.0004(9)$ | $-0.0016(9)$ | $-0.0009(8)$ |

Geometric parameters ( $\AA,{ }^{\circ}$ )

| $\mathrm{Cu}-\mathrm{O} 1$ | $1.9689(18)$ | $\mathrm{O} 7-\mathrm{H} 1$ | 0.8400 |
| :--- | :--- | :--- | :--- |
| $\mathrm{Cu}-\mathrm{O} 7$ | $1.899(2)$ | $\mathrm{N} 1-\mathrm{C} 4$ | $1.478(3)$ |
| $\mathrm{Cu}-\mathrm{O} 2^{\mathrm{i}}$ | $1.9675(18)$ | $\mathrm{N} 2-\mathrm{C} 6$ | $1.462(3)$ |
| $\mathrm{Cu}-\mathrm{O} 5^{\mathrm{ii}}$ | $2.5871(18)$ | $\mathrm{C} 1-\mathrm{C} 2$ | $1.508(3)$ |
| $\mathrm{Cu}-\mathrm{O}^{\mathrm{i}}$ | $1.900(2)$ | $\mathrm{C} 2-\mathrm{C} 3$ | $1.392(4)$ |
| $\mathrm{O} 1-\mathrm{C} 1$ | $1.257(4)$ | $\mathrm{C} 2-\mathrm{C} 7$ | $1.396(4)$ |


| O2-C1 | 1.252 (3) | C3-C4 | 1.390 (4) |
| :---: | :---: | :---: | :---: |
| $\mathrm{O} 2-\mathrm{Cuiii}^{\text {iii }}$ | 1.9675 (18) | C3-H3 | 0.9500 |
| $\mathrm{O} 3-\mathrm{N} 1$ | 1.231 (3) | C4-C5 | 1.380 (4) |
| O4-N1 | 1.218 (3) | C5-C6 | 1.391 (3) |
| $\mathrm{O} 5-\mathrm{N} 2$ | 1.227 (3) | C5-H5 | 0.9500 |
| O6-N2 | 1.228 (3) | C6-C7 | 1.388 (3) |
| O7- $\mathrm{Cu}^{\text {iii }}$ | 1.900 (2) | C7-H7 | 0.9500 |
| $\mathrm{O} 7-\mathrm{Cu}-\mathrm{O} 7^{\mathrm{i}}$ | 176.03 (4) | $\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$ | 128.7 (2) |
| $\mathrm{O} 7-\mathrm{Cu}-\mathrm{O} 2^{\mathrm{i}}$ | 90.98 (8) | $\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$ | 116.1 (2) |
| $\mathrm{O} 7^{\mathrm{i}}-\mathrm{Cu}-\mathrm{O} 2^{\mathrm{i}}$ | 91.02 (9) | $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$ | 115.2 (2) |
| $\mathrm{O} 7-\mathrm{Cu}-\mathrm{O} 1$ | 90.57 (9) | C3-C2-C7 | 120.3 (2) |
| $\mathrm{O}^{\text {i }}-\mathrm{Cu}-\mathrm{O} 1$ | 87.60 (8) | C3-C2-C1 | 120.3 (2) |
| $\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Cu}-\mathrm{O} 1$ | 176.81 (9) | C7-C2-C1 | 119.4 (2) |
| $\mathrm{O} 7-\mathrm{Cu}-\mathrm{O} 5^{\text {ii }}$ | 91.71 (7) | C4-C3-C2 | 118.3 (2) |
| $\mathrm{O} 7^{\mathrm{i}}-\mathrm{Cu}-\mathrm{O} 5^{\mathrm{ii}}$ | 84.60 (8) | C4-C3-H3 | 120.8 |
| $\mathrm{O} 2 \mathrm{i}-\mathrm{Cu}-\mathrm{O} 5^{\mathrm{ii}}$ | 98.13 (7) | C2-C3-H3 | 120.8 |
| $\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 5^{\text {ii }}$ | 84.60 (7) | C5-C4-C3 | 123.6 (2) |
| $\mathrm{C} 1-\mathrm{O} 1-\mathrm{Cu}$ | 131.60 (17) | C5-C4-N1 | 117.6 (2) |
| $\mathrm{C} 1-\mathrm{O} 2-\mathrm{Cu}^{\text {iii }}$ | 129.32 (16) | C3-C4-N1 | 118.8 (2) |
| $\mathrm{Cu}-\mathrm{O} 7-\mathrm{Cu}^{\text {iii }}$ | 123.32 (10) | C4-C5-C6 | 116.1 (2) |
| $\mathrm{Cu}-\mathrm{O} 7-\mathrm{H} 1$ | 118.3 | C4-C5-H5 | 122.0 |
| $\mathrm{Cu}^{\text {iii }}$-O7-H1 | 118.3 | C6-C5-H5 | 122.0 |
| $\mathrm{O} 4-\mathrm{N} 1-\mathrm{O} 3$ | 124.3 (2) | C7-C6-C5 | 123.0 (2) |
| $\mathrm{O} 4-\mathrm{N} 1-\mathrm{C} 4$ | 117.8 (2) | C7-C6-N2 | 118.9 (2) |
| $\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 4$ | 117.9 (2) | C5-C6-N2 | 118.1 (2) |
| $\mathrm{O} 5-\mathrm{N} 2-\mathrm{O} 6$ | 123.7 (2) | C6-C7-C2 | 118.6 (2) |
| O5-N2-C6 | 118.7 (2) | C6-C7-H7 | 120.7 |
| O6-N2-C6 | 117.62 (19) | C2-C7-H7 | 120.7 |
| $\mathrm{O} 7-\mathrm{Cu}-\mathrm{O} 1-\mathrm{C} 1$ | -8.5 (2) | $\mathrm{O} 4-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$ | 6.0 (3) |
| $\mathrm{O} 7-\mathrm{Cu}-\mathrm{O} 1-\mathrm{C} 1$ | 175.0 (2) | $\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$ | -173.7 (2) |
| $\mathrm{O} 2-\mathrm{Cu}-\mathrm{O} 7-\mathrm{Cu}^{\text {iii }}$ | -127.01 (11) | $\mathrm{O} 4-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$ | -174.7 (2) |
| $\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 7-\mathrm{Cu}^{\text {iii }}$ | 50.20 (11) | $\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$ | 5.7 (4) |
| $\mathrm{Cu}^{\text {iii }}-\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$ | 14.1 (4) | C3-C4-C5-C6 | -0.9 (4) |
| $\mathrm{Cu}^{\text {iii }}-\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$ | -165.63 (15) | N1-C4-C5-C6 | 178.3 (2) |
| $\mathrm{Cu}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$ | -22.7 (4) | C4-C5-C6-C7 | -1.5 (3) |
| $\mathrm{Cu}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$ | 156.98 (16) | C4- $\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 2$ | 179.2 (2) |
| $\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | 19.2 (3) | O5-N2-C6-C7 | -175.1 (2) |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | -160.6 (2) | O6-N2-C6-C7 | 3.6 (3) |
| $\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$ | -163.4 (2) | O5-N2-C6-C5 | 4.2 (3) |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$ | 16.8 (3) | O6-N2-C6-C5 | -177.0 (2) |
| C7-C2-C3-C4 | -1.3 (4) | C5- $\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$ | 2.4 (3) |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | 176.0 (2) | N2-C6-C7-C2 | -178.3 (2) |
| C2-C3-C4-C5 | 2.3 (4) | C3-C2-C7-C6 | -0.9 (3) |
| $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1$ | -176.9 (2) | $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$ | -178.3 (2) |

Symmetry codes: (i) $-x,-y+1, z-1 / 2$; (ii) $x-1 / 2,-y+1 / 2, z$; (iii) $-x,-y+1, z+1 / 2$.

## supplementary materials

Hydrogen-bond geometry ( $A,{ }^{\circ}$ )

| $D — \mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| O7—H1 $\cdots$ O3 $^{\text {iv }}$ | 0.84 | 2.52 | $3.190(3)$ | 137 |
| O7—H1 $^{\text {iv }}$ | 0.84 | 2.57 | $3.271(2)$ | 142 |

Symmetry code: (iv) $-x-1 / 2, y+1 / 2, z-1 / 2$.


[^0]:    $\ddagger$ Additional correspondence author, e-mail: abhijitchem1947@yahoo.co.in.

