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of Biology, University of York, Wentworth Way, York YO10 5DD, UK and 3Institute of Infection and Global
Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7B3, UK
∗Corresponding author: Center for Adaptation to a Changing Environment (ACE), ETH Zürich, CHN G35.1, Universitätstrasse 16, 8092 Zürich,
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ABSTRACT

Pseudomonas aeruginosa is a major pathogen in the lungs of cystic fibrosis (CF) patients. However, it is now recognised that a
diverse microbial community exists in the airways comprising aerobic and anaerobic bacteria as well as fungi and viruses.
This rich soup of microorganisms provides ample opportunity for interspecies interactions, particularly when considering
secreted compounds. Here, we discuss how P. aeruginosa-secreted products can have community-wide effects, with the
potential to ultimately shape microbial community dynamics within the lung. We focus on three well-studied traits
associated with worsening clinical outcome in CF: phenazines, siderophores and biofilm formation, and discuss how
secretions can shape interactions between P. aeruginosa and other commonly encountered members of the lung
microbiome: Staphylococcus aureus, the Burkholderia cepacia complex, Candida albicans and Aspergillus fumigatus. These
interactions may shape the evolutionary trajectory of P. aeruginosa while providing new opportunities for therapeutic
exploitation of the CF lung microbiome.

Keywords: interspecific interactions: multispecies interactions; microbiome; cystic fibrosis; Pseudomonas aeruginosa;
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INTRODUCTION

Individuals with cystic fibrosis (CF) suffer from a buildup of
thick, viscous mucous in the airways, predisposing them to life-
long bacterial lung infections which are often fatal. Pseudomonas
aeruginosa is the most common pathogen in CF, displaying high
levels of antibiotic resistance and virulence—so that elimination
is apparently impossible (Pressler et al. 2011). Chronic infection
with P. aeruginosa is associated with deterioration of pulmonary
function, reduction in quality of life and premature death (Koch
and Høiby 1993; Emerson et al. 2002; Hart and Winstanley 2002).

The CF lung airways consist of polymicrobial infections that
vary in their composition and diversity throughout a patient’s
lifetime. Diversity typically increases during the first decade of
life, and decreases thereafter (Cox et al. 2010; Klepac-Ceraj et al.
2010). While Haemophilus influenzae and Staphylococcus aureus are
present mainly in young children, by the age of 20, 60–70% of
CF patients present intermittent colonisation by P. aeruginosa
(Folkesson et al. 2012). Earlier acquisition of P. aeruginosa has
been associated with a more rapid decline in lung function and
poorer clinical outcomes (Emerson et al. 2002). In at least 50% of
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adult CF patients, P. aeruginosa has been reported as the dom-
inant organism, displacing the resident microbial community
(Valenza et al. 2008). Furthermore, CF patients infected with P.
aeruginosa are vulnerable to developing secondary infections, for
example with the Burkholderia cepacia complex, predisposing pa-
tients to necrotising pneumonia, which is usually fatal (Sajjan
et al. 2001; Bragonzi et al. 2012). Fungi and yeasts also inhabit
the airways, where Aspergillus fumigatus and Candida albicans are
themost prevalent fungi and yeast, respectively (Chotirmall and
McElvaney 2014). Although their prevalence is likely underesti-
mated and detection methods vary between diagnostic labora-
tories, both Aspergillus spp. and Candida spp. have been identi-
fied in up to 50% of CF patients (Pihet et al. 2009; Chotirmall et al.
2010).

The recent surge in the number of studies employing in-
depth, parallel, next-generation sequencing of CF lung micro-
bial communities has given a greater insight into what exactly
lives in this complex ecosystem. Inhabiting microorganisms
range from recognised pathogens such as Pseudomonas spp. and
Burkholderia spp. to bacteria less understood in the context of CF
such as Prevotella spp. andVeillonella spp. (Fodor et al. 2012; Boutin
et al. 2015), and classically commensal microorganisms such as
oral streptococci. A novel isolation method led to the detection
of Candida dubliniensis in patients >30 years old with advanced
stages of the disease, although the importance of this fungal
pathogen in CF is not yet understood (Sahand et al. 2006; Chorti-
mall et al. 2010). Lower respiratory tractmicrobiome studies have
also supported the identification of new proposed pathogens in
the CF lung such as Ralstonia mannitolilytica, identified in seven
patients in Canada and associated with accelerated disease pro-
gression and raised mortality (Coman et al. 2017). In addition to
identifying novel bacterial species, metagenomic studies have
revealed a diverse viral community in the CF lung with over 450
viral genotypes identified (Lim et al. 2014). Furthermore, some of
these viruses have been linked to the onset of pulmonary exac-
erbations (periods of acute worsening of pulmonary symptoms)
(Billard et al. 2017).

Lung microbial diversity tends to decrease with increas-
ing disease severity (as P. aeruginosa dominates the population)
(Cox et al. 2010; Fodor et al. 2012; Frayman et al. 2017). How-
ever, whether this association is linked to increased P. aeruginosa
pathogenicity remains elusive. Lung community diversity can be
highly patient specific and no universal indicator of the onset
of exacerbation has been identified so far (Whelan et al. 2017).
Furthermore, during antibiotic treatment, limited changes in
microbial community structure have been identified (Fodor et al.
2012; Li et al. 2016).

Through our progressive understanding of the complexities
of polymicrobial communities, it is becoming increasingly clear
that interactions between bacterial pathogens and themicrobial
community within which they reside can influence pathogene-
sis, antimicrobial resistance and disease progression (Hoffman
et al. 2006; Peters et al. 2012; Antonic et al. 2013; Baldan et al. 2014;
Fugère et al. 2014; Beaume et al. 2015). However, it is often diffi-
cult to elucidate whether these clinical changes are a cause or
consequence of these interactions. In this review, we highlight
the role of multispecies interactions in shaping P. aeruginosa vir-
ulence, and discuss examples where these interactions may be
of paramount importance in predicting patient health. Secreted
products by P. aeruginosa are likely to influence neighbouringmi-
croorganisms, and it is reasonable to suggest that community
context may in turn shape the relative costs and benefits as-
sociated with these secretions. Crucially, this implies that the
role of some CFmicroorganisms in diseasemay be subtle, acting

through cross-species interactions rather than being recognised
pathogens per se.

HOW MIGHT MULTISPECIES INTERACTIONS
SHAPE P. aeruginosa VIRULENCE?

Over the course of chronic infections, P. aeruginosa CF isolates
commonly display adaptive phenotypes such as conversion to
mucoidy and loss of motility, as well as reduced expression
of acute virulence factors and extracellular toxins (Smith et al.
2006; Bragonzi et al. 2009; Folkesson et al. 2012; Lorè et al. 2012;
Davies et al. 2016; Winstanley, O’Brien and Brockhurst 2016).
Despite the general trend toward loss of virulence as P. aerugi-
nosa becomes chronic, it is becoming increasingly clear that loss
of virulence is not universal within a patient. Furthermore, P.
aeruginosa isolates within patients are typically highly diverse
with respect to the aforementioned phenotypic characteristics
(Fothergill et al. 2010; Mowat et al. 2011; O’Brien et al. 2017).
Despite the potential for P. aeruginosa adaptive evolution to influ-
ence patient health, both the causes and consequences of these
adaptive changes are not well understood. The ability of many
microbial secretions to influence the fitness of other organisms
either directly (e.g. bacteriocin-mediated killing) or indirectly
(e.g. antibiotic degradation), with potential for positive (cooper-
ation) or negative (competition) fitness consequences, suggests
that microbial interactions may play an integral role in shaping
P. aeruginosa evolution within the CF lung.

Here, we focus on four clinically relevant P. aeruginosa traits
that may, in part, shape and be shaped by interactions with the
natural microbial community. Crucially, these traits have poten-
tial to be ‘social’—that is, they may directly or indirectly influ-
ence the fitness of nearby cells (West et al. 2007). This list is
not exhaustive, but should be regarded as examples of microbial
traits whose role cannot be fully understood without considera-
tion of community context.

Phenazine production

Phenazines are secondary metabolites produced by a variety
of bacteria, notable for their broad-spectrum antibiotic prop-
erties and roles in virulence (Sorensen and Klinger 1987).
Phenazine production is mediated by quorum sensing (QS),
a method of bacterial cell–cell communication that allows
the coordinated expression of genes in bacterial populations
(Dietrich et al. 2006). P. aeruginosa secretes four main classes
of phenazines: pyocyanin, phenazine-1-carboxamide (PCN),
1-hydroxyphenazine (1-HP) and phenazine-1-carboxylic acid
(PCA) (Fig. 1). One class of phenazine, pyocyanin, is a blue redox-
active pigment that exerts a host inflammatory response, im-
pairs ciliary function and induces oxidative stress within the
lung (O’Malley et al. 2003; Winstanley and Fothergill 2009). While
the effects of pyocyanin on the host may influence other mi-
croorganisms indirectly, there is some evidence that pyocyanin
can also have a direct role in shaping microbial communities.
Pyocyanin can function as an iron-reducing agent, allowing iron-
limitedmicroorganisms to thrive (see below) (Cox 1986). Further-
more, the bactericidal effect of pyocyanin may reduce commu-
nity diversity (Norman et al. 2004) and select for a community
of resistant species. Two recent studies (Korgaonkar and White-
ley 2011; Korgaonka et al. 2013) reported that P. aeruginosa re-
sponds directly to cell wall fragments from Gram-positive bac-
teria by increasing production of multiple extracellular factors,
including pyocyanin. Co-infection of P. aeruginosa with avirulent
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Figure 1. Schematic representation of phenazine production by Pseudomonas aeruginosa growing in a biofilm in the cystic fibrosis lung. PA = P. aeruginosa,

ECM = extracellular matrix, LE = lung epithelium.

Gram-positive bacteria in both rat lung and Drosophila models
resulted in increased lung damage and overall enhanced vir-
ulence, respectively (Duan et al. 2003; Korgaonka et al. 2013),
although the exact mechanisms are unknown. Clinical isolates
respond similarly: Whiley et al. (2014) reported enhanced P.
aeruginosa pyocyanin production when co-cultured with oral
viridans streptococci (Streptococcus oralis, Streptococcus mitis,
Streptococcus gordonii and Streptococcus sanguinis), and these co-
cultures exhibited increased pathogenicity in an insect host
model compared with P. aeruginosa alone. However, in this
case increased pathogenicity might also have arisen from other
virulence-associated secretions, rather than pyocyanin per se.

Studies in which animal models are infected with P. aerug-
inosa strains producing varying levels of pyocyanin reveal that
pyocyanin production tends to lead to more virulent infec-
tions (Mahajan-Miklos et al. 1999; Cao, Baldini and Rahme 2001;
Lau et al. 2004a,b; Courtney et al. 2007; O’Brien et al. 2017). In
CF, periods of patient exacerbations have been linked with in-
creased pyocyanin production in the lung (Fothergill et al. 2007,
2010; Mowat et al. 2011). However, not all patients with wors-
ening symptoms harbour increased numbers of overproduc-
ing phenotypes (Nguyen and Singh 2006; Smith et al. 2006),
and the causality of this relationship remains unconvincing.
Furthermore, why pyocyanin overproducers evolve and thrive
in some scenarios and not others remains to be elucidated.

Interestingly, while virulence is predictably lost over the course
of CF infections, longitudinal studies of pyocyanin produc-
tion have so far failed to detect any predictable evolutionary
changes over the course of chronic infections (Jiricny et al. 2014;
Winstanley, O’Brien and Brockhurst 2016). We speculate that
multispecies interactions can at least partly explain the ob-
served fluctuations in pyocyanin production. If this is the case,
assays for pyocyanin production by clinical isolates in media or
even artificial sputum models that mimic abiotic conditions in
the CF lung (e.g. Fothergill et al. 2010; Mowat et al. 2011; Jiricny
et al. 2014; O’Brien et al. 2017) may not be sufficient indicators of
what these strains are producing in vivo. Ultimately, by under-
standing whether community context matters for P. aeruginosa
pyocyanin production, it may be possible tomanipulate the lung
microbiome to reduce the severity of clinical symptoms during
CF-associated exacerbations.

Biofilm formation

The intractability of P. aeruginosa in CF has been largely at-
tributed to the presence of mucoid alginate-producing strains in
the later stages of infection (Ramsey and Wozniak 2005; Sousa
and Periera 2014; Winstanley, O’Brien and Brockhurst 2016).
These strains form resilient biofilms, conferring enhanced re-
sistance to antibiotics, phage and the host immune system,
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Figure 2. Summary of discussed interactions between Pseudomonas aeruginosa and other microbial inhabitants of the cystic fibrosis lung. Arrows depict the direction
of the interaction. Note that we have omitted interactions driven by iron acquisition in this figure because the ability of siderophores to shape interactions is likely to

be driven mainly by indirect effects of iron limitation.

ultimately causing a decline in lung function (Høiby et al. 2010;
Høiby, Ciofu and Bjarnsholt 2010). While this transition to mu-
coidy is commonly viewed as a global response to environmental
stress (e.g. Davies et al. 2016), there is some evidence that multi-
species social interactions may play a role. For instance, ethanol
produced by C. albicans stimulates biofilm formation in P. aerug-
inosa (DeVault, Kimbara and Chakrabarty 1990), while a protein
secreted by S. aureus, SpA, inhibits it (Armbruster et al. 2016)
(Fig. 2). Exopolysachharides can also impact on spatial organi-
sation in polymicrobial biofilms (Chew et al. 2014). One P. aerug-
inosa exopolysaccharide, Pel, is required for a close association
in biofilms with S. aureus. However, another exopolysaccharide,
Psl, allows P. aeruginosa to form a single species biofilm on top of
S. aureus. Therefore, the type of exopolysaccharide produced by
P. aeruginosa can impact the architecture of the biofilm and the
ability of these two species to interact closely (Chew et al. 2014).

Viruses of bacteria (phages) have also been described in the
CF lung (Lim et al. 2013), and are a promising novel way of elimi-
nating drug-resistant pathogens (Waters et al. 2017). Interactions
between P. aeruginosa and lytic phages (which lyse the bacterial
cell upon infection) may drive the transition to mucoidy by en-
hancing resistance to phage infection (Miller and Rubero 1984;
Scanlan and Buckling 2012). Conversely, evolving P. aeruginosa
with temperate phages (which can either complete the lytic cy-
cle or integrate into the bacterial chromosome as a prophage),
can reduce biofilm formation by accelerating the loss of biofilm-
dependent type IV pili (Davies et al. 2016). While understand-
ing how the abiotic and biotic environment interact to promote
mucoidy is no easy task, it is an endeavour worth pursuing.
Mucoid variants of P. aeruginosa are highly problematic in the
clinic, and novel therapeutics aimed at disrupting mucoidy are
highly sought after (Romling and Balsalobre 2012; Gnanadhas
et al. 2015a,b).

Iron-acquisition

Iron is an essential nutrient formanymicroorganisms, yet in the
early stages of CF lung infection the availability of iron for inhab-
iting microbiota is highly restricted (Tyrrell and Callaghan 2016).
P. aeruginosa can overcome this by producing iron-chelating
siderophores that can acquire otherwise sequestered ferric iron.
Due to their capacity to enhance bacterial growth, siderophores
are viewed as virulence factors (Buckling et al. 2007). Awide body
of research suggests that iron uptake strategy in Pseudomonads
can be influenced by social context, because non-producers can
exploit producers, and gain a fitness advantage (e.g. Griffin,West
and Buckling 2004; Harrison and Buckling 2005, 2007; O’Brien,
Rodrigues and Buckling 2013; Andersen et al. 2015). However,
most of these studies are limited to intraspecific interactions in
spatially homogeneous environments (but see Luján et al. 2015,
and Harrison et al. 2017).

In the CF lung, many species compete for iron simultane-
ously, and this competition can indirectly shape iron-uptake
strategies in P. aeruginosa. For instance, competition between P.
aeruginosa and B. cepacia induces P. aeruginosa genes normally ex-
pressed under iron-limited conditions (including siderophores).
This is because a B. cepacia siderophore, ornibactin (which P.
aeruginosa cannot use), restricts iron availability to P. aeruginosa
(Weaver and Kolter 2004). A similar phenomenon was observed
using experimental evolution, whereby P. aeruginosawas evolved
in the presence and absence of S. aureus (Harrison et al. 2008).
In this case, P. aeruginosa upregulated siderophore production in
response to S. aureus, which acted as an iron competitor. Con-
versely, P. aeruginosa can obtain iron by lysing S. aureus cells
(Mashburn et al. 2005), although Harrison et al. (2008) suggest
that this benefit depends on the degree of competition between
the two strains. Interestingly, when multiple species compete
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for iron, subsequent iron limitation may also reduce the abil-
ity of P. aeruginosa to form biofilms (Singh et al. 2002; O’May
et al. 2009). This is in line with what we observe in longitudi-
nal studies of CF isolates, whereby iron becomes more available,
and biofilms become more common over the course of infec-
tion (Hunter et al. 2013; Tyrrell and Callaghan 2016; Winstanley,
O’Brien and Brockhurst 2016). However, this correlation can be
of course open to different interpretations.

There is some evidence to suggest that the requirement
for siderophores is reduced in the later stages of infection, as
freely available ferrous (Fe2+) tends to dominate over ferric iron
(Hunter et al. 2013). Furthermore, as host cells are damaged they
release iron in the form of haem and haemoglobin, from which
P. aeruginosa can sequester iron using the haemassimilation sys-
tem (Has) and Phu (Pseudomonas haem uptake) systems. Indeed,
over the course of chronic infections there is some evidence
that siderophores are lost and replaced with haem utilisation
(Marvig et al. 2014). Finally, the role of pyocyanin in iron acqui-
sition per se is poorly understood, although one study suggests
that a different phenazine, PCA, assists in biofilm development
by promoting ferrous iron (Wang et al. 2011). Crucially, the role
of various iron-uptake systems in shaping microbial communi-
ties may differ depending on the predominant form of acqui-
sition. While siderophore sharing is generally species specific
(Buckling et al. 2007, but see Barber and Elde 2015), other ac-
quisition mechanisms such as pyocyanin-mediated reduction
is unlikely to be limited to conspecifics, and so understand-
ing how they might be shaped by community interactions is
not straightforward.

CASE STUDIES

While the scope for interactions within the CF lung is
clearly vast, we highlight interactions between P. aeruginosa
and four commonly encountered species: the Gram-positive
bacteria S. aureus, the B. cepacia complex (Gram-negative),
a filamentous fungi (A. fumigatus) and C. albicans (a yeast)
to display the breadth and diversity of interactions with
P. aeruginosa.

P. aeruginosa and S. aureus

P. aeruginosa and S. aureus display a striking negative cor-
relation with one another as CF patients age (Cystic
Fibrosis Foundation 2011), suggesting that P. aeruginosa can
displace S. aureus in the later stages of infection. P. aeruginosa
secretes a wealth of S. aureus-killing exoproducts, such as
pyocyanin, elastase, protease, rhamnolipids, 4-hydroxy-2-
alkylquinoline (HAQ) and 4-hydroxy-2-heptylquinoline-N-oxide
(HQNO) (Mashburn et al. 2005; Palmer et al. 2005; Hoffman
et al. 2006; Mitchell et al. 2010; Korgaonkar and Whiteley 2011;
Cardozo et al. 2013; Korgaonkar et al. 2013; DeLeon et al. 2014).
P. aeruginosa can also harm S. aureus indirectly by manipu-
lating the innate immunity of the host, such as inducing the
production of S. aureus-killing phospholipase sPLA2-IIA by
bronchial epithelial cells (Pernet et al. 2014). This interaction
between the host and P. aeruginosa enhances the clearance
of S. aureus without significantly affecting the growth of P.
aeruginosa. It is of course debatable whether the upregulation
of sPLA2-IIA by P. aeruginosa has evolved as a competitor-killing
mechanism, or if it is simply a response by the host to which
P. aeruginosa is resistant. Nonetheless, sPLA2-IIA is the most
potent known antibacterial enzyme in mammals, especially
targeting Gram-positive bacteria, suggesting that interactions

between P. aeruginosa and the host can shape bacterial commu-
nities more widely (Qu and Lehrer 1998; Nevalainen, Graham
and Scott 2008). Finally, one recent study that experimentally
evolved P. aeruginosa in the presence and absence of S. aureus,
demonstrated that adaptation to S. aureus was mediated by
inactivation of virulence-associated lipopolysaccharide (LPS) in
P. aeruginosa. Crucially, this adaptation also conferred enhanced
resistance to beta-lactam antibiotics, despite the fact that
evolution took place in their absence (Tognon et al. 2017).

Crucially, any counter adaptation by S. aureus to resist killing
by P. aeruginosa can in turn shape the pathogenicity of S. au-
reus. Small colony variants of S. aureus (SCVs) arise by muta-
tions in metabolic genes (Melter and Radojevic 2010) and ex-
perience reduced killing by P. aeruginosa HQNO’s compared to
their wild-type counterparts (Hoffman et al. 2006; Biswas et al.
2009; Filkins et al. 2015). From a clinical perspective, SCVs dis-
play enhanced resistance to antibiotics (Wolter, Kotsiou and
McCormack 1995), greater persistence (Hoffman et al. 2006)
and correlate with worsening symptoms in CF (Wolter et al.
2013). Moreover, HQNO has been identified in CF patients har-
bouring P. aeruginosa, but not in uninfected individuals, sug-
gesting that HQNO-mediated interactions between these two
species have potential to directly influence disease progression
(Hoffman et al. 2006).

P. aeruginosa and A. fumigatus

Aspergillus fumigatus is the most common fungus found in the
CF airways (Nagano et al. 2007; Pihet et al. 2009), and its pres-
ence is associatedwith a diversity of clinical phenotypes ranging
fromno obvious respiratory decline, toAspergillus bronchitis and
bronchiectasis (Shoseyov et al. 2006; Agarwal et al. 2013; Chotir-
mall and McElavaney 2014). Infection tends to occur subsequent
to P. aeruginosa colonisation, resulting in co-infections that trig-
ger more severe clinical outcomes compared with P. aeruginosa
or A. fumigatus alone (Amin et al. 2010; Ferreira et al. 2015; Reece
et al. 2017).

Several lines of evidence suggest that these two species in-
teract extensively in the CF lung. P. aeruginosa has been classi-
cally viewed as inhibiting A. fumigatus growth by producing an
array of phenazineswhich kill fungi at high concentrations (Kerr
1994; Moree et al. 2012; Briard et al. 2015). However, in the CF
lung, the phenazines pyocyanin and phenazine-1-carboxylate
have been found in vivo at concentrations in the range of
1–100 μM, which Briard et al. (2015) demonstrated to be subin-
hibitory against A. fumigatus. Furthermore, at these concentra-
tions, these phenazines actually functioned as iron-reducing
agents, liberating bioavailable iron and subsequently, fungal
growth in iron-starved environments. Another phenazine, 1-HP,
stimulated siderophore production in A. fumigatus and growth
as a consequence Briard et al. (2015). Accordingly, there is a gen-
erally high percentage of Fe2+ once phenazine levels rise above
50 μM in sputum (Hunter et al. 2012, 2013). However, concen-
trations of phenazines may in reality vary within the lung, par-
ticularly in the lower respiratory tract where mucous is more
concentrated. These findings may explain why A. fumigatus in-
fections tend to occur after P. aeruginosa colonisation—P. aerugi-
nosa creates an iron-rich environment in which A. fumigatus can
thrive. However, an alternative explanation is that co-infection
reduces the pro-inflammatory response exerted by the host, po-
tentially enabling both strains to benefit (Reece et al. 2017). Fur-
thermore, damaged lungs per se may permit better colonisation
by pathogens and increased virulence as a consequence.
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P. aeruginosa and C. albicans

Despite being the second most common fungus in CF, the role
of C. albicans in CF is not fully understood. In practice, this
means that a positive result for C. albicans in the clinic tells
us little about patient prognosis. While invasive airway infec-
tions by C. albicans alone remain rare, its pathogenic effects
may be experienced through interactions with other species.
For instance, in mixed biofilms with C. albicans, P. aeruginosa
upregulates its production of virulence-associated secretions
such as pyoverdine, phenazines and rhamnolipids, relative to
single-species biofilms (Hogan and Kolter 2002; Hogan, Vik and
Kolter 2004; Cugini et al. 2007; Gibson, Sood and Hogan 2009).
Enhanced phenazine production by P. aeruginosa in turn up-
regulates C. albicans ethanol production, as the phenazines ex-
ert a switch from respiration to fermentation (Morales et al.
2013). As mentioned previously, ethanol increases P. aeruginosa
biofilm formation, resulting in mucoid phenotypes with en-
hanced growth rate (DeVault, Kimbara and Chakrabarty 1990;
Morales et al. 2013). This phenazine-mediated switch to fer-
mentation in C. albicans may have consequences for micro-
biome diversity and composition. Ethanol has also been shown
to enhance growth, virulence and biofilm formation in other
lung pathogens such as S. aureus (Korem, Gov and Rosenberg
2010) and Acinetobacter baumanii (Nwugo et al. 2012), although
the exact mechanisms have not yet been elucidated. Ethanol
is also an immunosuppressant, negatively influencing the host
immune response (Greenberg et al. 1999; Goral, Karavitis and
Kovacs 2008). In a rat model system, ethanol inhibits lung
clearance of P. aeruginosa by inhibiting macrophage recruitment
(Greenberg et al. 1999). Hence, ethanol may indirectly shape mi-
crobial communities by interfering with pathogen clearance.
Another fermentation product, acetic acid, is also likely to re-
duce extracellular pH, which may favour the presence of low-
pH-adapted microorganisms (Morales et al. 2013).

Signalling can occur between these two species, influencing
one another’s gene expression and virulence (Fig. 2). The P. aerug-
inosa signal molecule 3-oxo-C12HSL promotes the yeast form of
C. albicans, so that when levels of this signal drop (such as during
chronic infection; Bjarnsholt et al. 2010), the invasive, filamen-
tous form of the fungusmay be triggered (McAlester, O’Gara and
Morrissey 2008). Conversely, C. albicans secrete the alcohol far-
nesol that suppresses the P. aeruginosa signal molecule PQS and
consequently, pyocyanin production, while inducing quinolone
and phenazine expression (Cugini et al. 2007; Cugini, Morales
and Hogan 2010). Finally, C. albicans can reduce the expression of
the siderophores pyoverdine and pyochelin in P. aeruginosa lead-
ing to decreased virulence (Lopez-Medina et al. 2015), although
exactmechanisms have yet to be elucidated. Clearly, these inter-
actions, and their effects on gene expression, are complex, and
we are far from understanding how they will combine to influ-
ence host health.

P. aeruginosa and B. cepacia complex

Secondary bacterial infections with the B. cepacia complex are
associated with cepacia syndrome—a rapidly progressing and
fatal pneumonia (Huang et al. 2001; Lambiase et al. 2006). Mem-
bers of the B. cepacia complex form mucoid biofilms with P.
aeruginosa, engaging in an intimate network of interactions, and
possibly even exchanging genetic material (Eberl and Tümmler
2004).

Competition between these two species is rife. In one study
that screened 66 P. aeruginosa and B. cenocepacia CF clinical

isolates, 81% of P. aeruginosa and 57% of B. cenocepacia strains
produced bacteriocin-like toxins, conferring inhibitory activity
toward the other species (Bakkal et al. 2010). Populations of
Burkholderia have been found to invade populations of P. aerug-
inosa (Schwab et al. 2014) and vice versa (Bragonzi et al. 2012;
Costello et al. 2014), suggesting that the outcome of competi-
tion is highly context dependent. Interactions between these
two speciesmay also occur inmore subtle ways: one class of sig-
nal molecules produced by P. aeruginosa, N-acyl homoserine lac-
tones, can stimulate the production of siderophores, lipase and
protease production in Burkholderia (McKenney et al. 1995; Riedel
et al. 2001; Lewenza, Visser and Sokol 2002; Costello et al. 2014).
Moreover, alginate production by P. aeruginosa can aid B. ceno-
cepacia survival by inhibiting the host immune response (Chat-
toraj et al. 2010). Despite the role of both species as harmful
pathogens, how their interactionsmay influence virulence is not
well understood.

There has been a recent drive toward developing novel thera-
peutics using products secreted by naturally occurring competi-
tors to target specific pathogens in not just CF (e.g. Brown et al.
2009) but halitosis (Burton et al. 2006) and Clostridium difficile (Rea
et al. 2013) infections. In particular, one Burkholderia bacteriocin
named Tailocin has been proposed as a potential therapeutic
with activity against P. aeruginosa (Yao et al. 2017). In order to fully
appreciate how P. aeruginosa populations will respond to these
classes of drugs it is vital that we understand how the species
involved interact naturally on both ecological and evolutionary
timescales.

OUTLOOK

There is tantalising evidence that interactions within and
among species can alter virulence properties of P. aeruginosa in
the short term and potentially shape the evolutionary trajectory
of this pathogen in the long term. While our knowledge of how
P. aeruginosa responds to other species individually is growing,
the consequences of these interactions for virulence in a com-
plexmultispecies community remains unclear. Moreover, exper-
imental evolution studies in complex environments containing
the natural microbiota are required to decipher whether ecolog-
ical responses drive selection for evolutionary change. On the
one hand, multispecies infectionsmay constrain the rate of evo-
lutionary change if trade-offs are required to adapt to multiple
species. On the other hand, increasing the number of interact-
ing species may result in evenmore rapid evolution, as selection
acts on increasing numbers of traits.

Understanding how virulence-associated secretions are
shaped by the lung microbiome opens doors for novel thera-
peutic approaches already being exploited in gutmicrobiome re-
search (Bakken et al. 2011; Hamilton et al. 2012; Lee et al. 2016).
For instance, an increased understanding of community dynam-
ics could allow us to establish ‘infection-resistant’ communi-
ties to prevent initial colonisation of recognised pathogens or
by replacing pathogens with commensal communities. This ap-
proach has already proved successful in treating Clostridium dif-
ficile gut infections with ‘healthy’ gut communities (Bakken et al.
2011; Hamilton et al. 2012; Lee et al. 2016), and Streptococcus
mutans dental caries with lactobacillus communities (Gungor,
Kirzioglu and Kivanc 2015). Furthermore, through an increased
understanding of the ecology of these lung communities, it may
be possible to suppress P. aeruginosa indirectly by manipulating
clinically relevant interactions.

However, there are many challenges. As a field, we are not
clear on what a ‘normal’ or ‘healthy’ community might look like
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against a genetic background of CF. Furthermore, spatial struc-
ture in the lung, at both molecular and geographical scales, will
impact the ability of colonising species to interact. However, the
relevance of this structure for cell–cell interactions, as well as
the extent to which sputum samples capture this structure, is
unknown. Finally, the vast genotypic and phenotypic variation
observed in P. aeruginosa populations from the same sputum
sample (Mowat et al. 2011; O’Brien et al. 2017) suggests that in or-
der to fully understand and characterise these fascinating popu-
lations, interactions should be considered on both a species and
strain level. Clearly this is a hugely overwhelming task, but em-
ploying novel model systems that incorporate natural or semi-
natural microbial communities allow us to make small steps to-
ward achieving this goal (e.g. Harrison et al. 2014).
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