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Abstract

Background and Aims: Chromophobe renal cell carcinoma (chRCC) is the third

common pathological subtype in renal cancers. However, the underlying mecha-

nisms of specific genetic characteristics of chRCC are currently unclear. In this study,

protein expression profiles, gene ontology (GO), and survival plots were provided by

integrated bioinformatics analysis to investigate key genes associated with the

mechanism of tumorigenesis and prognosis of chRCC.

Methods: The chRCC data set of gene expression profiles and clinical data were

obtained from the gdc‐client (https://portal.gdc.cancer.gov) deposited on The

Cancer Genome Atlas (TCGA) data portal. Differentially expressed genes (DEGs) in

chRCC, compared with normal samples, were analyzed by R packages “DE-

Seq2,” “edgeR,” and “limma.” Heat maps, volcano plots, and principal component

analysis (PCA) were performed for integrated analyses. GUniGO, mutant analysis,

and survival plots were performed by R packages. A protein–protein interaction (PPI)

network was generated and analyzed by R packages, online String software, and

Cytoscape software. Survival analysis and gene expressing comparison in tumor and

normal samples were used to detect the core genes of chRCC. Furthermore, the top

interacting proteins were reanalyzed.

Results: A total of 306 upregulated genes and 678 downregulated genes were

identified by a Venn diagram. Ten hub genes were extracted from PPI network.

Furthermore, Alpha‐2‐Heremans‐Schmid‐glycoprotein (AHSG), one of 10 hub genes,

was found to be associated with chRCC, and had a big difference in expression

between survival and dead events. AHSG could predict potential prognostic and may

be a diagnostic biomarker in chRCC.

Conclusion: This study illustrated that AHSG may be a potential therapeutic target

and prognostic genetic marker for chRCC.
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1 | INTRODUCTION

Kidney cancer is a common cancer both for males and females, with

an incidence of about 3.7% of new cancer cases.1 Renal cell

carcinoma (RCC), the most prevalent kind, among kidney cancers, is

approximately 85%. RCC is a heterogeneous disease consisting of

clear cell renal cell carcinoma (ccRCC) and non‐clear cell renal cell

carcinoma (nccRCC).2–4 The third most common pathological subtype

of renal malignancies is chromophobe renal cell carcinoma (chRCC),

and the majority of its patients are elderly. Patients with chRCC often

have a better prognosis and satisfactory treatment outcomes than

those with other types of RCC.5 At present, the treatment of RCC has

shifted from nonspecific immunotherapy to targeted therapy, and

further to new immunotherapeutic agents.6–8 However, the effec-

tiveness of targeted therapy for chRCC is not well defined, and

immunotherapeutic agents are still in clinical trials. Many questions

remain regarding the effectiveness of biomarker testing and the

choice of treatment options for patients. The overall prognosis

remains poor, especially for patients with high‐stage diseases, and

tumor metastasis and death occur frequently.9,10 Factors associated

with these malignant biological behaviors include, among others,

large tumor volume, late pathological stage, coagulative necrosis,

sarcomatoid differentiation, and other factors.11,12

Unlike ccRCC and papillary RCC, the pathological stage of chRCC

is not related to the prognosis. There are many opinions on the

classification of chRCC. In 2010, the Paner system provided a three‐

stage classification of renal suspicious cell carcinoma without

counting the heterotypic cells contained in those renal chromophobe

cell carcinomas, and mainly considered the density of cancer nuclei,

the depth of nuclear staining, and the state of cell dedifferentiation or

sarcomatoid differentiation.11,13

Alpha‐2‐Heremans‐Schmid‐glycoprotein (AHSG) has been found

to be a circulating plasma protein and was associated with

inflammatory conditions. AHSG gene polymorphisms showed an

association with aortic calcification in general hemodialysis patients,

and Fetuin‐A and IL‐6 played a dominant role in the development of

aortic calcification.14 On the other hand, researchers found that red

cell distribution width (RDW) values were a novel inflammatory

marker in routine hemogram in thyroid cancer patients, implying an

increased inflammatory burden in cancer patients.15

In the absence of definitive research, studying chRCC from a

genetic perspective will help to understand the pathogenesis and

progression of the disease and play an important role in finding safer

and more effective treatments.

2 | METHODS

2.1 | Ethical requirements

This study was not linked to any research on human participants or

animals and therefore did not have any ethical compliance. Figure 1

shows the study workflow.

2.2 | Gene expression data

The clinical data and the gene expression data for the chRCC were

downloaded fromThe Cancer Genome Atlas (TCGA) by the gdc‐client

(https://portal.gdc.cancer.gov). We selected kidney chromophobe

(KICH) data from TCGA website to study the chRCC (https://portal.

gdc.cancer.gov). The downloaded genomic data were in the format of

F IGURE 1 Workflow of this study to identify marker genes in chRCC. CC, cellular component; chRCC, chromophobe renal cell carcinoma;
GO, gene ontology; KM plot, Kaplan–Meier plot; PCA, principal component analysis; TCGA, The Cancer Genome Atlas.
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HTSeq counts, and the data contained 89 clinical samples, consisting

of 65 tumor samples and 24 normal samples.

2.3 | Differentially expressed genes (DEGs) data

RNA sequence data were analyzed by the R packages “DESeq2,” “edgeR,”

and “limma.”16–18 We used Venn diagram to analyze the shared

upregulated and downregulated genes through VennDiagram package.19

In the present study, statistically significant DEGs were defined by the

values of adjusted p<0.05 and |logFC| > 2 as cutoff criteria.

The DEG profiles from the “DESeq2,” “edgeR,” and “limma”

analyses are shown in the individual volcano and individual heat

maps, respectively. The shared upregulated and downregulated

genes analyzed by “DESeq2,” “edgeR,” and “limma” were visualized

by a principal components analysis (PCA) plot and a heatmap.

2.4 | DEGs enrichment analysis

Gene ontology (GO) analysis is a commonly method for annotating

genes and gene products by biological pathways (BP), molecular

functions (MF), and cell components (CC).20 To obtain more protein

functions to explore chRCC biological information, DEGs were

integrated by GO analysis through the cluster Profiler R package18

to identify biological properties. Key results were obtained for

CC with a cutoff value of <0.05.

2.5 | PPI network construction

The SearchTool for the Retrieval of Interacting Genes (STRING) database

(https://string-db.org/) is a useful tool for the prediction and the analysis

of protein–protein interactions (PPI).21We retrieved the interacting genes

through PPIs database22 and found the hub genes by the website

software of String (http://www.string-db.org/) and cytohubba from

cytoscape (http://www.cytoscape.org/), which could be used for the

function enrichment analysis and the interaction network analysis.21,22

2.6 | Statistical analysis

We show the mutational landscape of important genes used to

discover chRCC tumor samples by the maftools R package. All

p‐values were statistically significant at an adjusted p < 0.05. All data

processing was performed using R (64‐bit, version 4.0.3) software.

2.7 | Overall survival (OS) Kaplan–Meier (KM)
estimate

OS was calculated from the diagnosis date to the end of follow‐up, or

from the patient's death. The follow‐up time varied between patients,

with a maximum follow‐up time of 5132 days. The survival curves were

performed by the R packages “survival” and “survminer.” For this

analysis, only the samples related to the tumor stage were considered.

2.8 | Gene expression comparison in vital status

The expression level of the hub genes was compared by the groups

of live and dead events of 65 cancer samples by using the ggstatsplot

R package. To investigate the probable regulation mechanisms of

Alpha‐2‐HS‐glycoproteinas in chRCC, the tool of cytoscape, Gene-

MANIA, was used to annotate the biological processes of AHSG.

3 | RESULTS

3.1 | DEGs identification

We filtered a total of 65 tumor samples and 24 normal samples from

the expression profile database, TCGA‐KICH data in this study. We

compared the cancer samples with normal ones to get the DEGs and

Volcano plots and heatmaps, respectively by three analyzed methods

of “DESeq2,” “edgeR,” and “limma” (Figure 2). Then we provided the

principal component analysis between cancer samples and normal

ones by PCA plots (Figure 3A). We confirmed the shared DEGs

consisting of 306 upregulated and 678 downregulated genes through

a Venn diagram analyzed by “DESeq2,” “edgeR,” and “limma.” A

heatmap was performed to analyze the shared DEGs (Figure 3B–D).

3.2 | GO analysis

The common DEGs were divided into the upregulated and down-

regulated groups. R 4.0.3 software was used to perform the CC

analysis for the whole of 984 DEGs. The CC analysis showed that the

DEGs particularly came from the top 20 terms, enriched in apical

plasma membrane, apical part of cell, brush border, brush border

membrane, cluster of actin‐based cell projections, intrinsic compo-

nent of synaptic membrane, integral cell projection membrane,

component of synaptic membrane, intrinsic component of post-

synaptic membrane, postsynaptic membrane, integral component of

postsynaptic membrane, postsynaptic membrane, intrinsic compo-

nent of presynaptic membrane, presynapse, integral component of

presynaptic membrane, axon terminus, presynaptic membrane,

basolateral plasma membrane, collagen‐containing extracellular ma-

trix, and transmembrane transporter complex (Figure 4). The common

genes of the top5 pathway from CC were displayed in Figure 5.

3.3 | Survival analysis

To identify the significantly survival curves, the R packages

“survival” and “survminer” were performed. According to the
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analysis, we found that the survival significantly and progressively

worsened among chRCC patients in the higher stage. The patients in

the first three stages had a slower progress, while the patients in the

last stage had a significantly faster progress and had higher

mortality (Figure 6).

3.4 | Mutation analysis

DEGs mutation landscape was performed to further analyze chRCC.

47 of 65 cancer samples had at lease one mutation. Among them,

tumor protein 53 (TP53) had the highest mutation frequency,

phosphatase tensin homolog (PTEN), and zonadhesin (ZAN) followed

TP53, and one sample among them had the most mutations (603

gene mutations). The mutation landscape was showed by the

waterfall plot with the top 30 critical molecules, including six variant

types: missense_mutation, multi‐hit, splice_site, frame_shift_ins non-

sense_mutation, and frame_shift_del. And the missense mutation was

the significantly focused type among the six types (Figure 7A).

Figure 7B further analyzed the variants of the samples from six

different aspects.

3.5 | PPI network and the hub genes analysis

Using STRING tool and Cytoscape software, we built a PPI network

to analyze the chRCC DEGs. Cytohubba in Cytoscape software was

used to select the top hub genes from PPI network (Figure 8A). The

hub genes were fibrinogen alpha chain (FGA, MIM: 134820),

fibrinogen beta chain (FGB, MIM: 134830), alpha 2‐HS glycoprotein

(AHSG, MIM: 138680), albumin (ALB, MIM: 103600), alpha‐1‐

microglobulin/bikunin precursor (AMBP, MIM: 176870), serpin family

A member 1 (SERPINA1, MIM: 107400), apolipoprotein H (APOH,

MIM: 138700), inter‐alpha‐trypsin inhibitor heavy chain 2 (ITIH2,

MIM: 146640), histidine‐rich glycoprotein (HRG, MIM: 142640), and

transthyretin (TTR, MIM: 176300), which mostly were serum proteins

and plasma proteins, mainly functioning in coagulation, protease

inhibitors, transport or inflammatory regulation.25–33

To decide the significant biomarkers, the KM survival curve was

constructed for the top 10 hubs. Only the expression of AHSG was

found to be associated with chRCC. According to the further analysis,

only the events with the high expression of AHSG gene had a

significantly worse survival contrasted to normal samples (adjusted

p < 0.05) (Figure 8).

F IGURE 2 The analysis of chRCC DEGs through three R packages. (A) Heat map plots of DEGs analyzed by R packages of
“DESeq2,” “edgeR,” and “limma,” respectively. (B) Volcano plots of DEGs analyzed by R packages of “DESe2,” “edgeR,” and “limma,” respectively.
chRCC, chromophobe renal cell carcinoma; DEGs, differentially expressed genes.
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There was a significantly difference for AHSG expression

between the dead chRCC patients (n = 9) and the survival chRCC

patients (n = 56) (Figure 9A). To investigate the regulating mecha-

nisms of AHSG gene in chRCC, we annotated the biological processes

of AHSG by GeneMANIA. The result showed that the top 20 proteins

interacting with AHSG (Figure 9B) mainly functioned in tumor

suppressor, signal transduce, cancer development.26,27,29,30,33–39

4 | DISCUSSION

ccRCC is a malignant tumor originating from the collecting epithelial

cells of the renal tubules, which has no obvious clinical symptoms in

the early stage and is clinically uncommon. However, some patients

still have a poor prognosis and patients with the advanced disease

require adjuvant therapy. Compared with other cancers, chRCC

remains less studied.1,40

The bioinformatics approach to studying the genes associated

with various stages of chRCC and identifying key regulatory genes in

disease development is important for further understanding the

disease mechanism, improving disease treatment measures, and

developing corresponding targeted drugs.

Our study was based on the KICH data from the publicly

available database, TCGA database without a large sample size.

Serum AHSG protein levels have been found to reflect tumor burden

and inflammatory conditions.41 The findings of some studies

indicated a modest linear association between the Fetuin‐A (AHSG

F IGURE 3 PCA plot and shared DEGs analysis of chRCC samples. (A) The PCA plot of 65 tumor samples and 24 normal samples. (B) The heat
map plot of the shared DEGs analyzed by the three R packages of “DESeq2,” “edgeR,” and “limma.” (C) The Venn plot of the shared upregulated
genes. (D) The Venn plot of the shared downregulated genes. chRCC, chromophobe renal cell carcinoma; DEGs, differentially expressed genes;
PCA, principal component analysis.

F IGURE 4 GO enrichment analysis Bar plot of chRCC DEGs.
The y‐axis showed the significantly enriched GO terms, and the
x‐axis showed the different gene ratios. chRCC, chromophobe
renal cell carcinoma; DEGs, differentially expressed genes;
GO, gene ontology.
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protein) concentration and the risk of colorectal cancer,42 showing

that Fetuin‐A was significantly different in the diagnosis of prostate

cancer.43 Increased inflammatory burden also has been reported in

cancers.44 AHSG gene is associated with inflammatory conditions.45

From this perspective, studying AHSG in RCC is also reasonable.

Larger‐scale prospective studies are needed to determine the

specificity and sensibility of AHSG to the disease.

In our study, to determine possible biomarkers and molecular

mechanisms of chRCC, we analyzed TCGA‐KICH data using integrated

bioinformatics. We collected 65 tumor samples and 24 normal samples

for analysis. To obtain more reliable results, DESeq2, edgeR, and limma

tools were selected, along with heatmaps and volcano plots (Figure 2).

Then we used the shared 306 up and 678 downregulated DEGs among

these three methods to perform further analysis (Figure 3C,D).

We employed the clusterProfiler R package to perform Func-

tional enrichment and GO analysis to process DEGs, concluding CC

showed that the DEGs mainly originate from the apical plasma

membrane, apical part of cell, cell projection membrane, synaptic

membrane, and presynapse (top5 cell constituents) (Figure 4). To

further study the DEGs functions, the top5 pathway common genes

(62 genes) of GO CC were analyzed (Figure 5).

Waterfall plots of the top 30 key molecules presented six variant

mutation types, among which, missense mutation was the focused

variant type among the six types (Figure 6). All patients had less than

50 mutations except one patient who had 603 mutations. TP53 had

the most mutations (29%) in all patients (Figure 7), consistent with

the previous studies that TP53 was a gene with a highly frequent

mutation in human cancers.46

F IGURE 5 The top5 terms in the cellular component results of chRCC GO analysis. chRCC, chromophobe renal cell carcinoma; GO, gene ontology.

F IGURE 6 Survival analysis associated with various stages of
chRCC. Kaplan–Meier survival plots of the various chRCC stages.
chRCC, chromophobe renal cell carcinoma.
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Ten hub genes (FGA, FGB, AHSG, ALB, AMBP, SERPINA1, APOH,

ITIH2, HRG, and TTR) were screened by cytohubba analysis, and we

could see that only AHSG expression was significantly associated with

chRCC through the KM survival curve. According to further analysis of

the gene expression between the dead chRCC patients (n= 9) and the

surviving chRCC patients (n = 56) (Figure 9A), only the AHSG gene

survived significantly less in chRCC contrasted to normal samples

(p <0.05) (Figure 8), suggesting that AHSG may be a potential biomarker

associated with prognosis of chRCC. The top 20 proteins interacting

with AHSG by GeneMANIA were partially associated with tumor

development or tumor suppression, which also suggests that AHSG is a

potential key gene for chRCC.26,27,29,30,33–35,37,38

AHSG, α2‐HS‐glycoprotein, belongs to the family of cysteine

protease inhibitors and is a kind of serum proteins that is abundant in

fetal serum. Adult liver synthesizes about 95% of AHSG protein,

which is secreted into the blood, with the normal AHSG protein

concentration being about 450–600 μg/ml, contributing to biological

functions of AHSG,47 with some similar methods to other proteins by

interacting with different kinds of serum calciproteins,48 AHSG can

activate the toll‐like receptor 4 (TLR4) and induce interleukin‐1β to

secret from macrophages. Some recent studies also found that AHSG

was related to small intestinal neuroendocrine tumors and the AHSG

content was associated with differentiating tumor stages.49,50 In this

study, AHSG was found to be the only key gene significantly

F IGURE 7 Multi‐omics analysis of the identified key molecules of chRCC. (A) The mutation landscape based on the key molecules of 65
tumor samples of TCGA‐chRCC cohort. (B) The mutation analysis of the variant classification, variant type, SNV class, variants per sample,
variant classification summary, and the top10 mutated genes of the samples. chRCC, chromophobe renal cell carcinoma; SNV, Single Nucleotide
Variation; TCGA, The Cancer Genome Atlas.

F IGURE 8 chRCC Hub genes analysis. (A) Hub genes identified by the online software String and Cytoscape analysis. (B) A Kaplan–Meier
curve presenting significantly lower survival probability for the patients with the high concentration of the detected AHSG proteins.
chRCC, chromophobe renal cell carcinoma.
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associated with OS in chRCC patients, which showed that AHSG was

closely related to the prognosis of chRCC. Therefore, AHSG may be a

new direction for the study of chRCC.

In conclusion, we detected genes associated with the occurrence

and development of chRCC by multiple integrated bioinformatics

approaches performed onTCGA data and further explored key genes

associated with CHCCC. Among them, AHSG may be a potential

therapeutic target and prognostic genetic marker for chRCC.

However, due to the lack of in‐depth studies at the level of

chRCC‐related genes, further evaluations and experiments are

needed to assess these bioinformatics results to elucidate the

biological function of this gene in the pathogenesis of chRCC and

to provide new clues and directions for the treatment of chRCC.
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