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Abstract

Background: A biomedical signal can be defined by its extrinsic features (x-axis and
y-axis shift and scale) and intrinsic features (shape after normalization of extrinsic
features). In this study, an LMS algorithm utilizing the method of differential steepest
descent is developed, and is tested by normalization of extrinsic features in complex
fractionated atrial electrograms (CFAE).

Method: Equations for normalization of x-axis and y-axis shift and scale are first
derived. The algorithm is implemented for real-time analysis of CFAE acquired during
atrial fibrillation (AF). Data was acquired at a 977 Hz sampling rate from 10
paroxysmal and 10 persistent AF patients undergoing clinical electrophysiologic
study and catheter ablation therapy. Over 24 trials, normalization characteristics using
the new algorithm with four weights were compared to the Widrow-Hoff LMS
algorithm with four tapped delays. The time for convergence, and the mean squared
error (MSE) after convergence, were compared. The new LMS algorithm was also
applied to lead aVF of the electrocardiogram in one patient with longstanding
persistent AF, to enhance the F wave and to monitor extrinsic changes in signal
shape. The average waveform over a 25 s interval was used as a prototypical
reference signal for matching with the aVF lead.

Results: Based on the derivation equations, the y-shift and y-scale adjustments of
the new LMS algorithm were shown to be equivalent to the scalar form of the
Widrow-Hoff LMS algorithm. For x-shift and x-scale adjustments, rather than
implementing a long tapped delay as in Widrow-Hoff LMS, the new method uses
only two weights. After convergence, the MSE for matching paroxysmal CFAE
averaged 0.46 ± 0.49μV2/sample for the new LMS algorithm versus 0.72 ± 0.35μV2/
sample for Widrow-Hoff LMS. The MSE for matching persistent CFAE averaged
0.55 ± 0.95μV2/sample for the new LMS algorithm versus 0.62 ± 0.55μV2/sample for
Widrow-Hoff LMS. There were no significant differences in estimation error for
paroxysmal versus persistent data. From all trials, the mean convergence time was
approximately 1 second for both algorithms. The new LMS algorithm was useful to
enhance the electrocardiogram F wave by subtraction of an adaptively weighted
prototypical reference signal from the aVF lead. The extrinsic weighting over 25 s
demonstrated that time-varying functions such as patient respiration could be
identified and monitored.
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Conclusions: A new LMS algorithm was derived and used for normalization of the
extrinsic features in CFAE and for electrocardiogram monitoring. The weighting at
convergence provides an estimate of the degree of similarity between two signals in
terms of x-axis and y-axis shift and scale. The algorithm is computationally efficient
with low estimation error. Based on the results, proposed applications include
monitoring of extrinsic and intrinsic features of repetitive patterns in CFAE,
enhancement of the electrocardiogram F wave and monitoring of time-varying signal
properties, and to quantitatively characterize mechanistic differences in paroxysmal
versus persistent AF.

Keywords: Atrial fibrillation, Electrocardiogram, F wave, Fractionation, LMS algorithm,
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Introduction
In previous work it was shown that any pattern can be described based upon its intrin-

sic versus extrinsic features [1,2]. The extrinsic features are those that can be normal-

ized in a signal space. The intrinsic component is the final shape of the signal following

normalization. Thus intrinsic features are those measured after normalization of the

space. Normalization is essential for determining the similarity of the intrinsic compo-

nent between two different signals, and the normalized weighting is a measure of ex-

trinsic differences. Testing the similarity between signals in this way is a form of

pattern recognition [3,4]. Similarity measurements are also useful for noise cancellation

when one signals acts as a noise reference with respect to another [5-7]. The intrinsic

signal component may become apparent by averaging [1,2]. Yet, patterns lacking statio-

narity of the mean cannot be characterized in this way. Therefore, when signal statistics

are time-varying, as is often the case, it is desirable to use adaptive analysis methods.

Least mean squares (LMS) algorithms adapt the mean squared error of a reference

signal with respect to a desired signal [5,6,8]. The error is estimated at the current time,

and the error gradient is approximated by the gradient from a single sample. Adapta-

tion occurs by iterating toward the minimum of the error function. A drawback is that

if local minima exist along the path, convergence to the global minimum can only

occur if the weight update steps are sufficiently large to shift the convergence path out

of the concavity of the local minima. In this study an LMS algorithm is derived and

implemented for real-time normalization of extrinsic signal features. For simplicity, ini-

tial conditions are set to enable convergence to global rather than local minima. The al-

gorithm is applied to complex fractionated atrial electrograms (CFAE), which are

electrograms with multiple continuous deflections or cycle length <120 milliseconds [9]

acquired from the heart surface that result from passage of the electrical activation

wavefront. CFAE were selected in part because the presence of randomness provides a

rigorous test of the capacity to rapidly and accurately estimate signal differences. Fur-

thermore, if the acquired signals can be successfully characterized prior to catheter ab-

lation [9], it would be possible to glean knowledge concerning abnormal conduction

caused by ischemia, infarction, or the presence of fibrosis, which can be assistive to

guide the catheter toward optimal ablation sites.
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Method
Clinical data acquisition

Electrograms were recorded from 20 patients referred to the Columbia University Med-

ical Center cardiac electrophysiology (EP) laboratory for catheter ablation of AF. These

were obtained prospectively as approved by the Internal Review Board at Columbia

University Medical Center, but analyzed retrospectively after the catheter ablation pro-

cedures were completed using standard clinical protocols. Ten patients had documen-

ted clinical paroxysmal AF, with a normal sinus rhythm as their baseline rhythm in the

electrophysiology laboratory. Atrial fibrillation was induced by burst pacing from the

coronary sinus or from the right atrial lateral wall, and the arrhythmia persisted for at

least 10 minutes for those signals that were included in retrospective analysis. Ten

other patients had longstanding persistent AF, and had been in AF without interruption

for at least several months prior to the catheter mapping and ablation procedure. Elec-

trograms recorded from the distal ablation electrode during arrhythmia were filtered

with a single-pole bandpass from 30-500 Hz by the acquisition system to remove base-

line drift and high frequency noise, sampled at 977 Hz, and stored (CardioLab, GE

Healthcare, Waukesha, WI).

Only signals identified as CFAEs by two cardiac electrophysiologists were included in

the retrospective analysis. CFAE recordings of at least 20 seconds in duration were

obtained from two sites outside the ostia of each of the four pulmonary veins. Similar

recordings were obtained at two sites in the mid-posterior left atrial free wall, and from

the anterior ridge at the base of the left atrial appendage. A total of 12 paroxysmal and

12 persistent CFAE sequences, selected at random, were used for measurement and

statistical comparison.
Definition of intrinsic versus extrinsic features

Consider two signals that are identical except for x-axis and y-axis shift and scale

(Figure 1A). Similar deflections occur on each trace (see for example at * and **). As a first

approximation toward normalizing these signals, their baselines, or degree of y-axis shift,

can be globally adjusted (Figure 1B). Further normalization can be done by increasing the

y-axis scale, or gain, of the red trace to better match it to the black trace (Figure 1C). If the

x-axis shift, or phase lag, is adjusted, the two traces can be made to approximately align

(Figure 1D).Yet there is still some misalignment due to differences in the degree of expan-

sion along the x-axis, as noted by the # symbol in Figure 1D. If the x-axis scale is correctly

adjusted, these traces perfectly match over the interval during which they both occur

(Figure 1E). The signals are then normalized. The difference in extrinsic shape is then zero,

and these particular signals have the same intrinsic shape.

Changes to the signal space that occur when extrinsic features are normalized are shown

in a graphical representation in Figure 2. Three dimensions of the N-dimensional signal

space are shown. In all panels, the vector direction is the intrinsic shape of the signal and it

is unchanging. Baseline shift is represented by the position of the tail of the signal vector

along the unity vector (Figure 2A). To remove the baseline level, the signal vector is moved

from any nonzero location along the unity vector, for example at (0.2, 0.2, 0.2 . . .) that is, a

baseline level of 0.2 units, to the origin at (0, 0, 0, . . .) which has a baseline level of zero.

The signal amplitude is represented by the signal vector magnitude (Figure 2B). To adjust



Figure 1 x- and y-axis scale and shift to normalize the extrinsic features of CFAE.
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signal amplitude, the vector magnitude is adjusted. To adjust the phase lag, the signal space

is rotated, or equivalently, the axes are renumbered. For example to adjust by +3 sample

points, the axes are renumbered as shown in Figure 2C. This is done for all N axes, with

wraparound from axis N to axis 1. Finally, to adjust x-axis scale, the sampling interval i.e.,
Figure 2 Differences in extrinsic features of signal space, shown as graphs.
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the time interval between sample points, is adjusted, for example as shown in Figure 2D.

Here the sampling interval, originally 1 unit (such as 1 millisecond) is adjusted to 1.1 units.

Based on these parameters, the signal space can be normalized so that extrinsic relation-

ships between signals are removed and only intrinsic relationships remain.

By developing an LMS algorithm to normalize CFAE signals for x-axis and y-axis

shift and scale, differences which are physiologically relevant can become apparent. For

example, the baseline level in electrogram signals may be related to injury current gra-

dients present at border zones where ischemia is present [10]. The amplitude is in part

a result of the degree of tissue activating at any one time, although if bipolar recording

electrodes are used this will also depend on the orientation and spacing of bipoles [11].

The phase lag is a direct result of the delay in arrival of the electrical activation wave-

front at the recording site. The time duration or x-axis scale depends on conduction

velocity, and will increase with a decrease in velocity [12]. A method to measure and

normalize extrinsic signal features is described as follows.

Description of the new LMS algorithm

We suppose a matched filter that consists of an unknown input or desired signal d and

an adaptively weighted known or reference signal x. The method of steepest descent

can be used to update the weight w [5,6]:

wkþ1 ¼ wk � μrk ð1Þ

where μ is the convergence coefficient, k is the discrete time, and the gradient is given

by [13]:

rk ¼ @E Ek2
� �

=@wk ¼ @ξk=@wk ð2Þ

with @ being the partial derivative with respect to the particular weight parameter w, E

the expectation operator, Ek is the error, and ξk is the mean squared error (MSE) at

discrete time k. The gradient defines the error surface (performance surface). The opti-

mal weight vector (Wiener-Hopf equation), which is derived from the gradient vector

for all parameters, requires matrix inversion for computation. However, a difference

equation can be written to estimate the gradient for any parameter [8,14]:

rk � ΔEk2=Δwk ¼ Ekþð Þ2 � Ek�ð Þ2
h i

=Δwk ð3Þ

where Ek
+ and Ek

- are errors with finite differences, described as [15-17]:

Ek ¼ dk � yk ð4aÞ

Ekþ ¼ dk � yk
þ ð4bÞ

Ek� ¼ dk � yk
� ð4cÞ

and dk is the signal to be emulated, with estimates given by:
yk ¼ f wk; xkð Þ ð5aÞ
yk

þ ¼ f wk þ ω; xkð Þ ð5bÞ
yk

� ¼ f wk � ω; xkð Þ ð5cÞ
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The reference signal is xk, while ω is the mesh spacing used for gradient estimation.

Substituting Eq. 4b and 4c into Eq. 3:

rk � Ekþð Þ2 � Ek�ð Þ2
h i

=Δwk

¼ dk � yk
þ� �2 � dk � yk

�� �2h i
=Δwk

¼ dk
2 � 2dkyk

þ þ yk
þ� �2 � dk

2 þ 2dkyk
� � yk

�� �2h i
=Δwk

¼ �2dk yk
þ � yk

�� �þ yk
þ þ yk

�� �
yk

þ � yk
�� �� �

=Δwk ð6Þ

Supposing for finite differences, that:
yk
þ þ yk

� � 2yk ð7Þ

then [15-17]:

rk � �2dk yk
þ � yk

�� �þ 2yk yk
þ � yk

�� �� �
=Δwk

¼ �2Ek yk
þ � yk

�� �
=2ω ð8Þ

where ω is the mesh size as in Eq. 5, and substitution was done using Eq. 4a. To adjust

the step size of the weight update by the method of steepest descent, a convergence co-

efficient can be added:

μrk ¼ �2μEk yk
þ � yk

�� �
=2ω ð9Þ

Eq. 9 can be used to update a set of normalization weights to shift and scale the sig-
nal along the x and y axes. For y-axis scale:

μgrgk ¼ �2μgEk gþ γð Þxk � g� γð Þxk½ �=2γ

¼ �2μgEk2γxk=2γ

¼ �2μgEkxk ð10Þ

where ‘g’ is the signal gain and γ is the mesh size. Eq. 10 is the Widrow-Hoff LMS algorithm

in scalar form [5,6]. For y-axis shift, the gradient is:

μbrbk ¼ �2μbEk g xk þ bþ βð Þ � g xk þ b� βð Þ½ �=2β
¼ �2μbEk2β=2β

¼ �2μbEk ð11Þ

where ‘b’ is the DC bias and β is the mesh size. Eq. 11 is the Widrow-Hoff LMS update of

the DC or average level [5,6]. For x-axis shift (phase lag):
μprpk ¼ �2μpEk g xkþpþϕ þ b
� �� g xkþp�ϕ þ b

� �� �

¼ �2μpEkg xkþpþϕ � xkþp�ϕ

� � ð12Þ
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where ‘p’ denotes the phase shift, ϕ is the mesh size, and for simplicity the constant term

1/2ϕ is included in μp. For x-axis scale (interval weighting):

μarak ¼ �2μaEk g xðaþαÞk þ b
� �� g xða�αÞk þ b

� �� �

¼ �2μaEkg xðaþαÞk � xða�αÞk
� � ð13Þ

where ‘a’ denotes x-axial scale, α is the mesh size, and again for simplicity the constant

term 1/2α is included in μa. Because the time index becomes a real number when adjusting

for x-axis shift and scale, interpolation between discrete sample points is necessary.

Eqs. 10–13 can be used in tandem to update the values of x-axis and y-axis scale and shift,

once per discrete time epoch k. Accordingly, the equations for updating x-axis shift and

scale are rewritten as:

μprpk ¼ �2μpEkg xaðkþpþϕÞ � xaðkþp�ϕÞ
� � ð14Þ

μarak ¼ �2μaEkg xðaþαÞ kþpð Þ � xða�αÞ kþpð Þ
� � ð15Þ

and:

Ek ¼ dk � yk

¼ dk � g xa kþpð Þ þ b ð16Þ

Comparison of new and widrow-Hoff LMS algorithms

The performance of the new and Widrow-Hoff LMS algorithms was compared using

CFAE, signals with significant randomly-varying deflections as well as repetitive com-

ponents [18,19]. Equations 10–16 were used to match CFAE signals of length = 8,192

discrete sample points (8.4 s), which are the desired signals dk for all k, with versions of

the same signal that were shifted and scaled along the x and y axes by a known

amount, which are the reference signals xk for all k. Thus upon convergence, the

weights will be inverse values to the x-axis and y-axis shift and scale that was applied

to form each reference xk. We used CFAE that were initially 16,384 sample points long

for this application, because the x-axis shift and scale applied to form xk could require

values of k > 8192 in the original signal. In twelve trials, weighting initialization for

reference signal x of dimension 8,192, was based upon random adjustment of x-axis

and y-axis shift and scale for each trial, within limits of the concavity of the global

minimum along the four-dimensional performance surface. To determine efficacy, 12

paroxysmal and 12 persistent CFAE recordings were used (24 trials in all).

Although the mean-squared error surface of y-axis shift and scale forms a single con-

cavity along the performance surface, the mean-squared error surface of x-axis shift

and scale can have multiple concavities, i.e. local minima, due to the presence of mul-

tiple signal deflections. If during a given trial, the weighting did not converge at the glo-

bal minimum error value due to arrival at a local minimum, the trial was excluded

from analysis, and was redone with another set of initial weight values. The conver-

gence coefficient magnitudes, the same for all trials, were selected manually for fastest

convergence, without significant response, after convergence, of the weighting to indi-

vidual signal deflections, so that the weighting foci upon convergence to the bottom of
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weight bowl had small footprint. The computer code to implement these equations is

given in the Appendix.

For comparison of estimation error and convergence time, the Widrow-Hoff LMS al-

gorithm [5,6,8] was implemented with the same desired signal d and the same reference

input x adjusted for x- and y- shift and scale. Initially a tapped delay line of length 100

was used for Widrow-Hoff, so that variations in x-axis scale could be better accounted

for as dk became increasingly out of phase with xk when a 6¼ 1 (Eqs. 15 and 16). How-

ever, it was observed that the relationship between many of the individual weights

changed little even for p 6¼ 0 and a 6¼ 1. This is illustrated in Figure 3A. When 100

delays are used, taps in recent time (k =−1, -2, -3 . . .) are large but those furthest in

time (k = . . . -91 to −100) remain near zero (bottom part of panel). Thus much of the

weighting was relatively unaffected by phase lag differences between d and x. When

only four taps were used (Figure 3B) there is more contribution from each weight

(values are nonzero) and the lesser number of taps increases the computational effi-

ciency. Thus for comparison, Widrow-Hoff with four taps was compared with the new

LMS algorithm with four weights. For Widrow-Hoff, the convergence coefficient value

was also selected for fast convergence without significant response to individual signal

deflections following convergence (small foci at bottom of weight bowl).

The new LMS algorithm was initialized with weights g = 1, b = 0, p = 0, and a = 1 in all

trials, i.e., supposing that there are no extrinsic differences between signals. The

Widrow-Hoff LMS algorithm was initialized with weights for all four taps = 1 in all

trials. The weights were considered to be converged following the cessation of sharp
Figure 3 Using the Widrow-Hoff LMS algorithm for adaptive weight update over 8192 sample
points A. tapped delay line of 100. B. tapped delay line of 4.
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trends of weight change. The error after convergence was then calculated for both

LMS algorithms as:

error ¼ Σk dk � yk
� �2

=2000: k ¼ jþ 1; jþ 2000 ð17Þ

where j is the start of the interval just after convergence for that algorithm which took

longer to converge, yk is given by Eq. 16 for the new LMS algorithm, and for the

Widrow-Hoff LMS algorithm:

yk ¼ wT
� �x k : kþ 3ð Þ ð18Þ

where ‘�’ denotes the inner product and w is of dimension 4. The mean and standard

deviation in the error (Eq. 17) and the time for convergence were tabulated for each

trial.

Significant differences in the means between the new and Widrow-Hoff LMS were

determined using the unpaired t-test, with p < 0.05 indicating significance (SigmaPlot

2004version 9.01, Systat Software, Chicago, IL, and MedCalc 2011 version 9.5, MedCalc

Software, Mariakerke Belgium).

Application to the electrocardiogram

As proof of concept to show the utility of the new LMS algorithm with other types of

AF signals, it was applied to lead aVF of the electrocardiogram in a patient with long-

standing persistent AF. Due to the irregularity of atrial activation during AF, ventricular

activation is also often irregular. Over a 25 s interval, a prototypical waveform was

matched with the actual aVF lead. The prototypical waveform was constructed as the

average of all QRS complexes over the 25 s sequence. The prototypical waveform con-

sisted of ±400 sample points centered on the R wave peak (820 ms duration). A syn-

thetic electrocardiogram was constructed by inserting this prototypical waveform at

each instance of and aligned with the R wave peak of the actual aVF lead along a

977samples/s × 25 s sample point interval. Where no instance of the prototypical wave-

form occurred (cardiac cycle > 820 ms), the sequence was set to zero. Where two

instances of the prototypical waveform overlapped (cardiac cycle < 820 ms), they were

summed. The resultant synthetic electrocardiogram served as x, while the original elec-

trocardiogram was d. The weighting of x was initialized at random to values of:

b; g; p; að Þ ¼ �0:2; 1:3;�1:; 1:02ð Þ

to form the estimate y. The electrocardiogram statistical characteristics differed from

that of surface electrograms, and different convergence coefficients were used:

μb; μp; μg; μa

� �
¼ 0:0005; 0:5; 0:02; 0:004ð Þ

Signals d, y, and E were graphed prior to and after convergence. Extrinsic weights b,
g, p, and a were graphed for the entire 25 s sequence.

Results
In Figure 4 is shown an example of the adaptive update using the new algorithm with a

CFAE, trial 6, paroxysmal AF (see Table 1). The top panels show the desired signal

(black), the reference (green) and the estimated signal (red). At top left is shown the



Figure 4 Adaptive update using the new algorithm (Trial 6 in Table 1). The top panels show the
desired signal (black), reference signal (green) and estimated signal (red). The lower panels show the
adjustment of weights for x- and y-axis shift and scale.
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onset of adaptation, sample points 1–1000. There is initially poor overlap of estimate

signal y (red) to desired signal d (black). Based on the reference signal x (green) there

is substantial x-axis scaling, as the deflections increasingly misalign from left to right in

the panel. However, during the interval from 7000–8000 sample points (right-hand

panel) convergence has occurred and there is overlap between desired and estimated

signals (black and red, respectively). The reference signal during this interval (green) is

highly out of phase with the desired signal due to its nonunity weighting in x-scale. For

example the first large deflection in the reference signal (green) occurs at approxi-

mately 7050, and in the desired and estimated signals (black and red traces,
Table 1 Trials for New LMS Algorithm – Paroxysmal AF

Trial y-shf y-sca x-shf x-sca MN (μV2) SD (μV2) Converge

1 0.2 1.5 4 0.99 0.048 0.473 64

2 0.2 1.5 2 0.99 0.411 2.363 109

3 0.2 2.0 0 1.04 1.386 9.733 87

4 −0.2 2.0 0 1.04 1.248 6.198 118

5 0.6 1.2 3 0.99 1.007 2.989 56

6 0.1 1.4 3 1.03 0.112 1.125 3742

7 0.1 1.4 2 0.985 0.078 0.0822 145

8 0.05 0.95 1 0.989 0.232 2.743 7

9 −0.5 1.5 8 1.05 0.567 4.721 1020

10 −0.5 1.5 4 1.07 0.303 0.898 1801

11 0.0 1.0 0 1.00 0.000 0.000 0

12 0.2 1.0 0 1.01 0.159 0.627 501

Mean – – – – 0.46 ± 0.49 2.66 ± 2.94 638± 1117

MN=mean, SD= standard deviation, shf = shift, sca = scale, converge = number of discrete time points for convergence to
occur, μV=microvolts.



Figure 5 Adaptive update using the new algorithm using different parameters (Trial 8 in
Table 2). The top panels show the desired signal (black), reference signal (green) and estimated signal
(red). The lower panels show the adjustment of weights for x- and y-axis shift and scale.
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respectively) this deflection occurs at ~7250 (noted by *). The lower panels in Figure 4

show the weight adaptation. Convergence occurs at approximately sample point 3742,

in the sense that rapid drifts in weight values cease to occur. The value of each weight

at convergence is approximately the inverse of the corresponding value in Table 1, trial

6, so that the desired and estimated signals match.

In Figure 5 is shown an example of the adaptive update using the new algorithm, trial

8, persistent AF (see Table 2). As in Figure 4, the top panels show the desired signal

(black), reference (green) and estimate signal (red). The desired and reference signals

again become out of phase due to a difference in x-axis scale, but the x-scaling is in the
Table 2 Trials for New LMS Algorithm – Persistent AF

Trial y-shf y-sca x-shf x-sca MN (μV2) SD (μV2) Converge

1 0.2 1.5 4 0.99 0.155 0.880 1559

2 0.2 1.5 2 0.99 0.104 0.393 2201

3 0.2 2.0 0 1.04 2.500 15.979 84

4 −0.2 2.0 0 1.04 0.100 0.606 282

5 0.6 1.2 3 0.99 0.511 1.340 125

6 0.1 1.4 3 1.03 0.069 0.398 955

7 0.1 1.4 2 0.985 2.614 6.225 50

8 0.05 0.95 1 0.989 0.067 0.232 1139

9 −0.5 1.5 8 1.05 0.197 0.699 6002

10 −0.5 1.5 4 1.07 0.099 0.294 6134

11 0.0 1.0 0 1.00 0.000 0.000 0

12 0.2 1.0 0 1.01 0.198 1.251 190

Mean – – – – 0.55 ± 0.95 2.36 ± 4.60 1560± 2217

MN=mean, SD= standard deviation, shf = shift, sca = scale, converge = number of discrete time points for convergence to
occur, μV=microvolts.
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opposite direction as compared with Figure 4 (see for example peaks at *). The lower

panels show the adjustment of weights for x- and y-axis shift and scale. There is mostly

convergence around sample point 1100, as is evident also in the top left panel. Thus

even with quite different x- and y-axial shift and scale, adaptive adjustment and

normalization of the reference signal toward the shape of the desired signal occurs.

The value of the shift and scale weights upon convergence show the difference in ex-

trinsic features between desired and reference signals.

A comparison of new versus Widrow-Hoff LMS algorithm during Trial 1, persistent

AF, is shown in Figure 6. Shown after convergence, there is nearly exact overlap of

desired and estimated signals using the new LMS algorithm (top panel). The Widrow-

Hoff LMS algorithm matches desired and estimated signals to a slightly lesser degree -

there is some misalignment in phase and amplitude. This is likely due to the need of a

delay line with multiple taps to estimate changes in x-shift and x-scale.

The overall findings of this study are summarized in Tables 1, 2, 3 and 4. In Table 2 are

depicted the results for the new LMS algorithm, persistent AF. Shown are the trial number,

the parameter values for initialization of each trial, the mean and standard deviation in

error after convergence, and the number of sample points necessary for approximate con-

vergence. The y-shift (baseline level) of the reference takes on both positive and negative

values in the individual trials. The y-scale (signal amplitude), is varied from 0.95× to 2×.

The x-shift (phase lag), is varied by up to 8 units. Finally, the x-scale (time interval), is both

>1 (signal contraction) and <1 (signal expansion). The error is similar for all trials with a

mean of 0.55±0.95 μV2/sample point. The mean number of sample points for convergence

is 1560±2217. Convergence is approximately proportional to the absolute difference be-

tween no change in x-scale (a = 1) and the value of x-scale that was actually used to

initialize the reference signal (5th column from left).
Figure 6 Comparison of new versus Widrow-Hoff LMS algorithm (Trial 1 in Table 2).



Table 3 Trials for Widrow-Hoff LMS Algorithm – Paroxysmal AF

Trial y-shf y-sca x-shf x-sca MN (μV2) SD (μV2) Converge

1 0.2 1.5 4 0.99 0.196 0.881 23

2 0.2 1.5 2 0.99 0.925 4.239 15

3 0.2 2.0 0 1.04 1.244 9.361 114

4 −0.2 2.0 0 1.04 1.068 5.877 14

5 0.6 1.2 3 0.99 0.461 2.137 28

6 0.1 1.4 3 1.03 0.625 3.198 1971

7 0.1 1.4 2 0.985 0.232 1.395 10

8 0.05 0.95 1 0.989 0.849 5.466 5

9 −0.5 1.5 8 1.05 0.903 6.025 1386

10 −0.5 1.5 4 1.07 0.740 2.225 83

11 0.0 1.0 0 1.00 0.318 1.319 96

12 0.2 1.0 0 1.01 1.022 2.835 93

Mean – – – – 0.72 ± 0.35 3.75 ± 2.52 320 ± 648

MN=mean, SD= standard deviation, shf = shift, sca = scale, converge = number of discrete time points for convergence to
occur, μV=microvolts.
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Similar results were obtained using the same initialization parameters for paroxysmal

CFAE data (Tables 1 and 3). For the new LMS algorithm, the mean error was 0.46±0.49

μV2/sample point (Table 1) as compared with 0.72±0.35 μV2/sample point for the

Widrow-Hoff algorithm (Table 3). The respective convergence times for paroxysmal AF

data (Tables 1 and 3) are somewhat shorter than for persistent data (Tables 2 and 4).

The results for the Widrow-Hoff LMS algorithm, persistent AF, are shown in Table 4.

The same weight values were used to initialize the reference signals (left columns). The

mean error value is 0.62 ± 0.55 μV2/sample point. The time for convergence is some-

times very short, at other times it is long, with a mean of 458 ± 651 sample points.

For both paroxysmal and persistent AF data, the modeling of the desired signal with

the reference using extrinsic shape factors was more accurate using the new LMS algo-

rithm, though this difference did not reach significance with N= 12.
Table 4 Trials for Widrow-Hoff LMS Algorithm – Persistent AF

Trial y-shf y-sca x-shf x-sca MN (μV2) SD (μV2) Converge

1 0.2 1.5 4 0.99 0.567 2.021 156

2 0.2 1.5 2 0.99 0.499 1.394 434

3 0.2 2.0 0 1.04 2.256 12.937 12

4 −0.2 2.0 0 1.04 0.380 1.462 820

5 0.6 1.2 3 0.99 0.312 0.824 14

6 0.1 1.4 3 1.03 0.488 1.930 1020

7 0.1 1.4 2 0.985 0.947 9.558 18

8 0.05 0.95 1 0.989 0.665 2.316 10

9 −0.5 1.5 8 1.05 0.267 0.583 2204

10 −0.5 1.5 4 1.07 0.146 0.432 589

11 0.0 1.0 0 1.00 0.417 1.120 10

12 0.2 1.0 0 1.01 0.501 2.160 207

Mean – – – – 0.62 ± 0.55 3.06 ± 3.94 458 ± 651

MN=mean, SD= standard deviation, shf = shift, sca = scale, converge = number of discrete time points for convergence to
occur, μV=microvolts.
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Electrocardiogram result

The result of the proof of concept exercise is shown in Figure 7. In the left panels are the

electrocardiogram, lead aVF, during longstanding persistent atrial fibrillation. The top panel

shows initial conditions leading to convergence. The black trace is the actual aVF lead, sig-

nal d. The green trace is the repeating prototypical trace, signal x. The red trace is y, the

weighted manifestation of x. After convergence (bottom left panel) there is mostly overlap

of d (black) with y (red). In the bottom left panel, the green trace now shows E = d – y.

The R wave and much of the QRS complex is eliminated. What remains is mostly the F

wave (atrial signal). At right are the traces over ~25 s (each iteration number corresponds

to a sample point of data, taken at 977 Hz). Convergence occurs after ~4000 iterations.

The staircase shape prior to convergence in weights g, p, and reflects incidences of new

cardiac cycles. The weights converge to approximately their expected values of:

b; g; p; að Þ ¼ 0; 1; 0; 1ð Þ

Following convergence there are still slight changes in the weighting. For example, it is

apparent that patient respiration is evident in the g weighting, as noted by *, although this

should be verified in a prospective study.

Discussion
Summary

In this study a new LMS algorithm was derived for characterization of extrinsic signal features

during signal normalization. These features are the x- and y- axis shift and scale parameters.

The algorithm is adaptive and the weights are updated based upon the method of steepest
Figure 7 Application of the LMS algorithm to lead aVF of the electrocardiogram in a persistent
AF patient. Left panels: the signals used for analysis. Right panels – the extrinsic weighting over a 25 s
interval.
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descent (Eq. 1). The error gradient is estimated using a finite difference approximation (Eq. 8).

Once coefficients are selected for fastest convergence without following individual deflections,

the algorithm is stable and can adjust to a wide range of extrinsic feature values associated

with a particular reference. In the study, once convergence occurred, the desired and esti-

mated signals overlapped, i.e. their intrinsic shape was the same. The parameter values upon

convergence are quantitative descriptors of differences in extrinsic signal shape, which can be

related to real physiologic parameters. More rapid convergence of both LMS algorithms oc-

curred for paroxysmal AF data (Tables 1 and 3) as compared with persistent data (Tables 2

and 4), perhaps because a greater degree of randomness in the paroxysmal deflections resulted

in sharper changes in the error function, thereby increasing the step size from one iteration to

the next. The new LMS algorithm enhanced the electrocardiogram F wave from a persistent

AF patient. Spectral analysis of the F wave trace could be useful to characterize global atrial

electrophysiologic signal during AF. The likely detection of patient respiration in the extrinsic

weighting over 25 s suggests that time-varying changes can be monitored over long intervals.

New LMS algorithm – direction of weight update

Consider how the normalization of x-axis shift is accomplished by the new LMS algo-

rithm. To show the phase weight update direction, the relevant terms from Eqs. 14 and

16 are:

Ek xaðkþpþϕÞ � xaðkþp�ϕÞ
� �

¼ dk � g xa kþpð Þ þ b
� �

xaðkþpþϕÞ � xaðkþp�ϕÞ
� � ð19aÞ

¼ dk � xkð Þ xkþϕ � xk�ϕ

� � ð19bÞ

where for simplicity, for Eq. 19b an initialized weighting is supposed (g = 1, b = 0, p = 0,

and a = 1), i.e., yk = xk. Consider the left-hand term in parentheses Eq. 19b. The effect of

this term on the weight update is illustrated in Figure 8A. When dk is more positive

than the weighted version of xk, dk - yk will be positive. When dk is more negative than

the weighted version of xk, dk - yk will be negative. The difference between k+ϕ and k-

ϕ in Eq. 19b (right-hand term) is just a difference in the phase of signal x (Figure 8B).

If the slope of x is positive at k, then (xk+ϕ - xk-ϕ) will be positive, whereas if the slope

is negative, (xk+ϕ - xk-ϕ) will be negative. Based upon Figure 8A-8B, along the upgoing

slope, (dk - xk) and (xk+ϕ - xk-ϕ) will both be positive. Thus the phase update will be

negative (Eq. 14) and xk will shift to the left toward dk. Similarly, on the downgoing

slope, (dk - xk) and (xk+ϕ - xk-ϕ) will both be negative and again xk will be shifted to the

left toward better alignment with dk. If the weighted version of xk were leading dk (not

shown), the product of the terms in Eq. 19 will be negative regardless of whether k is

located at an upslope or downslope of the signal, and xk will be shifted to the right.

For normalization of x-scale, the relevant terms from Eqs. 15 and 16 are:
Ek xðaþαÞ kþpð Þ � xða�αÞ kþpð Þ
� �

¼ dk � g xa kþpð Þ þ b
� �

xðaþαÞ kþpð Þ � xða�αÞ kþpð ÞÞ
� ð20aÞ



Figure 8 Illustration of the mechanism by which the direction of weight update is determined
for best match of weighted reference signal x with desired signal d.
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supposing for Eq. 20b, as in Eq. 19b, initial conditions (g = 1, b = 0, p = 0, and a = 1). As

for x-shift, the direction of weight update for x-scale depends in part on the difference

between dk and xk (Figure 8C). In this panel, the weighting of reference signal x is illu-

strated by a change in x-axis scale (expansion) as compared with desired signal d, but

the same relationships apply as in Figure 8A. Similar to Figure 8B for x-shift, in

Figure 8D are shown the effect of finite differences on x-scale (red dotted lines). Again,

the difference will be positive along a deflection leading edge and negative along a de-

flection trailing edge. Thus the value a of x-scale will decrease whether k is on the lead-

ing or trailing edge of a deflection (shift to left) when the weighted version of xk is

expanded with respect to dk (Figure 8D). When the weighted version of xk is contracted

with respect to dk, the value a of x-scale will increase whether k is on the leading or

trailing edge of a deflection (shift to right, not shown). Figure 8C illustrates that these

relationships anticipate that the overlap between desired and weighted reference signal

are sufficient for correct adaptation (large deflection at left in Figure 8C). Where smal-

ler deflections are aligned with a non-corresponding deflection on the other signal

(right portion of traces), local minima will occur in the performance surface, which will

delay weight convergence to the global minimum error.

¼ dk � xkð Þ xð1þαÞk � xð1�αÞk
� � ð20bÞ
Quantitative comparison to other applications

The approach described in this study minimizes the sum of squares of evenly weighted

deviations of a template to an input signal and was specifically applied to CFAE. As a

first approximation, it can be supposed that the MSE weighting in each parameter has

constant variance independent of the position within the data set [20]. Another ap-

proach to the use of the method of steepest descent in adaptive problems is by
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frequency domain filtering, which reduces the computational cost relative to the

Widrow-Hoff LMS algorithm in applications where long filter lengths are required

[14]. While for simplicity, the convergence coefficient values were estimated manually

in our study, this process can be automated to reflect the inverse signal power [6]. The

step size depends on the position of the weights along a performance surface. In prior

work, fixed step size has been used with finite differences to make adaptive updates

with greater stability for simulated cardiologic data [21] as well as to cancel motion

artifact from the blood pressure pulse obtained by tonometry [22]. The MSE is in-

versely proportional to the convergence coefficient μ [23]. In our study, convergence

coefficient values for both LMS algorithms were optimized manually for best step-size.

Variable step-size LMS adaptive filtering may helpful to improve convergence [24,25].

In cases when eigenvalues defining the signal statistics have a large spread, a variable

leaky LMS algorithm, designed to overcome the slow convergence of the standard LMS

algorithm under such conditions, may also helpful [26]. Future implementations should

consider transient and steady-state responses of the LMS algorithms [27].
Clinical correlates

In this study we tested a new LMS algorithm using CFAE, which contain both random

and repetitive components which differ in paroxysmal versus persistent AF [19]. CFAE

from paroxysmals tend to be less repetitive and more complex as compared with per-

sistent AF data. In previous work, linear prediction was used to detect repetitive com-

ponents [19]. For real-time analysis, once components are detected by linear

prediction, the new LMS algorithm could be applied to normalize the extrinsic features.

An instance of the repetitive shape early in the recorded signal would be used as the

template or reference (x). The length of x would equal the interval along which the re-

petitive pattern is detected. The template x would be matched with new instances of

the repetitive pattern d by using the four weight system of the new LMS algorithm to

form the weighted template y. The x-axis scale weighting will adjust the template

length to meet any changes in time duration of the recurring pattern.

Upon application of this paradigm, the variation in x-axis and y-axis shift and scale itself

would provide information about the character of CFAE repetitive patterns. Furthermore,

the intrinsic shapes after normalization with the new LMS algorithm could be quantified

using specially designed methods, such as analysis of morphology variations by cluster

and principal components analysis [28] or by nonlinear dynamical measurements [18],

wave similarity analysis [29], or correlation waveform analysis [30]. We would expect to

see differences in intrinsic and extrinsic features not only in paroxysmal versus persistent

AF data obtained at corresponding anatomical locations, but also for data from the same

patient obtained at different anatomical locations such as at the ostia of the pulmonary

veins versus the anterior and posterior left atrial free wall. Guidance for ablation therapy

might be possible based upon the degree of temporal change in extrinsic shape of repeti-

tive patterns in CFAE, as well as the character of their intrinsic shape.

It was also shown that the method is applicable to more deterministic signals, specif-

ically the electrocardiogram. The F wave was enhanced in leaf aVF in a longstanding

persistent AF patient, corresponding to atrial activation. Likewise, monitoring of the ex-

trinsic weighting of the electrocardiogram over long intervals might be useful to
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determine the affect of antiarrhythmic drugs or the result of RF ablation. Individual

electrocardiogram components such as the R wave could likewise be monitored. This

could be useful for example, during administration of pharmacologic agents that specif-

ically alter electrical conduction in the ventricles.

Conclusions
It was found that a new LMS algorithm can converge stably and rapidly to normalize a

reference CFAE x to the same space as that of a desired CFAE signal d. All four parameters

of x-axis and y-axis shift and scale converged during this process when the initial weighting

was within the concavity of the global minimum error. Since each weight directly nor-

malizes a particular aspect of extrinsic shape, the new LMS algorithm tends to converge

with less error as compared with a four-tap Widrow-Hoff LMS implementation. Other

algorithms have been developed which might be helpful to further reduce convergence

time [31]. The new LMS method is potentially useful to determine differences in physio-

logic parameters for CFAE recorded at many atrial sites, based on measurements of x- and

y-axis shift and scale and their variation over time. It can also be used to enhance the elec-

trocardiogram F wave and to monitor global, time-varying changes in heart function.

Limitations

In the study a limited number of trials were used for comparison. Only 24 different CFAE

were used – one for each trial. There were also 12 different initial weighting conditions used

to test the adaptation of the algorithms. For more rigorous comparison, in subsequent work

the number of trials and initial conditions should be increased. Furthermore, the intrinsic

signal shape of desired versus reference signals should be made to differ. For the new LMS,

the step size for weight update was proportional to the finite difference in estimated signal,

but updates using fixed increments [21,22,32] may also converge rapidly and stably.

Initialization was set so that the path along the performance surface was within the concav-

ity of the global minimum error. Addition of a stochastic factor (random number) in Eq. 16

may be useful to overcome local minima during update of x-shift and x-scale as caused by

presence of multiple signal deflections [21]. In the study it was supposed as a first approxi-

mation that for Widrow-Hoff, the delay line with 4 taps equals the unknown system im-

pulse response; actual response should be tested for more accurate approximation [33].

Appendix
Computer program for new LMS algorithm

parameter (m=8192, u1=0.03, u2= .08, u3=4., u4= .04, v= .001)

real d(m),x(m+ 500); data b, g, p, a/0., 1., 0., 1./

do 1 k = 101, 8192 + 100

z = a*(k + p); zz = int(z); xx = x(zz) + (x(zz + 1)-x(zz))*(z-zz)

z = a*(k + p + 1); zp = int(z); xp = x(zp) + (x(zp + 1)-x(zp))*(z-zp)

z = a*(k + p-1); zm= int(z); xm= x(zm) + (x(zm+ 1)-x(zm))*(z-zm)

y = (a + v)*k + p; yp = int(y); xpp = x(yp) + (x(yp + 1)-x(yp))*(y-yp)

y = (a-v)*k + p; ym= int(y); xmm= x(ym) + (x(ym+ 1)-x(ym))*(y-ym)

e = d(k) - (g*xx-b)

b = b-u1*e; g = g + u2*e*xx); p = p + u3*e*g*(xp-xm); a = a + u4*e*g*(xpp-xmm)
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write(*,*) d(k), g*x(a*(k + p))-b, x(k), b, g, p, a

1 continue

The Fortran program (Intel Visual Fortran Compiler, ver. 9, 2005, Intel Corp., Santa

Clara, CA) calculates error and update weights, and writes signals and weights to disk.

u are convergence coefficients, b, g, p, a are y- and x-axis shift & scale weights.

d = desired signal, x = reference signal, v is the differential for x-axis scale.

y, yp, ym and z, zp, zm are intermediate calculations of x-axis shift and scale,

respectively.

xx is the calculation of x-axis shift and scale without finite difference.

xp and xm are differential calculations of x-axis shift.

xpp and xmm are differential calculations of x-axis scale.

k begins at 100 to prevent the possibility of a negative index in x-axis scale and shift.

x is extended to 8192 + 500 to account for positive ending x-axis scale and shift.
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