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Background
The two defining characteristics of pluripotent stem cells are 
unlimited replicative capacity and the potential to differen-
tiate into any somatic cell type.1 Using recently developed 
techniques, somatic cells can now be reprogrammed into 
induced pluripotent stem (iPS) cells by the introduction of 

four transcription factors, Oct4, KLF4, Sox-2, and c-Myc.2 
Like embryonic stem (ES) cells, iPS cells possess capabilities 
of self-renewal and pluripotency that make these cells so ther-
apeutically promising, but are also responsible for a potential 
tumorigenic risk; however, iPS cells do not present the ethical 
dilemmas associated with ES cells. From a clinical perspective, 
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iPS cells provide a source of cells genetically identical to the 
patient; such cells will not elicit an immune response, thereby 
significantly improving the probability of successful therapy.3,4 
As evidence of their potential utility for tissue engineering 
and clinical applications, iPS cells have been used to generate 
cardiomyocytes, neurons, pancreatic beta cells, hepatocytes, 
and retinal pigment epithelium (RPE).5–13

The RPE, a specialized layer of pigmented epithelial cells 
located at the back of the retina, performs several functions that 
are essential to maintain visual health and function. RPE dys-
function caused by damage or disease underlies the pathology 
of blinding diseases such as age-related macular degeneration 
(AMD), Stargardt’s disease, and retinitis pigmentosa (RP).14 
As currently available treatments do not effectively prevent 
vision loss, the best option may be to replace diseased RPE 
with transplanted healthy cells.15,16 RPE derived from iPS 
(iPS-RPE) is a possible source of cells to replace the damaged 
RPE. Published studies have demonstrated that iPS-RPE 
are functionally and phenotypically similar to RPE harvested 
from retinal explants; the iPS-RPE expresses characteristic 
RPE proteins LRAT, CRALBP, PEDF, and RPE65; displays 
the classical highly pigmented hexagonal RPE morphology; 
and performs RPE functions such as phagocytosis,9 retinoid 
processing, and secretion of 11-cis retinal.17 However, the iPS-
RPE must be thoroughly analyzed for function and safety 
before it can be used for clinical applications. Specifically, 
factors that promote pluripotency and tumorigenesis must be 
silenced, and the RPE must be fully differentiated.

Cutting-edge high-throughput technologies such as 
microarray, RNA-Seq, ChIP-Seq, and proteomics have 
enabled systematic analyses of genetic and epigenetic differ-
ences, leading to a better understanding of biological systems 
in a temporal/spatial-specific manner and across a wide range 
of subcellular, cellular, tissue, and organism scales.18–23 For 
example, microarray approaches can distinguish both the 
transcriptional and translational signatures of closely related 
cells, ie, stem cells and their differentiated progeny.24–26 Since 
the development of microarray technology, this technique 
has been optimized to allow transcriptomic analysis of not 
only the messenger RNA (mRNA), but also the small non-
coding RNAs such as miRNAs.27,28 MiRNAs are short, 
∼22-nucleotide strands of RNA that function by binding 
to mRNA, thus inducing either translational repression or 
degradation of the transcript.29 MiRNAs are transcribed 
within the nucleus as long pri-miRNA transcripts, which are 
then processed first by the endonuclease Drosha to generate 
pre-miRNA. After leaving the nucleus, the pre-miRNA is 
further cleaved by the RNA enzyme Dicer, to produce the 
mature miRNA. Since their discovery in the early 1990s,30 
over 2,000  miRNAs have been identified in the human 
genome. Upwards of 50% of mammalian RNA may be reg-
ulated by miRNA; nearly every cellular process, including 
pluripotent stem cell self-renewal and cell fate specification, 
is controlled at some point by miRNA intervention. Several 

investigators have provided compelling evidence that miRNAs 
play a critical role in maintaining pluripotency and facilitating 
differentiation.31 For instance, knockout of the RNA enzyme 
Dicer, required for maturation of miRNA, causes severe 
defects in the ability of stem cells to differentiate, suggesting 
that miRNA maturation is essential for stem cell differentia-
tion in vitro and in vivo.32,33 In addition, c-Myc, one of the 
four transcription factors used to reprogram somatic cells into 
pluripotent stem cells, has been shown to bind directly to the 
promoter regions of the miR-302/367 and miR-17/92 polycis-
tronic clusters. These polycistrons are highly enriched in stem 
cells, but down-regulated following differentiation.33

Based upon these studies, we hypothesize that miRNAs 
play an important role during the differentiation of RPE from 
iPS, and that miRNA expression profiling will distinguish 
iPS cells from their iPS-RPE progeny. To test this hypothesis, 
two distinct groups of miRNAs: those involved in maintain-
ing the pluripotency of stem cells and those expressed after the 
differentiation of iPS into RPE, were compared. Analysis of 
the expression of miRNAs during the process of differentia-
tion and identification of their associated target mRNAs will 
provide new understanding of the factors that regulate pluri-
potency, self-renewal, and cell fate determination.

Methods
Culture and differentiation of iPS cells. Human iPS 

cells (IMR-90–1, WiCell Research Institute, Madison, WI, 
USA) were cultured on six-well plates coated with matri-
gel (BD Biosciences, San Jose, CA, USA) and maintained 
in mTeSR1  medium (Stem Cell Technologies, Vancouver, 
BC, Canada). Differentiation was initiated by replacing the 
mTeSR1 medium with differentiation medium consisting of 
10% knockout serum replacement (Life Technologies, Grand 
Island, NY, USA), 0.1 mM β-mercaptoethanol, 0.1 mM non-
essential amino acids, 2.0  mM glutamine, and 10  µg/mL 
gentamicin in DMEM/F12. iPS-RPE appeared around day 
30 of differentiation in the form of pigmented foci. The foci 
were manually dissected out of the culture and trypsinized to 
prepare a single cell suspension. The iPS-RPE were cultured 
in fetal RPE media34 with media changes every other day for 
17 days until collected for RNA extraction.

RNA extraction. The iPS and iPS-RPE cells were 
lysed by running the samples through a Qi Shredder column  
(Qiagen, Valencia, CA, USA). Total RNA was extracted using 
the miRNA mini kit (Qiagen, Valencia, CA, USA),35 followed 
by checking with a Nanodrop spectrophotometer (Thermo 
Scientific, Wilmington, DE, USA) for the concentration. 
RNA samples without organic solvent carryover, showing OD 
260/230 above 1.7 were recommended to proceed for RNA 
quality determination. The quality of the RNA was deter-
mined with Eukaryote Total RNA Pico kit (Agilent Tech-
nologies, Santa Clara, CA) performed on a 2100 Bioanalyzer 
and software (Agilent Technologies) that detects 28S and 
18S ribosomal RNA ratio and total RNA Integrity Number 
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(RIN). The RIN software algorithm allows the classification 
of total RNA, based on a numbering system from 1 to 10, with 
1 being the most degraded and 10 being the most intact. Only 
samples with 28S and 18S ribosomal RNA ratio higher than 
1.8 and RIN higher than 8 were used in this study.

miRNA analysis. MiRNA expression analysis was per-
formed using the Agilent Human miRNA v16  microarrays 
in 8×60  K format according to the manufacturer’s protocol 
(Agilent Technologies, Santa Clara, CA, USA). Each microar-
ray provides genome-wide coverage of well-characterized 
miRNAs and candidates primarily selected from the miRBase 
database.36 The Human miRNA 8×60K microarrays contain 
eight arrays, each with ∼56,000 probes, representing 3,523 
unique probe sequences for 1,205 human miRNAs, which 
cover approximately 64% of the miRNA repertoire in the 
human genome, and 142  miRNAs from other species. The 
microarrays were scanned using an Agilent Technologies 
Scanner G2505C (Agilent Technologies) and then miRNA 
expression data for analysis were generated.

Microarray data processing and analysis. Quantile nor-
malization was performed on the expression value (MAT-
LAB/Bioinformatics Toolbox, MathWorks, Natick, MA, 
USA). After removing the control probes, median values for 
each unique probe were calculated and values lower than 1 
were set to 1 for the convenience of log2-transform. Duplicated 
microarrays were averaged to represent each experiment con-
dition. Differential miRNA expressions were determined by 
performing two-sample t test for each probe. The significantly 
differentially expressed miRNAs were selected with P-values 
less than 0.05 and log2 fold-change greater than 1 (two-fold 
change). The heatmaps of differentially expressed miRNAs 
for each comparison were generated with the z-transformed 
expression value across samples as marked in color scale (red 
represents overexpression and green underexpression).

Functional enrichment analysis, pathway and network 
analysis, and miRNA target analysis. Functional pathway 
and network analyses of differentially expressed miRNAs 
were performed using Ingenuity Pathway Analysis (IPA) 
(Ingenuity® Systems, Redwood City, CA, USA). The Ingenu-
ity Knowledge Base, a repository of biological and chemical 
interactions, was used as a reference set.

Functional enrichment analysis. The functional analysis 
module in IPA was used to identify over-represented molecular 
and cellular functions of differentially expressed miRNAs. The 
probability that each biological function assigned to the data 
set was due to chance alone was estimated, and a false discov-
ery rate (FDR) ,0.05 was used in multiple hypothesis testing 
to correct for multiple comparisons and to minimize false posi-
tives among significantly enriched functions. Gene ontology 
and KEGG pathway enrichment analysis was performed using 
the DAVID functional analysis tool.37 Bonferroni, Benjamini–
Hochberg, and FDR were used for multiple test correction.

Canonical pathway analysis. Over-represented canoni-
cal signaling and metabolic pathways in the input data were 

determined based on two parameters: (1) The ratio of the 
number of molecules from the focus miRNA set that map to 
a given pathway divided by the total number of molecules that 
map to the canonical pathway, and (2) a P-value calculated 
by Fisher’s exact test that determines the probability that the 
association between the focus loci and the canonical pathway 
is explained by chance alone.

Network analysis. Network analysis used focus miRNAs 
as “seeds” to infer de novo interaction networks. Direct or indi-
rect interactions between focus loci and other molecules were 
inferred based on experimentally observed relationships sup-
ported by at least one reference from the literature. Additional 
molecules from the Ingenuity Knowledge Base were added to 
the network to fill or join smaller networks. The network score 
was based on the hypergeometric distribution and calculated 
with the right-tailed Fisher’s exact test. A higher score indi-
cates a lower probability of finding the observed number of 
focus molecules in a given network by chance.

MiRNA Target Filter was used to explore experimen-
tally validated miRNA–mRNA interactions based on relevant 
biological information and expression information from Tar-
Base38 and miRecords.39 TargetScan was used to predict novel 
miRNA–mRNA interactions.40

Results and Discussion
The genome-wide miRNA expression profiles for iPS and iPS-
RPE cells were revealed by miRNA microarray analysis. We 
derived the iPS-RPE and demonstrated that they displayed 
the classical highly pigmented hexagonal RPE morphology 
(Fig. 1), expressed RPE proteins, and performed functions of 
retinoid processing and secretion of 11-cis retinal.17 In order 
to capture development-stage specific expression patterns, we 
cultured iPS-RPE for 17 days (Samples #5, #6, #42, #13, #23, 
and #44). Hierarchical clustering clearly showed that iPS-
RPE segregated from the iPS cells (Samples #6A, 7, and 51) 
(Fig. 2).

Distinct miRNA profiles between iPS and iPS-RPE: 
promoting differentiation and inhibiting proliferation. The 
differentiation from iPS to iPS-RPE is a complex, orches-
trated process. MiRNAs form an important regulatory layer 
that contributes to this lineage-specific cell fate transition. 
Our miRNA microarray analysis identified 155 probes that 
were statistically differentially expressed (fold change  .2, 
and P-value ,0.05, see Supplementary Table 1 for a complete 
list). They corresponded to 113 unique miRNAs, showing two 
dynamically regulated patterns.

The first class included 53 up-regulated probes corre-
sponding to 42 unique miRNAs. Six miRNAs were previ-
ously reported to be up-regulated during the differentiation 
of human ES cells into RPE, including miR-181c, miR-100, 
miR-22, miR-222, miR-23a, and miR-26.41,42 The highest 
fold-change (31-fold) was observed in miR-181c in iPS-RPE. 
MiR-181c is known for its tissue specificity, with prefer-
ential expression in the retina and brain.43 MiR-181c was 
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found to promote skeletal muscle differentiation by targeting 
a homeobox protein HOX-A11.44 Its high expression in iPS-
RPE suggested its role in activating and reinforcing dif-
ferentiation of RPE. Thirty-six more miRNAs were newly  
identified as up-regulated in iPS-RPE (Table 1). The expres-
sion of miR-129–5p was elevated 28-fold in iPS-RPE. Like 
miR-181c, miR-129–5p is expressed in the brain tissue.45 
Growing evidence suggested that it is antiproliferative; its 
validated targets include cell cycle regulator cyclin-dependent 
kinase (CDK6),46 eukaryotic translation initiation factor 2C3 
(EIF2C3), and calmodulin binding transcription activator 1 
(CAMTA1).47,48 Other up-regulated miRNAs in iPS-RPE, 
such as miR-24, have been implicated in either inhibiting 
cell proliferation or promoting differentiation in various cell 
types.41,49

The second class of 102 probes were down-regulated, cor-
responding to 71 unique miRNAs. Eight miRNAs were found 
to be down-regulated during differentiation of RPE from 
human ES cells,42,50 including miR-130a, miR15-b, miR-17, 
miR-18a, miR-25, miR302c, miR302d, and miR-363. Among 
them, miR302c and miR302d, members of the miR302 cluster, 
are known to promote self-renewal in human ES cells, which 
are directly regulated by pluripotency factors Oct4/Sox-2 and 

subsequently target the critical cell cycle regulator cyclin D1.8 
Our expression profiling revealed an additional 63 miRNAs 
that were repressed during the RPE differentiation process 
(Table 2). The most reduced expression fold change (3,757-fold) 
was observed in miR-367, which is a validated pluripotency 
inducer. It was reported that miR-367 and miR-302, in com-
bination with inhibition of the chromatin remodeling factor 
histone deacetylase (HDAC2), were able to reprogram somatic 

Figure 2. Hierarchical clustering of miRNA expression profiles between 
iPS and iPS-RPE.

Figure 1. (A) Brightfield images of iPS and iPS-RPE. Brightfield images 
(magnification 100×) of iPS prior to differentiation (left) and RPE derived 
from iPS (right) (magnification 100×). iPS-RPE display classical RPE 
morphology of hexagonal shape and pigmentation. (B) iPS express 
pluripotent markers OCT3/4, TRA-1-60, and alkaline phosphatase (AP) 
(magnification 200×). iPS-RPE express RPE-specific marker RPE-65 
(magnification 400×).
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Table 1. Representative miRNAs that were up-regulated during the differentiation from iPS to iPS-RPE.

Probe ID miRNA Log2Ratio (fold change) P-value

A_25_P00013319 hsa-miR-181c* 4.96 0.026

A_25_P00013881 hsa-miR-129–5p 4.83 0.004

A_25_P00010474 hsa-miR-100 4.76 0.028

A_25_P00010597 hsa-miR-99b 4.34 0.005

A_25_P00012226
A_25_P00012225 hsa-miR-129–3p

4.27
2.52

0.008
0.025

A_25_P00010881 hsa-miR-23b 4.24 0.025

A_25_P00010676
A_25_P00010677 hsa-miR-24

4.21
4.14

0.002
0.005

A_25_P00010682
A_25_P00010683 hsa-miR-30d

3.92
3.76

0.002
0

A_25_P00014885 hsa-miR-503 3.75 0.007

A_25_P00014821 hsa-miR-27a 3.68 0.026

Note: Probe ID as defined by Agilent Human miRNA v16 microarray.

Table 2. Representative miRNAs that were down-regulated during the differentiation from iPS cells to iPS-RPE.

Probe ID miRNA Log2Ratio (fold change) P-value

A_25_P00010984 hsa-miR-367 −11.87 0

A_25_P00010536 hsa-miR-302c −10.14 0.002

A_25_P00010982
A_25_P00010983 hsa-miR-302a

−9.47
−4.07

0
0.006

A_25_P00010615
A_25_P00010614 hsa-miR-20b

−9.29
−8.29

0
0

A_25_P00010953
A_25_P00010954 hsa-miR-363

−8.44
−8.35

0
0

A_25_P00012431
A_25_P00014859 hsa-miR-18b

−7.85
−6.04

0
0.001

A_25_P00014840 hsa-miR-124 −6.98 0.004

A_25_P00010162 hsa-miR-302d −6.45 0.007

Note: Probe ID as defined by Agilent Human miRNA v16 microarray.

Figure 3. The molecular and cellular functions that were over-represented in the differentially expressed miRNAs during differentiation from iPS to iPS-RPE.
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cells into pluripotency without any exogenous transcription 
factors.51 It is therefore not surprising that miR-367 was shut off 
during RPE differentiation. Similarly, other highly repressed 
miRNAs such as miR-18b, miR-20b, and miR-17 are involved 
in cell proliferation and cell adhesion.52,53

Enrichment analysis confirmed that the most over-
represented functional classes in the set of up- and down- 
regulated miRNAs were associated with cell fate determination 
including cellular development, cellular growth and prolifera-
tion, cell cycle, cell death, and survival (Fig. 3). These miRNAs 
were also involved in other fundamental processes such as 
cellular movement, assembly and organization, DNA replica-
tion, recombination, and repair. In addition, 20 miRNAs were 

reported to regulate cell-to-cell signaling and interactions. For 
example, inhibition of miR-16 in human laryngeal carcinoma 
cells could suppress cell motility as well as enhance cellular 
adhesion.54 Similarly, miR-24 was thought to play an impor-
tant role in actin adhesion, which controls epithelial stratifica-
tion and cytoskeleton remodelling.41

Differentially expressed miRNAs are involved in 
sophisticated cellular networks. To achieve a systems-level 
understanding of miRNA dynamics and its impact on iPS-
RPE differentiation, we performed pathway and network 
analysis. Not surprisingly, no canonical pathways were over-
represented in differentially expressed miRNAs; this is likely 
due to the fact that the biochemical and molecular functions 

Table 3. Representative targets of differentially expressed miRNAs and their biological functions.

miRNA Targets Biological Processes Associated  
with Targets

miR-30c-5p (and other miRNAs  
w/seed GUAAACA)

AP2A1, BCL6, CTGF, F2, GNAI2, JUN,  
LMNB2, MYO10, NPR3, PTPRK, SLC38A1,  
TNFRSF10B, TP53, WNT5A

Protein transport, T-helper cell differentiation,  
cell adhesion, blood homeostasis, inflammation,  
wound healing, transcriptional regulation,  
cell fate and embryogenesis

miR-34a-5p (and other miRNAs  
w/seed GGCAGUG)

AXIN2, BCL2, CDK6, CREB1, E2F3, E2F5,  
HDAC1, MAP2 K2, MYC, NOTCH1, NOTCH2,  
SIRT1, WNT1

Wnt/β-catenin signaling, regulate apoptosis,  
synchronization of circadian rhythmicity,  
differentiation of adipose cells, breast cancer  
regulation, cell cycle regulation, MAPK signaling,  
epithelial adherens junction signaling

miR-124–3p (and other miRNAs  
w/seed AAGGCAC)

AK2, AP1M2, ARAF, BDNF, CAV1, CDK2,  
CDK4, CDK6, DFFB, E2F5, EGR1, ELF4,  
FOXA2, GSN, MAPK14, SMAD5

AMPK signaling, acute myeloid leukemia  
signaling, axonal growth, cell cycle regulation,  
apoptosis signaling, cell proliferation, mitogenesis,  
innate immunity

miR-129–5p (miRNAs w/seed  
UUUUUGC)

AGO3, BMPR2, CAMTA1, ETV6, FNDC3B,  
GALNT1, PDS5A, SOX4, TNPO1, TP53INP1,  
ZFP91

RNA interference, bone formation, embryogenesis,  
transcriptional regulation, adipogenesis,  
glycosylation, DNA repair, embryonic  
development, protein transport

miR-133a-3p (and other miRNAs  
w/seed UUGGUCC)

BCL2L2, CASP9, CDC42, CDK13, CTGF,  
IGF1R, MCL1, NELFA, PTPRK, RB1CC1,  
RHOA, RUNX2, SRF, STK3

Apoptosis, cell cycle regulation, chondrocyte  
proliferation, differentiation, cell adhesion, tumor  
growth, transcriptional regulation, cell migration

miR-16–5p (and other miRNAs  
w/seed AGCAGCA)

ANLN, ATF6, BCL2, BDNF, CCNF, EGFR,  
EIF4E, FGF2, FGF7, FGFR1, HMGA1,  
IGF2R, JUN, KIF23, MYB, VEGFA

Cytokinesis, ER stress response, cell cycle  
progression, translation, cell division, cell  
migration, metastatic progression, angiogenesis,  
vasculogenesis, endothelial cell growth

miR-17–5p (and other miRNAs  
w/seed AAAGUGC)

BCL2,CDKN1A, E2F2, IL8, ITCH, JAK1,  
MEF2D, RAF1, Ras, RB1, RBL2, S1PR1,  
Sos, STAT3, TGFBR2, TP63

Apoptosis, cell cycle progression, inflammatory  
response, erythroid and lymphoid cell  
differentiation, IFNα/β/γ/ signaling, muscle  
development, neuronal differentiation and survival

miR-21–5p (and other miRNAs  
w/seed AGCUUAU)

APAF1, BMPR2, BTG2, CDKN1A, FAS, IL6R,  
JAG1, NFIB, PELI1, PTEN, RECK, SERPINB5,  
SOD3, SOX5, TGFBR2, TNF

Apoptosis, cell cycle regulation, immune response,  
cell growth, transcriptional regulation, cancer  
progression, oxidative stress response, embryonic  
development

miR-221–3p (and other miRNAs  
w/seed GCUACAU)

BBC3, BCL2L11, BMF, BNIP3L, CDKN1B,  
CDKN1C, DIRAS3, ESR1, FOS, FOXO3,  
ICAM1, KIT, MMP1, TIMP3

Apoptosis, cell cycle regulation, growth  
suppression, sexual development, cell  
proliferation, differentiation, stem cell  
maintenance, gametogenesis, mast cell  
development, migration

miR-23a-3p (and other miRNAs  
w/seed UCACAUU)

ATAT1, CXCL12, FBXO32, HES1, IL6R, LMNB1,  
MDH2, MET, NOTCH1, PLAU, SEPT3, SMAD3,  
SMAD4, SMAD5

Microtubule destabilization and dynamics,  
embryogenesis, immune surveillance,  
inflammation response, tissue homeostasis,  
and tumor growth and metastasis

miR-291a-3p (and other miRNAs  
w/seed AAGUGCU)

ADAM9, APP, KIF23, LEFTY1, LEFTY2, MICA,  
MYBL1

Fertilization, muscle development, neurogenesis,  
cell mobility, transcriptional regulation, cytokinesis

SEPT2, STK4, TP63, UBXN1, USP12, VEGFA,  
VPS26A

Left–right axis determination, cytoskeleton  
organization
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of the majority of miRNAs are yet to be discovered and the 
crosstalk between miRNAs and their upstream regulators/
downstream effectors is yet to be elucidated.

An important step toward a better understanding of 
miRNA regulatory networks is to identify their target mRNAs. 
The IPA miRNA Target Filter using TarBase38 and miRecords39 
revealed that 846 mRNAs were experimentally validated targets 
of 40 differentially expressed miRNAs (Supplementary Table 2). 
Enrichment analysis showed that these genes are mainly involved 
in cell death and survival (P = 5.36E−72), cellular development 
(P =  7.91E−69), organismal survival (P =  3.48E−64), cellular 
growth and proliferation (P = 3.56E−63), and gene expression 
regulation (P = 1.32E−47).

Notably, a large number of target genes are oncogenes, 
tumor suppressors, or transcriptional regulators (Table  3). 
KEGG pathway analysis using DAVID Bioinformatics 
Resource37 revealed that 86  genes were involved in path-
ways related to cancer (P  =  6.23E−30). Figure  4  shows a 
molecular network associated with miRNA and tumor sup-
pressor gene TP53, in which miRNA post-transcriptional 
regulation acts as an important mechanism for TP53  sig-
naling, where miRNAs can serve both as regulators and the 
effectors of TP53.

It is therefore important to systematically assess the 
potential roles of miRNAs in iPS-derived RPEs in carcino
genesis.55,56 Several up-regulated miRNAs in iPS-RPE are 

Figure 4. A molecular network associated with miRNA and tumor suppressor gene TP53. 
Note: Red and green shaded nodes represent up- and down-regulated miRNAs, respectively. Solid lines show direct interaction (binding/physical 
contact), and dashed lines show indirect interaction supported by the literature. The annotations for the following miRNA families are: miR-100–5p (and 
other miRNAs w/seed ACCCGUA), miR-17–5p (and other miRNAs w/seed AAAGUGC), miR-1908–5p (and other miRNAs w/seed GGCGGGG), miR-1913 
(and other miRNAs w/seed CUGCCCC), miR-224–3p (and other miRNAs w/seed AAAUGGU), miR-291a-3p (and other miRNAs w/seed AAGUGCU), 
miR-362–5p (and other miRNAs w/seed AUCCUUG), miR-378a-5p (miRNAs w/seed UCCUGAC), miR-500a-3p (miRNAs w/seed UGCACCU), miR-
501–3p (and other miRNAs w/seed AUGCACC), miR-515–3p (and other miRNAs w/seed AGUGCCU), miR-517a-3p (and other miRNAs w/seed 
UCGUGCA), miR-519a-3p (and other miRNAs w/seed AAGUGCA), and miR-521 (miRNAs w/seed ACGCACU).
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tumor suppressors. For example, miR-34, which is directly 
regulated by TP53, acts as a strong tumor suppressor by 
inhibiting cell proliferation, epithelial-mesenchymal tran-
sition (EMT), metastasis, and invasion. MiR-34 is com-
monly silenced in a variety of cancer types.57 The expression 
of miR-34 was amplified by five-fold in iPS-RPE, suggest-
ing the low proliferation potential in these fully differen-
tiated cells. Similarly, miR-16, a suppressor miRNA that 
targets a number of oncogenes such as BCL2, JUN, and 
EGFR, was more abundant in iPS-RPE than in the iPS 
cells. By contrast, a number of down-regulated miRNAs in 
iPS-RPE are oncogenic miRNAs. The miR-17–92 cluster 
is found to be highly activated in solid tumors; one possible 
activation mechanism is through c-Myc transactivation.58 
The members of this cluster, miR-20b, miR-92, miR-17, 
miR-18a, and miR-19b, were either silenced or repressed in 

iPS-RPE cells by 626-fold, 25-fold, 19-fold, 16-fold, and 
3-fold, respectively.

Further integrated miRNA–mRNA target analysis 
identified two inter-connected cancer-related networks: (1) The 
first network is related to cancer, organismal injury and abnor-
malities, and reproductive system disease (Fig. 5). The targets 
with high connectivity included: (a) the Smad2/3 complex, 
which is essential for the transforming growth factor beta 
(TGF-β) signaling pathway that regulates cell proliferation, 
differentiation, and apoptosis. A small RNA-Seq assay showed 
that SMAD can directly induce miR-92  in mouse ES cells.59 
MiR-92 is a proven oncogenic miRNA and its aberrant expres-
sion has been reported in various cancers such as hepatocellular 
carcinoma.60 Our microarray analysis confirmed that the onco-
genic miR-92 was significantly repressed in iPS-RPE; (b) vas-
cular endothelial growth factor (VEGF), which plays a pivotal 

Figure 5. A molecular network associated with organismal injury and abnormalities, and reproductive system disease.  
Note: Red and green shaded nodes represent up- and down-regulated miRNAs, respectively. Solid lines show direct interaction (binding/physical 
contact), and dashed lines show indirect interaction supported by the literature. The annotations for the following miRNA families are: miR-130a-3p (and 
other miRNAs w/seed AGUGCAA), miR-133a-3p (and other miRNAs w/seed UUGGUCC), miR-148b-3p (and other miRNAs w/seed CAGUGCA), miR-
16–5p (and other miRNAs w/seed AGCAGCA), miR-17–5p (and other miRNAs w/seed AAAGUGC), miR-18a-5p (and other miRNAs w/seed AAGGUGC), 
miR-193a-3p (and other miRNAs w/seed ACUGGCC), miR-19b-3p (and other miRNAs w/seed GUGCAAA), miR-21–5p (and other miRNAs w/seed 
AGCUUAU), miR-210–3p (miRNAs w/seed UGUGCGU), miR-24–3p (and other miRNAs w/seed GGCUCAG), miR-26a-5p (and other miRNAs w/seed 
UCAAGUA), miR-27a-3p (and other miRNAs w/seed UCACAGU), miR-29b-3p (and other miRNAs w/seed AGCACCA), miR-30c-5p (and other miRNAs 
w/seed GUAAACA), miR-320b (and other miRNAs w/seed AAAGCUG), miR-324–5p (miRNAs w/seed GCAUCCC), miR-34a-5p (and other miRNAs w/
seed GGCAGUG), miR-532–5p (and other miRNAs w/seed AUGCCUU), miR-7a-5p (and other miRNAs w/seed GGAAGAC), and miR-92a-3p (and other 
miRNAs w/seed AUUGCAC).

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


MicroRNAs in iPS and iPS-RPE

33Cancer Informatics 2014:13(S5)

role in angiogenesis. VEGF was shown to induce miR-17 and 
miR-18 in pathological angiogenesis and tumors.61 Both onco-
genic miRNAs were down-regulated in iPS-RPE cells. (2) The 
second network is related to cancer, gastrointestinal disease, and 
hepatic system disease (Fig. 6). Tumor suppressor miR-100 was 
implicated in acute lymphoblastic leukemia (ALL) and child 
adrenocortical tumors. It was found to promote apoptosis by tar-
geting the insulin-like growth factor 1 receptor (IGF1R)-mTOR 
signaling pathway.62 The expression of miR-100 was enhanced 
by 27-fold in iPS-RPE cells, showing a strong antiproliferative 
effect. Similarly, miR-23 was also induced in iPS-RPE cells 

(by 18-fold); its tumor suppressor function is not exerted mainly 
through the regulation of cell cycle, but through the regulation of 
cell motility. MiR-23 targets a number of cytoskeleton proteins 
such as PLAU by enhancing cell-to-cell adhesion and inhibiting 
cell migration and metastasis.63 Other targets in this network, 
such as mitogen-activated protein kinase 1 (MAPK1), mitogen-
activated protein kinase kinase kinase 12 (MAP3K12), and 
cyclin-dependent kinase inhibitor 1B (CDKN1B), play integral 
roles in cell cycle progression and differentiation. Overall, the 
miRNA signature in these cancer-related networks seemed to 
operate to stabilize a differentiated state in iPS-RPE.

Figure 6. A molecular network associated with cancer, gastrointestinal disease, and hepatic system disease.  
Note: Red and green shaded nodes represent up- and down-regulated miRNAs, respectively. Solid lines show direct interaction (binding/physical 
contact), and dashed lines show indirect interaction supported by the literature. The annotations for the following miRNA families are:  
miR-100–5p (and other miRNAs w/seed ACCCGUA), miR-1185–5p (and other miRNAs w/seed GAGGAUA), miR-129–5p (miRNAs w/seed UUUUUGC), 
miR-22–3p (miRNAs w/seed AGCUGCC), miR-221–3p (and other miRNAs w/seed GCUACAU), miR-23a-3p (and other miRNAs w/seed UCACAUU),  
miR-2682–5p (and other miRNAs w/seed AGGCAGU), miR-542–3p (miRNAs w/seed GUGACAG), miR-642a-3p (and other miRNAs w/seed GACACAU), 
and miR-7a-5p (and other miRNAs w/seed GGAAGAC).
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Concluding Remarks
MiRNA profiling of iPS and iPS-RPE cells revealed distinct 
molecular signatures of post-transcriptional regulation during 
the differentiation process. These differentially expressed 
miRNAs may invoke complex miRNA–target interaction 
networks that coordinate a cascade of signaling responses 
required to suppress cell proliferation, reinforce differentia-
tion, thereby reducing carcinogenesis. A systematic interroga-
tion of temporal and spatial expression of iPS-RPE miRNAs 
and their associated target mRNAs will provide new insights 
into the molecular mechanisms of carcinogenesis, eye differ-
entiation and development.
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