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Background. In this study, we evaluate associations between cumulative antiretroviral adherence/exposure, quantified using 
tenofovir diphosphate (TFV-DP) in dried blood spots (DBS), and human immunodeficiency virus (HIV)-related aging factors. 

Methods. This is a cross-sectional analysis of younger (ages 18–35) and older (ages ≥60) persons with HIV (PWH) taking TFV 
disoproxil fumarate. Tenofovir diphosphate concentrations were quantified in DBS. Linear and logistic regression models were used 
to evaluate associations between TFV-DP and bone mineral density (BMD), physical function, frailty, and falls.

Results. Forty-five PWH were enrolled (23 younger, 22 older). Every 500 fmol/punch (equivalent to an increase in ~2 doses/
week) increase in TFV-DP was associated with decreased hip BMD (−0.021 g/cm2; 95% confidence interval [CI], −0.040 to −0.002; 
P = .03). Adjusting for total fat mass, every 500 fmol/punch increase in TFV-DP was associated with higher odds of Short Physical 
Performance Battery impairment (score ≤10; adjusted odds ratio [OR], 1.6; 95% CI, 1.0–2.5; P = .04). Every 500 fmol/punch increase 
in TFV-DP was associated with slower 400-meter walk time (14.8 seconds; 95% CI, 3.8–25.8; P = .01) and remained significant after 
adjusting for age, lean body mass, body mass index (BMI), and fat mass (all P ≤ .01). Every 500 fmol/punch increase in TFV-DP was 
associated with higher odds of reporting a fall in the prior 6 months (OR, 1.8; 95% CI, 1.1–2.8; P = .02); this remained significant 
after adjusting for age, lean body mass, BMI, and total fat mass (all P < .05).

Conclusions. Higher TFV-DP levels were associated with lower hip BMD, poorer physical function, and greater risk for falls, a 
concerning combination for increased fracture risk.

Keywords. aging; bone mineral density; dried blood spots; HIV; tenofovir diphosphate.

Life expectancy for people with human immunodeficiency virus 
(PWH) has increased due to improved efficacy and tolerability 
of modern antiretroviral therapy (ART) [1–3]. The increase 
in life expectancy has been accompanied by an increase in the 
prevalence of comorbid conditions and age-related syndromes 
including renal disease, obesity, sarcopenia, osteoporosis, and 
frailty—conditions that may alter ART exposure and toxicity in 
PWH [3–5].

Tenofovir disoproxil fumarate (TDF) is a nucleotide reverse-
transcriptase inhibitor that has been used to treat human 

immunodeficiency virus (HIV)-1 infection and is usually 
used in combination with other antiretroviral medications 
[6]. Although TDF has been widely used in HIV treatment, it 
is associated with decreased bone mineral density (BMD) and 
kidney function [7, 8]. Decreases in BMD occur in a greater 
proportion of PWH compared with HIV-uninfected individ-
uals regardless of ART, with a greater and mostly reversible de-
crease seen with use of TDF regimens compared with regimens 
without TDF [9–13]. Some, but not all, studies have shown that 
TDF may also increase the risk of fractures associated with in-
creased morbidity and mortality [11, 14, 15].

Tenofovir diphosphate (TFV-DP), the phosphorylated 
anabolite of TFV, can be measured in dried blood spots (DBS) 
and is used to determine the cumulative exposure to TFV (de-
rived from both prodrugs TDF and TFV alafenamide [TAF]) 
over the preceding 2 to 3 months [16]. Very few studies have 
examined the associations between cumulative ART exposure, 
as assessed by TFV-DP in DBS, and additional aging related 
factors that may increase the risk of fractures, such as physical 
function and fall risk, in PWH. The overall objective of this 
study was to determine whether TFV-DBS is associated with 
aging factors in PWH.
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METHODS

Study Design

This was a prospective, observational study in PWH conducted 
at the University of Colorado Anschutz Medical Campus 
(ClinicalTrials.gov Identifier NCT02304263). Participants were 
aged either 18–35 or ≥60 years, had a history of consistent ART 
use with a TDF-based regimen for at least 1 year before enroll-
ment, and were virally suppressed (as evidenced by 2 consec-
utive visits with HIV-ribonucleic acid [RNA] <48 copies/mL).

Participants fasted overnight before a single study visit. The 
visit procedures included whole blood collection via venipunc-
ture for DBS; a dual-energy absorptiometry (DXA) scan of the 
hip and lumber spine for BMD assessment and whole body scan 
for measurement of lean body mass (LBM), lean mass limited 
to the extremities (appendicular lean mass), and fat mass; and 
an iohexol-based glomerular filtration rate (iGFR) procedure 
for kidney function. For DBS analysis, 25 μL whole blood was 
spotted onto 903 Protein Saver cards (Whatman/GE Healthcare, 
Piscataway, NJ), allowed to dry for at least 2 hours (up to over-
night), placed in plastic bags with humidity indicators and des-
iccants, and stored in a sample box at −80°C until analysis [17].

Physical function assessments included the Short Physical 
Performance Battery (SPPB) [18] and an expanded version 
[19], consisting of (1) balance test including ability to hold 4 
positions of increasing difficulty for 10 and 30 seconds (side-by-
side, semitandem, tandem, and 1-leg stand), (2) 4-meter walk 
at usual pace measured twice, and (3) 10 repeated chair stands, 
with split times obtained at 5 and 10 chair stands. The SPPB 
score (from 0-worst to 12-best) was calculated as previously 
described [18]; time to rise 10 times was used as a continuous 
outcome and ability to hold the 1-leg stand dichotomized from 
the modified SPPB. For the 400-meter walk, participants were 
encouraged to walk as quickly as possible to complete 8 laps 
of an unobstructed, noncarpeted 25-meter length hallway. Grip 
strength was measured by the average of 3 dynamometer assess-
ments using the dominant hand. Frailty was measured using the 
Fried criteria, with modifications as previously described [20, 
21]. Participants were classified as nonfrail if they had no com-
ponents present, prefrail with 1 or 2 components present, and 
frail with 3 or more components present; frailty and prefrailty 
were combined for analyses. Participants were also asked to 
self-report whether they sustained a fall during the previous 
6 months [22, 23].

Laboratory Analyses

For measures of DBS, after extraction, TFV-DP concentra-
tions in lysed cellular matrices were assayed with validated 
liquid chromatography tandem mass spectrometry methods 
with a lower limit of quantification of 2.5 fmol/sample [17, 24]. 
Iohexol was measured using a validated method with a report-
able range of 10  μg/mL to 1000  μg/mL. Raw iohexol plasma 

clearance was determined across 5 time points after an initial 
injection of 5  mL Omnipaque 300  mg/mL at T0 with subse-
quent blood draws at 120, 150, 180, 210, and 240 minutes. The 
slope of the plasma clearance, in addition to patient height and 
weight to determine body surface area (BSA), were used to cal-
culate iGFR (reported as mL/min × 1.73 m2). In addition to 
iGFR, estimated GFR (eGFR) values were calculated for partici-
pants using the Modification of Diet in Renal Disease equation 
[25, 26].

Statistical Analysis

Frequency and percentage were calculated for categorical 
variables overall and by categorical age groups. Means and 
standard deviations were reported for continuous variables 
overall and by categorical age groups. Baseline characteris-
tics were compared between age groups using χ 2 or Fisher’s 
exact test (categorical variables) or t test (continuous vari-
ables). Linear regression analyses were conducted to deter-
mine the associations between TFV-DP concentrations in 
DBS with continuous measures of renal function, BMD, and 
physical function outcomes. Logistic regression analyses were 
conducted to determine the associations between TFV-DP 
concentrations in DBS and categorical physical function out-
comes. A change in 500 fmol/punch was selected for the ana-
lyses because it would correspond to a clinically meaningful 
increase of approximately 2 TDF doses/week [16]. Mean es-
timates and odds ratios (ORs) with 95% confidence intervals 
(CIs) were reported from the linear and logistic regression 
models, respectively. Two-sided tests were reported assuming 
a 0.05 significance level and all analyses were conducted in 
SAS v9.4 (Carey, NC).

Patient Consent Statement

The study was approved by the Colorado Multiple Institutional 
Review Board, and all participants provided written, informed 
consent before participation.

RESULTS

Of 45 patients enrolled in the study, 23 (51%) were in the 
younger age group (18–35 years old) and 22 (49%) were in the 
older age group (≥60  years old). Demographic characteris-
tics of the study population, by age group, are show in Table 1. 
The majority of the patients were white (73%) and male (91%). 
Approximately 50% of the overall cohort had osteopenia or 
osteoporosis. All participants had a suppressed HIV-1 RNA. 
Older participants had lower iGFR, greater total body fat mass, 
and LBM. Physical function markers, falls, and frailty indicated 
greater impairment in the older participants.

Tenofovir Diphosphate and Renal Function

As shown in Table  2, renal function as measured by either 
iGFR or eGFR was not associated with TFV-DP in DBS in 
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either unadjusted or models adjusted singly for age, body 
mass index (BMI), total fat mass, LBM, appendicular lean 
mass, or in models adjusted for both age and either BMI or 
total fat mass.

Tenofovir Diphosphate and Bone Mineral Density

For every 500  fmol/punch increase in TFV-DP in DBS, there 
was a decrease in hip BMD (β̂  = −0.021  g/cm2; P = .03), 
where β̂  is the estimated change in hip BMD for an increase of 

Table 1. Baseline Characteristics of the Study Population

Characteristics Overall (n = 45)a Younger (n = 23)b Older (n = 22)b P Value

Gender    1.00

 Male 41 (91%) 21 (91%) 20 (91%)  

Race     

 White 33 (73%) 17 (74%) 16 (73%) .90

 Black or African American 6 (13%) 2 (9%) 4 (18%)  

Ethnicity    .34

 Hispanic or Latino 12 (27%) 6 (26%) 6 (27%)  

Current smoker 18 (40%) 12 (52%) 6 (27%) .09

HIV-1 RNA below detection 45 (100%) 23 (100%) 22 (100%) 1.00

ART Regimen     

 Protease inhibitor 14 (31%) 7 (30%) 7 (32%) .24

 Integrase inhibitor 16 (36%) 11 (48%) 5 (23%)

 Nonnucleoside reverse-transcriptase inhibitor 10 (22%) 4 (17%) 6 (27%)

 Multiclass 5 (11%) 1 (4%) 4 (18%)

Duration of antiretroviral therapy 4.3 (1.6) 3.8 (1.7) 4.9 (1.2) .01

iGFR 78.6 (16.1) 90.4 (9.9) 70.4 (14.6) <.001

eGFRc 93.7 (20.4) 101.4 (17.0) 85.5 (20.8) .007

TFV-DP in DBS (fmol/punch) 2234 (874) 2136 (830) 2341 (928) .44

TFV-DP dosing category (fmol/punch)     

 <350 1 (2%) 0 (0%) 1 (5%) .82

 350–699 0 (0%) 0 (0%) 0 (0%)

 700–1249 5 (11%) 3 (13%) 2 (9%)

 1250–1849 10 (22%) 6 (26%) 4 (18%)

 ≥1850 29 (64%) 14 (61%) 15 (68%)

Body mass index (kg/m2) 26.6 (6.2) 24.3 (5.3) 29.1 (6.1) .022

Total body fat mass (kg) 21.0 (12.0) 16.9 (10.9) 25.3 (11.8) .016

Lean body mass (kg) 54.2 (9.1) 51.8 (6.6) 56.7 (10.8) .078

Percent body fat 25.5 (10.1) 22.2 (10.3) 29.0 (8.9) .023

Lumbar bone mineral density (g/cm2) 0.97 (0.12) 0.98 (0.13) 0.96 (0.12) .62

 Normal 23 (51%) 13 (56%) 10 (45%)  

 Osteopenia 19 (42%) 8 (35%) 11 (50%) .56

 Osteoporosis 3 (7%) 2 (9%) 1 (5%)

Hip Bone Mineral Density (g/cm2) 0.88 (0.11) 0.89 (0.10) 0.86 (0.12) .41

 Normal 25 (56%) 13 (57%) 12 (55%)  

 Osteopenia 18 (40%) 10 (43%) 8 (36%) .33

 Osteoporosis 2 (4%) 0 (0%) 2 (9%)

400-meter walk time (seconds) 272.5 (58.0) 253.2 (48.0) 296.1 (61.7) .018

Time to complete 10 chair rises (seconds) 25.8 (6.6) 23.5 (5.6) 28.3 (6.8) .016

Grip strength (kg) 35.9 (7.8) 37.2 (7.2) 34.4 (8.3) .24

Falls in the past 6 months 11 (24%) 2 (9%) 9 (41%) .012

One leg stand, 30 seconds completed 38 (84%) 21 (91%) 17 (77%) .29

Short Physical Performance Battery Score 10.5 (1.7) 11.1 (1.2) 9.9 (1.9) .015

Frailty     

 Nonfrail 24 (53%) 16 (70%) 8 (36%) .011

 Prefrail/Frail 21 (42%) 7 (30%) 14 (64%)

Abbreviations: ART, antiretroviral therapy; DBS, dried blood spots; eGFR, estimated glomerular filtration rate; HIV, human immunodeficiency virus; iGFR, iohexol glomerular filtration rate; 
RNA, ribonucleic acid; TFV-DP, tenofovir-diphosphate.
aValues presented as frequency (percentage) or mean (standard deviation).
bYounger, 18–35 years old; older, ≥60 years old.
ceGFR by the Modification of Diet in Renal Disease equation.
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500 fmol/punch in TFV-DP in DBS. This association remained 
similar after adjusting for age (β̂  = −0.020 g/cm2; P = .04), but 
it was attenuated and no longer reached statistical significance 
after adjusting for BMI (β̂  = −0.014  g/cm2; P = .14), total fat 
mass (β̂  = −0.015  g/cm2; P = .10), LBM (β̂  = −0.016  g/cm2; 
P = .06), appendicular lean mass (β̂  = −0.017 g/cm2; P = .06), 
or adjusting for both age with either BMI (β̂  = −0.008 g/cm2; 
P = .37) or total fat mass (β̂  = −0.011 g/cm2; P = .23) (Table 3). 
Associations between TFV-DP concentrations in DBS and 
spine BMD were of similar magnitude (β̂  = −0.018 g/cm2), but 
these did not reach statistical significance (P = .09) (Table  3) 
and remained statistically nonsignificant after adjusting for age 
(P = .10), BMI (P = .13), total fat mass (P = .11), LBM (P = .17), 
appendicular lean mass (P = .16), age with either BMI (P = .17), 
or total fat mass (P = .13).

Tenofovir Diphosphate and Physical Function, Frailty, and Falls

For every 500 fmol/punch increase in TFV-DP in DBS, there 
was a slower time to complete 10 chair rises in unadjusted 
models (β̂  = 1.2 seconds), but this did not reach statistical 
significance (P = .06). The association was strengthened 
and became significant after adjusting for BMI (β̂  = 1.5 sec-
onds; P = .02) or total fat mass (β̂  = 1.5 seconds; P = .02), but 
adjusting for age, LBM, appendicular lean mass, and age with 
either BMI or total fat mass did not strengthen the associa-
tion (P ≥ .06) (Table 2). Tenofovir-DP in DBS concentrations 
were also associated with SPPB score after adjusting for BMI 

(score ≤10: OR = 1.57; 95% CI, 1.01–2.43; P = .04) or total 
fat mass (score ≤ 10: OR = 1.60; 95% CI, 1.02–2.50; P = .04), 
but not in unadjusted models (score ≤ 10: OR = 1.35; 95% 

Table 3. Unadjusted and Adjusted Linear Regression Models for the 
Association Between Hip BMD (g/cm2), Spine BMD (g/cm2), Chair Rise 
Time (Seconds), 400-Meter Walk (Seconds), Average Grip (kg), and TFV-DP 
in DBS (for Every 500-fmol/Punch)

Models TFV-DP-DBS β̂  (95% CI) P Value

Hip Bone Mineral Density (g/cm2)   

 Unadjusted Model −0.021 (−0.040 to −0.0019) .03

 Age Adjusted −0.020 (−0.040 to −0.0009) .04

 BMI Adjusted −0.014 (−0.031 to 0.0044) .14

 Total Fat Mass Adjusted −0.015 (−0.033 to 0.0032) .10

 LBM Adjusted −0.016 (−0.034 to 0.0010) .06

 Appendicular Lean Mass Adjusted −0.017 (−0.035 to 0.0005) .06

 Age and BMI Adjusted −0.008 (−0.025 to 0.0095) .37

 Age and Total Fat Mass Adjusted −0.011 (−0.0285 to 0.0072) .23

Spine Bone Mineral Density (g/cm2)   

 Unadjusted Model −0.018 (−0.039 to 0.003) .09

 Age Adjusted −0.018 (−0.039 to 0.004) .10

 BMI Adjusted −0.017 (−0.039 to 0.005) .13

 Total Fat Mass Adjusted −0.018 (−0.040 to 0.004) .11

 LBM Adjusted −0.014 (−0.034 to 0.006) .17

 Appendicular Lean Mass Adjusted −0.014 (−0.035 to 0.006) .16

 Age and BMI Adjusted −0.016 (−0.039 to 0.007) .17

 Age and Total Fat Mass Adjusted −0.018 (−0.040 to 0.005) .13

Chair Rise Time (Secondsa)   

 Unadjusted Model 1.2 (−0.1 to 2.3) .06

 Age Adjusted 0.9 (−0.3 to 2.0) .14

 BMI Adjusted 1.5 (0.3–2.6) .02

 Total Fat Mass Adjusted 1.5 (0.3–2.6) .02

 LBM Adjusted 1.1 (−0.1 to 2.3) .07

 Appendicular Lean Mass Adjusted 1.1 (−0.1 to 2.3) .07

 Age and BMI Adjusted 1.1 (−0.1 to 2.4) .06

 Age and Total Fat Mass Adjusted 1.2 (−0.03 to 2.4) .06 

400-Meter Walk (Secondsa)   

 Unadjusted Model 14.8 (3.8–25.8) .01

 Age Adjusted 13.5 (3.2–23.7) .01

 BMI Adjusted 19.5 (9.9–29.1) <.001

 Total Fat Mass Adjusted 20.2 (11.0–29.5) <.001

 LBM Adjusted 15.2 (4.0–26.5) .01

 Appendicular Lean Mass Adjusted 14.6 (3.4–25.9) .01

 Age and BMI Adjusted 18.3 (8.4–28.1) <.001

 Age and Total Fat Mass Adjusted 19.1 (9.6–28.7) <.001

Average Grip (kg)   

 Unadjusted Model −0.23 (−1.63 to 1.16) .74

 Age Adjusted −0.14 (−1.55 to 1.26) .84

 BMI Adjusted −0.19 (−1.65 to 1.28) .80

 Total Fat Mass Adjusted −0.21 (−1.66 to 1.24) .77

 LBM Adjusted 0.20 (−0.95 to 1.36) .73

 Appendicular Lean Mass Adjusted 0.17 (−0.97 to 1.30) .77

 Age and BMI Adjusted 0.07 (−1.43 to 1.57) .93

 Age and Total Fat Mass Adjusted −0.01 (−1.49 to 1.48) .99

Significant P values are indicated by italics.

Abbreviations: BMD, bone mineral density; BMI, body mass index; CI, confidence interval; 
DBS, dried blood spots; LBM, lean body mass; TFV-DP, tenofovir diphosphate.
aLower number = faster time to complete.

Table 2. Unadjusted and Adjusted Linear Regression Models for the 
Association Between iGFR, eGFR, and TFV-DP-DBS (for Every 500-fmol/
Punch)

Models TFV-DP-DBS β̂  (95% CI) P Value

iGFR   

Unadjusted Model 0.04 (−3.34 to 3.41) .98

Age Adjusted 0.08 (−2.63 to 2.79) .95

BMI Adjusted −1.23 (−4.33 to 1.86) .42

Total Fat Mass Adjusted −1.01 (−3.97 to 1.94) .49

LBM Adjusted 0.09 (−3.38 to 3.57) .96

Appendicular Lean Mass Adjusted 0.19 (−3.27 to 3.64) .91

Age and BMI Adjusted −0.55 (−3.35 to 2.25) .69

Age and Total Fat Mass Adjusted −0.52 (−3.21 to 2.16) .69

eGFRa   

Unadjusted Model −2.63 (−6.22 to 0.95) .15

Age Adjusted −2.10 (−5.47 to 1.27) .22

BMI Adjusted −3.06 (−6.78 to 0.67) .11

Total Fat Mass Adjusted −2.81 (−6.53 to 0.92) .14

LBM Adjusted −2.46 (−6.12 to 1.21) .18

Appendicular Lean Mass Adjusted −2.39 (−6.02 to 1.24) .19

Age and BMI Adjusted −1.92 (−5.55 to 1.71) .29

Age and Total Fat Mass Adjusted −1.74 (−5.30 to 1.82) .33

Abbreviations: BMI, body mass index; CI, confidence interval; eGFR, estimated glomerular 
filtration rate; DBS, dried blood spots; iGFR, iohexol glomerular filtration rate; LBM, lean 
body mass; TFV-DP, tenofovir-diphosphate.
aeGFR by the Modification of Diet in Renal Disease equation.
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CI, 0.93–1.97; P = .12) or models adjusting for age, total lean 
mass, appendicular lean mass, age, and BMI or age and total fat 
mass (P ≥ .05) (Figure 1). For every 500 fmol/punch increase 
in TFV-DP in DBS, time to complete the 400-meter walk was 
14.8 seconds slower in unadjusted models (P = .01). This asso-
ciation was strengthened when adjusting for fat mass (β̂  = 20.2 
seconds slower, P < .001); adjusting for age, BMI, LBM, ap-
pendicular lean mass, age, and BMI or age and total fat mass 
yielded similar effect sizes (β̂  = 13.5–19.5 seconds slower) and 
remained statistically significant (P < .01). Tenofovir-DP in 
DBS concentrations were not significantly associated with grip 
strength (Table 3), frailty, or balance (Figure 1).

The odds of reporting a fall in the past 6 months was signifi-
cantly associated with greater TFV-DP in DBS levels: for every 
500 fmol/punch increase in TFV-DP, the odds of a fall increased 
by 1.75 (95% CI, 1.1–2.79; P = .02). The effect was similar after 
adjusting for age, BMI, total fat mass, LBM, and appendicular 
lean mass or age and total fat mass (all P < .05) (Figure 1). The 
effect was no longer significant after adjusting for age and BMI 
(P = .10).

DISCUSSION

Among older adults, greater accumulation of medication due 
to changes in body composition, renal clearance, liver metab-
olism, and other factors may contribute to greater toxicity. 
These effects may be heightened among older adults with HIV, 
who experience “accelerated aging” [27]. Our study found that 
greater cumulative ART exposure (ie, as measured by TFV-DP 
in DBS) was associated with adverse aging outcomes in a co-
hort of both older and younger PWH. Specifically, higher 
TFV-DP in DBS was associated with lower hip BMD, decreased 
physical function, and increased risk for falls. Moreover, many 
of these associations were strengthened by the inclusion of ex-
planatory variables, primarily that of total fat mass or BMI. 
Tenofovir-DP in DBS is a highly informative measure of cu-
mulative and overall exposure to ART. Our findings suggest 
that those with the highest concentrations (presumably due to 
excellent adherence as well as intrinsically greater drug expos-
ures due to age) may also be those more likely to experience 
toxicity.
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Figure 1. Forest plot showing the associations between falls, Short Physical Performance Battery (SPPB) score, frailty, tandem stand, and tenofovir-diphosphate dried blood 
spots (TFV-DP-DBS) (for every 500 fmol/punch). Falls were significantly associated with TFV-DP in both unadjusted and adjusted models. Frailty and impaired tandem stand 
were not significantly associated with TFV-DP in either unadjusted or adjusted models. Low SPPB was only significantly associated with TFV-DP in the model adjusted for 
body mass index (BMI) or total fat mass. CL, confidence limits; LBM, lean body mass; LCL, lower confidence limits; OR, odds ratio; UCL, upper confidence limits.
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We failed to find an association between TFV-DP in DBS and 
either iGFR or eGFR, even after bivariable adjustment. The im-
pact of body composition measures (BMI, fat mass, LBM) had 
a much greater impact on the associations between TFV-DP 
and aging outcomes. The reasons for this lack of association be-
tween iGFR or eGFR and TFV-DP are perplexing but may par-
tially be driven by having a “healthier” older PWH group and/
or a “less healthy” younger PWH group in our cohort or other 
factors (such as body fat) having a greater impact on TFV-DP.

Not surprisingly, we found that higher concentrations of 
TFV-DP were associated with lower BMD, which has been 
previously documented in persons taking TDF-based pre-
exposure prophylaxis [28]. The association between TDF and 
BMD is well established, and lower BMD is seen with TDF use 
across the age spectrum in PWH [29, 30], as demonstrated by 
43%–44% of even our younger participants having osteopenia 
or osteoporosis. It is interesting to note that, in our study, this 
association was no longer significant after adjusting for body 
composition (total fat mass, LBM, or appendicular lean mass), 
suggesting that body composition measures influence both 
BMD and TFV-DP concentrations.

We have previously shown (1) the impact of fat mass or BMI 
on physical function performance [31, 32] and (2) a strong as-
sociation between BMI and TFV-DP in DBS among a large clin-
ical cohort of PWH [33, 34]. Here, higher TFV-DP in DBS were 
associated with slower chair rise time, slower time to complete 
a 400-meter walk, and SPPB impairment. These findings were 
most notable for the association with gait speed. Gait speed in-
corporates endurance, motor coordination, balance, sensation, 
motivation, and cognitive status, and it is strongly associated 
with future health status, including mortality [35]. Thus, gait 
speed may serve as a particularly strong measure of physiolog-
ical aging in this population. We also found that after adjusting 
for total fat mass (or BMI, in most cases), the TFV-DP effect was 
strengthened (estimate further from the null) with a narrower 
CI, suggesting that BMI (and specifically the fat mass compo-
nent of BMI) confounds the relationship between TFV-DP and 
BMD or functional outcomes.

Finally, we found associations between TFV-DP and greater 
risk of a fall, independent of age. These findings suggest that 
higher concentrations of TFV-DP are not merely a marker for 
drug accumulation (either due to high adherence and/or slower 
clearance) but may be linked to poorer age-associated out-
comes. Whether higher TFV-DP concentrations contributed 
to the adverse outcome measured or the adverse outcome con-
tributed to a higher ART accumulation cannot be determined 
from our cross-sectional study. In combination with the asso-
ciation between TFV-DP, lower hip BMD, and impaired phys-
ical function, the increased fall risk suggest that high TFV-DP 
in DBS may be associated with a particularly high risk of frac-
ture. Other antiretrovirals have also been associated with an in-
creased risk of falls, especially efavirenz [36], thus combination 

regimens with TDF and efavirenz may be an even greater con-
cern for fall and fracture risk.

Strengths of our study include a younger and older “real-
world” clinical cohort, the use of an objective ART adherence 
and exposure measure (TFV-DP in DBS), the inclusion of di-
verse objective physical function measures, and the use of a gold 
standard assessment of GFR (iGFR). The main limitations in-
clude the small sample size and assessment at a single time point. 
Longitudinal studies in larger samples are needed to provide fur-
ther insight into the directionality of the identified associations. 
Furthermore, participants in this study were taking TDF, and 
these associations will need to be evaluated in PWH taking TAF, 
although concentrations in DBS between TDF and TAF are com-
parable. Tenofovir alafenamide is associated with less bone tox-
icity, and the associations with function and falls are unknown.

CONCLUSIONS

In conclusion, we demonstrated that TFV-DP concentrations 
in DBS were associated with multiple HIV-related aging fac-
tors that may increase risk of fracture. Our findings provide 
preliminary evidence that TFV-DP in DBS could serve as a 
biomarker of TFV cumulative toxicity in aging PWH. Future 
studies should investigate whether monitoring for TFV-DP by 
DBS in clinical practice can improve the long-term safety and 
limit aging-related toxicities of ART.
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