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SUMMARY
We reconstructed 19,084 prokaryotic and 31,395 viral genomes from 787 Japanese gut metagenomes as
Japanese metagenome-assembled genomes (JMAG) and Japanese Virus Database (JVD), which are large
microbial genome datasets for a single population. Population-specific enrichment of the Bacillus subtilis
and b-porphyranase among the JMAG could derive from the Japanese traditional food natto (fermented soy-
beans) and nori (laver), respectively. Dairy-related Enterococcus_B lactis and Streptococcus thermophilus
were nominally associated with the East Asian-specific missense variant rs671:G>A in ALDH2, which was
associated with dairy consumption. Of the species-level viral genome clusters in the JVD, 62.9%were novel.
The b crAss-like phage composition was low among the Japanese but relatively high among African andOce-
anian peoples. Evaluations of the association between crAss-like phages and diseases showed significant
disease-specific associations. Our large catalog of virus-host pairs identified the positive correlation be-
tween the abundance of the viruses and their hosts.
INTRODUCTION

The human microbiome is a complex microbial community in-

habiting the human body. The largest community of the human
Cell
This is an open access article under the CC BY-N
microbiota resideswithin the gut and they interact with the host’s

body via the immune system and metabolic reactions.1 Thus,

understanding the human gut microbiome is important not only

in terms of microbiology but also for medicine.
Genomics 2, 100219, December 14, 2022 ª 2022 The Author(s). 1
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Figure 1. Phylogenetic analysis of the JMAG genomes

(A) A pie chart illustrating the phylum-level phylogenetic composition of the JMAG, which had corresponding species-level clusters in the UHGG (top) or not

(bottom). The phyla comprising <1% of each genome set are collapsed into ‘‘Other.’’

(B) A maximum-likelihood phylogenetic tree reconstructed from 1,267 species-level representative bacterial MAGs. The color of the nodes represents whether

the species-level clusters have corresponding clusters in the UHGG (navy) or not (magenta). An outer ring represents phylum-level taxonomic annotation. A bar

plot depicted in the periphery of the tree represents the number of the MAGs belonging to the same cluster of the representative genomes.

(C) A scatterplot represents the number of the JMAG genomes in the species-level clusters (x axis) and non-Japanese-derived UHGG genomes belonging to the

corresponding species-level clusters (y axis). The colors of the dots represent phylum-level taxonomy. The six species-level clusters that containedR10 JMAG

genomes and %1 UHGG genome are represented by rhombus.

(legend continued on next page)
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In gut microbiome studies, the genomic sequences of the indi-

vidual microbes are important resources that by themselves

reflect the diversity and function of the gut microbiome and

also can be utilized as the reference genomes for quantification

with metagenome shotgun sequencing (MSS) data. Therefore,

great efforts have been spent on expanding the catalog of the

gut microbe genomes. In addition to culturing efforts,2–4 genome

assembly and binning from gutMSS data have greatly expanded

the known diversity of the human gut microbiome.5–7 These ef-

forts to recover metagenome-assembled genomes (MAGs)

from large-scale human MSS data enabled us to survey the pre-

viously unknown part of the gut microbiome, especially for un-

culturable prokaryotes. Recently, several microbial genome

databases, including MAG datasets, were integrated, and a

Unified Human Gastrointestinal Genome (UHGG) collection

comprised of 4,644 species-level genomes, which represented

>200,000 non-redundant reference genomes, was released as

the currently most comprehensive atlas of the human gut pro-

karyotes.8 However, current populational diversity of the pro-

karyotic genomes is still limited because the number of MAGs

recovered from populations other than European, North Amer-

ican, and Chinese is relatively low. Therefore, reconstruction

of the MAGs from currently underrepresented populations is

warranted.

Althoughmany of the gutmicrobiome studies have focused on

the prokaryotes, viruses, mainly bacteriophages, are also highly

abundant in the gut microbiome.9 Bacteriophages infect bacte-

ria and regulate the bacteriome by either lysing their hosts or

altering their physiological functions. In addition to the mediating

effects, gut viruses are thought to directly interact with our body

via the immune system.10,11 Various diseases, such as intestinal

diseases12,13 and metabolic diseases,14,15 are associated with

the gut virome. However, most of the human gut virome is still

poorly characterized, partially because the traditional laboratory

techniques, such as culturing, are typically low throughput and

not applicable for some viruses. To overcome this problem, viral

genomes have been recovered from the MSS data, and de novo

assembly of the viral genomes greatly expanded the repertoire of

the viral genomes and enable us to reveal a part of the gut vi-

rome.16,17 For example, crAss-like phages, one of the major

components of the human gut viromes, were first discovered in

2014 by cross-assembly of the MSS data.18 Recently, a few

studies recovered viral genomes from large-scale MSS

data.19,20 However, the diversity of the gut viral genomes is still

not saturated and the current populational diversity of the viral

genomes remains limited, as is the case of the prokaryotes.

The Japanese have unique dietary culture and habits, which

have resulted in the unique features of the gut microbiome,

such as the enrichment of the enzymes degrading seaweed-

derived polysaccharides,21 carbohydrate metabolism-related

genes, and Actinobacteria, compared with other populations.22

However, most of the previous studies utilized reference bacte-
(D) A boxplot of theBacillus subtilis abundances (RPKM) in the different population

with the whiskers extending to the most extreme points within the range betwee

(E) A non-metricmultidimensional scaling plot of theBacillus subtilis genomes. The

natto and Bacillus subtilis 168 genomes in the GenBank are annotated and depict

Data S1 and S2.
rial genomes for phylogenetic analyses. Thus, the existence of

the gut microbes that were not covered by the reference dataset

have not been fully evaluated. In addition, previous analysis of

the gut microbial genes lacked the link between the genes and

their genome of origins, which hindered us from understanding

the taxonomic features of the microbial genes. Also, few studies

have focused on the Japanese gut virome,16 and there are only a

small number of publicly available viral genomes recovered from

the Japanese gut metagenome. Therefore, recovering MAGs

and viral genomes from the Japanese gutmetagenome is neces-

sary for obtaining deep insights into the Japanese gut micro-

biome and complementing the microbial genome databases

by increasing the populational diversity.

We recovered MAGs and viral genomes from the gut MSS

data of 787 Japanese individuals.23–27 Utilizing these recon-

structed microbial genomes, we evaluated the existence of the

microbial taxa and genes that were specific to the Japanese, re-

vealed the association of the crAss-like phages with the popula-

tions and diseases, and expanded the current knowledge of the

virus-prokaryote interaction. The reconstructed microbial ge-

nomes and related information are available to the scientific

community.

RESULTS

Reconstruction of MAGs from the Japanese MSS data
To recover MAGs from the Japanese gut, we performed a single-

sample metagenomic assembly and binning on 787 Japanese

gut MSS data23–28 (Figure S1; Table S1). After the filtering based

on the CheckM29 (>50% genome completeness, <5% contami-

nation, and an estimated quality score >50; STAR Methods), we

obtained 19,084MAGs that met or exceeded themedium quality

defined by ‘‘minimum information about a metagenome-assem-

bled genome’’ standard30 (R50% genome completeness and

<10% contamination; Figures S2A–S2J; Table S2; Data S1),

and we call this set of the MAGs the JMAG (Japanese metage-

nome-assembled genomes). We refer to the 11,917 MAGs with

>90% genome completeness and <5% contamination as near-

complete following the UHGG.8

The JMAG genomes were then clustered into 1,273 species-

level clusters based on the average nucleotide identity (ANI).

Although some of the species-level clusters had corresponding

clusters in the UHGG (1,040 clusters composed of 18,734

MAGs), others did not (233 clusters composed of 350 MAGs).

We assigned taxonomic information to the JMAG genomes

with GTDB-tk31 and constructed a maximum-likelihood phylo-

genetic tree. Among the JMAG genomes presented in the

UHGG, Firmicutes_A, Bacteroidota, and Actinobacteriota were

frequent (Figure 1A). Among the JMAG genomes that did not

present in the UHGG, the frequency of Actinobacteriota was

higher than other MAGs, which reflected the high species-level

diversity of the genusCollinsella (Figures 1A and 1B). To evaluate
s. The boxplot indicates the median values (center lines) and IQRs (box edges),

n (lower quantile � [1.5 3 IQR]) and (upper quantile + [1.5 3 IQR]).

colors of the dots represent the derivation of the genomes. TheBacillus subtilis

ed in rhombus. IQR, interquartile range. See also Figures S1–S4, Table S2, and
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how representative the JMAG representative genomes were of

Japanese gut microbial diversity, we mapped the gut MSS

data against the 1,273 JMAG representative genomes. As for

the Japanese gut MSS data, the mapping ratio to the 1,273

JMAG representative genomes was almost comparable with

that of the 4,644 UHGG representative genomes despite the

smaller number of the genomes in the JMAG than the UHGG

(concordantly mapped read, 75.2% for the JMAG and 78.6%

for the UHGG; overall mapped read, 82.6% for the JMAG and

86.4% for the UHGG; Figures S2K and S2L). Merging the

4,644 UHGG representative genomes and the 233 JMAG repre-

sentative genomes that did not present in the UHGG only slightly

improved themapping ratio (concordantly mapped read, 79.1%;

overall mapped read, 86.9%). Note that the differences in the

mapping ratio between the JMAGandUHGGwere larger in other

populations than in Japan.

To evaluate whether the JMAG included the prokaryotic spe-

cies that were underrepresented in the non-Japanese popula-

tions, we compared the number of the JMAG genomes in the

species-level clusters and non-Japanese UHGG genomes

belonging to the corresponding species-level clusters (Fig-

ure 1C). We found that six species-level clusters were enriched

in the JMAG compared with the UHGG (R10 JMAG genomes

and %1 UHGG genome). MAGs in these species-level clusters,

especially the unclassified Acutalibacteraceaem and Bacillus

subtilis, had several carbohydrate active enzymes (CAZymes)

that were specific to these species-level clusters among the

JMAG (Figures S3A and S3B), suggesting that they might have

unique metabolic functions in the Japanese gut microbiome.

These CAZymes were underrepresented in the Unified Human

Gastrointestinal Protein (UHGP) (Figure S3B), currently the

largest gut microbiome protein database, and tend to be more

abundant in Japanese than other populations (Figure S3C).

Therefore, the JMAG captured a part of the gut microbial fea-

tures that were underrepresented in the previous studies.

Bacillus subtilis was frequently seen in the JMAG (26 MAGs),

while only an isolated genome was included in the UHGG.

Bacillus subtiliswasmore frequent in the Japanese than other da-

tasets of different populations, also in the read-based quantifica-

tion approach (Figure 1D). To reveal the phylogenetic character-

istics of theBacillus subtilis genomes in the JMAG andUHGG,we

retrieved 162 Bacillus subtilis genomes that were available in the

GenBank for comparative analyses. Bacillus subtilis genomes in

the JMAG were closely placed to Bacillus subtilis natto by ANI-

based non-metric multidimensional scaling analysis (Figures 1E,

S4A, andS4B; Data S2).Bacillus subtilis natto is a key component

of a Japanese traditional fermented food natto. Thus, it was sug-

gested that Bacillus subtilis in the JMAG was Bacillus subtilis
Figure 2. Phylogenetic and interpopulational analysis of the b-porphyr

(A) A maximum-likelihood phylogenetic tree of the b-porphyranase sequences de

proteins (b-agarase and k-carrageenase) were also utilized to reconstruct the phy

name of the genes.

(B) Pie charts representing the phylogenetic composition of the MAGs, which a

(bottom). The results for the JMAG (left) and UHGG (right) are described separate

(C) Pie charts represent the origin of the b-porphyranase-linked MAGs at the reg

(D) A boxplot of the b-porphyranase abundances in the different populations. The

the whiskers extending to the most extreme points within the range between (low

range. See also Figures S5 and S6.
natto and its frequent presence in the JMAG compared with the

UHGG was the result of the Japanese unique diet.

Taxonomic and population annotation of the
b-porphyranase
To gain functional insights into the reconstructed MAGs, we

predicted 43,043,613 hypothetical proteins in the JMAG ge-

nomes and functionally annotated them. Most of the predicted

proteins were covered by the eggNOG-mapper for the frequently

reconstructed taxa, such as Firmicutes_A, Bacteroidota, and

Actinobacteria, while they included a significant number of the

functionary uncharacterized proteins (Figure S5A). Both the

database coverage ratio and functional annotation ratio (ratio

of the proteins that had any eggNOG-mapper hit and functionally

characterized COG annotation, respectively; STARMethods) for

some taxa, such as Cyanobacteria and Verrucomicrobiota,

were relatively low (Figure S5A). We found the phylum specificity

of a part of the proteins. For example, GH92 (dbCAN2) and susD

(Kyoto Encyclopedia of Genes andGenomes [KEGG] gene) were

predominantly derived from the Bacteroidota (Figures S5B–

S5E). We merged the predicted protein sequences of the

JMAG to the UHGP and evaluated the overlap between the

two datasets by clustering at 100%, 95%, 90%, and 50%

sequence identities. Among the clusters that included the pre-

dicted proteins in the JMAG, 46.1%, 19.6%, 16.2%, and 9.5%

were solely detected in the JMAG (Figure S5F).

Among the proteins in the JMAG, we focused on b-porphyra-

nase, which catalyzes the hydrolysis of the seaweed-derived

polysaccharides, namely porphyran. A previous study identified

b-porphyranase in the Phocaeicola plebeius (renamed fromBac-

teroides plebeius) genome and revealed that b-porphyranase

was detectable in the Japanese gut but not in the European

gut21 because the Japanese eat nori made from porphyra. How-

ever, its taxonomic origin and populational pattern were not fully

evaluated because of the limited availability of the gut MSS data

at that time. We identified the putative b-porphyranase se-

quences in the JMAG and UHGP, and all of them were placed

close to the known b-porphyranase sequences in a maximum-

likelihood phylogenetic tree, suggesting that our analysis suc-

cessfully discriminated the b-porphyranase from other related

proteins (Figure 2A). Among the b-porphyranase sequences in

the JMAG, three sequences (JPN-Por1, JPN-Por-2, and JPN-

Por-5) were also included in the UHGG (amino acid identity

[AAI] > 99%), while the other five sequences were solely

included in the JMAG (Figure S6A). We detected the 133 and

245 b-porphyranase sequences in the JMAG (ratio = 133/

43,043,613 = 3.09 3 10�6) and UHGP (ratio = 245/

625,255,473 = 3.92 3 10�7), respectively, suggesting that
anase in the JMAG and UHGP

tected in the JMAG and UHGG. The b-porphyranase proteins and their related

logenetic tree. The colors and shapes of the nodes represent the derivation and

re linked to the b-porphyranase proteins at the phylum (top) and genus level

ly. The phyla comprising <1% of each genome set are collapsed into ‘‘Other.’’

ion (top) and country (bottom) levels.

boxplot indicates the median values (center lines) and IQRs (box edges), with

er quantile � [1.5 3 IQR]) and (upper quantile + [1.5 3 IQR]). IQR, interquartile
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b-porphyranase was more frequent among the Japanese-

derived gut prokaryotic genomes than those mainly derived

from other populations. We evaluated the taxonomic origin of

b-porphyranase and found that the majority of the taxonomy

was Bacteroidota (78.9% in the JMAG and 93.9% in the

UHGP), although Firmicutes_A-derived b-porphyranase proteins

were also detected in both the JMAG and UHGP (18.8% and

5.3%, respectively; Figure 2B). At the genus level, we detected

Phocaeicola and Bacteroides as the major origins of b-porphyr-

anase both in the JMAG and UHGP. We also evaluated the

populational pattern of b-porphyranase in the UHGP and found

that most of the b-porphyranase sequences were derived from

the Asian population (Figure 2C). As for the country-level annota-

tion, although the ratio of the b-porphyranase sequences in

the Chinese population was lower than the Japanese population

(ratio = 177/125,294,874 = 1.41 3 10�6 for China and 13/

2,048,327 = 6.35 3 10�6 for Japan), it was still higher than other

country-level annotations, such as the US, Spain, and Denmark

(ratio = 13/113,161,322 = 1.15 3 10�7, 11/43,819,760 =

2.51 3 10�7, 9/59,342,818 = 1.52 3 10�7, respectively; Fig-

ure 2C). b-porphyranase was more abundant in Japanese than

other populations in the read-based quantification (Figures 2D

and S6B). Thus, we replicated the high frequency of b-porphyr-

anase in the Japanese gutmetagenome, and newly revealed that

b-porphyranase presented also in the gut metagenome of the

Chinese population.

Strains of food-associated bacteria were shared among
the Japanese population
Utilizing the species-level representative genomes of the JMAG

and the original MSS data, we evaluated the sharing of the pro-

karyotic strains among the Japanese by inStrain.32 We first per-

formed per dataset analysis and found that strain sharing was

reproducibly detected for 10 species in at least 3 datasets (Fig-

ure S7A) among the 1,273 species in the JMAG. As for these 10

species, we performed a strain-level comparison with all sam-

ples. We found that the majority of the individuals included in

the analysis of the targeted species were involved in strain

sharing for five species (Figures 3A and S7B), suggesting that

strain sharing was relatively frequent for these species

compared with the other species in the JMAG. Among the five

species, Bacillus subtilis was considered to be derived from

the Japanese traditional food natto as mentioned above. In

addition, the other four species (Bifidobacterium animalis, Enter-

ocossus_B lactis, Lactobacillus paracasei, and Streptococcus

thermophilus) were reported to be associated with dairy prod-

ucts.33,34 Thus, it was suggested that food-related bacteria

tended to be shared among the population at the strain level.

A missense variant rs671:G>A in ALDH2 is an East Asian-spe-

cific single-nucleotide polymorphism that is under the recent

positive selection.35 The A allele of rs671 causes alcohol intoler-

ance and has various pleiotropic associations with diseases,

clinical biomarkers, and dietary habits.36,37 Since the consump-

tion of natto and dairy was negatively and positively associated

with the A allele of the rs671, respectively, we evaluated the as-

sociation between the abundance of the five food-related bacte-

rial species and the A allele of the rs671 (Figure 3B; Table S3; N =

546 in total). We found nominal associations for Enterococcus_B
6 Cell Genomics 2, 100219, December 14, 2022
lactis (effect size = 0.270 and p = 0.034) and S. thermophilus (ef-

fect size = 0.122 and p = 0.048). Even when removing disease

samples, the effect sizes for the Enterococcus_B lactis (effect

size = 0.355 and p = 0.036) and S. thermophilus (effect size =

0.134 and p = 0.079) were consistent (Figure S7C). We per-

formed a Mendelian randomization analysis38 to evaluate the ef-

fect of the dietary habits on the bacterial abundances and found

that increased intake of dairy products could increase the abun-

dances of the Enterococcus_B lactis (effect size = 2.385 and p =

0.034) and S. thermophilus (effect size = 1.077 and p = 0.047;

Table S4).

Reconstruction of viral genomes from Japanese MSS
data
We recovered viral genomes from the 787 Japanese MSS data

(Figure S8). The viral genomes were extracted from the assem-

bled contigs with VirSorter39 and VirFinder40 and subjected to

CheckV.41 After CheckV, we retained the viral genomes that

hadR50%completeness andmore viral genes than host genes.

We obtained 31,395 viral genomes including 4,098 complete,

7,492 high-quality, and 19,805 medium-quality genomes

(Table S5). We call this set of viral genomes as Japanese Virus

Database (JVD). The 31,395 genomes were clustered into

12,213 clusters atR95% ANI, merged with the Gut Phage Data-

base (GPD),19 Metagenomic Gut Virus (MGV),20 and taxonomic

reference genomes (RefSeq and Yutin et al.42), and further clus-

tered into 94,714 species-level viral operational taxonomic unit

(vOTU) at R95% ANI. These species-level vOTUs were further

clustered into 10,022 genus- and 2,577 family-level vOTUs

based on the gene sharing ratio and AAI (STAR Methods;

Tables S6 and S7). We assigned putative viral taxonomy to all

the viral genomes based on the result of the clustering (Fig-

ure 4A). Siphoviridae (14.0%) and Myoviridae (9.3%) dominated

the taxonomically annotated viruses, while crAss-like phages

(2.6%) and Podoviridae (0.8%) also occupied a portion of

the taxonomically annotated viral genomes. Salsmaviridae, a

recently created viral family,43 also occupied a part of the taxo-

nomically annotated viral genomes (0.7%).

We evaluated the overlap between the JVD, previous studies

(GPD and MGV), and reference genomes at the family, genus,

and species levels. At the species level, the majority of the vO-

TUs that included the JVD genomes (62.9%) were not overlap-

ped with the other databases (Figure 4B). Note that there was

a relatively large overlap between the GPD and MGV because

of the overlap of the original MSS dataset. In contrast, the major-

ity of the family- and genus-level vOTUs were covered by the

other databases (7.5% and 0.67% were novel, respectively).

We predicted and functionally annotated the protein sequences

on the JVD viral genomes. The ratio of the proteins covered and

functionally annotated by the current databases was lower for

the crAss-like phages than the other viruses, possibly due to the

relatively recent discovery and expansion of the crAss-like phage

genomes (Figure S9A). Among the Virus Orthologous Groups44

and KEGG45 annotations of the JVD, typical viral proteins, such

as the capsid proteins, terminase, and portal proteins, were

observed as highly frequent proteins (Figures S9B and S9C).

Among the KEGG pathways, virus-related pathways, such as

DNA replication and homologous recombination, were frequently
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Figure 3. Strain-level analysis and association tests with rs671 for food-related bacterial species

(A) Circulized arc diagrams representing the strain sharing among the subjects for the five food-related bacterial species. The nodes represent the individuals with

the detection of each species of bacterium and the edges represent the sharing of the bacterial strains. The colors of the nodes represent the dataset of the

individuals. Independent strain-sharing networks are depicted in different colors. The gray edgesmean that the strain is shared only between a pair of individuals.

(B) Boxplots represent the abundances (mean coverage) of the five food-related bacterial species stratified by the rs671 genotypes. The boxplots indicate the

median values (center lines) and IQRs (box edges), with thewhiskers extending to themost extreme points within the range between (lower quantile� [1.5 3 IQR])

and (upper quantile + [1.5 3 IQR]). The ‘‘A’’ allele of the rs671 in ALDH2 had a negative association with natto consumption and a positive association with dairy

consumption in the previous study.37 *p < 0.05; IQR, interquartile range. See also Figure S7 and Tables S3 and S4.
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seen (Figure S9D). In addition, we could see the taxonomic ten-

dency of the KEGG gene and pathways, such as the relatively

high occurrence of dUTP pyrophosphatase and pyrimidine meta-

bolism-related proteins in the crAss-like phage genomes.We also

detected some auxiliary metabolic genes46 that potentially affect

the metabolic function of their hosts (Figure S9E). Protein se-

quences were predicted also from the viral genomes in the GPD

andMGV,mergedwith the JVD protein sequences, and clustered

at 100%, 95%, 90%, and 50% amino acid sequence identity.

Among the clusters that included the JVD proteins, 65.3%,

38.6%, 32.3%, and 19.4% were solely detected in the JVD,

respectively (Figure S9F).

Interpopulational and case-control comparisons of the
crAss-like phages
crAss-like phages were the bacteriophages that were reported

to be abundant in the gut.18 Since it was discovered in 2014 by

a cross-assembly of the human gut metagenome data,18 known

diversity of the crAss-like phages has been expanded and now
five subfamilies, namely ag, b, d, ε, and z, are recognized.42

We annotated the subfamily-level taxonomy to the crAss-like

phage genomes based on the result of the genus-level vOTU

clustering (Table S8). To validate the subfamily-level annotation,

we made maximum-likelihood phylogenetic trees for the termi-

nase (TerL), a marker protein of the crAss-like phages. The

crAss-like phages belonging to the same subfamilies fell into

the same clades, and those belonging to the same genus-level

vOTU were placed closely (Figure 5A).

Then, we compared the subfamily-level composition of the

crAss-like phage genomes among the various populational con-

texts. In the JVD, ag followed by d, ε, and z were frequent and b

was minor among the crAss-like phage genomes. In the MGV, b

crAss-like phages were also minor in Asia, Europe, and North

America, as in the case of the JVD. In contrast, the composition

of the b crAss-like phage genomes was significantly higher in

Oceania and Africa than in Japan, Asia, Europe, and North Amer-

ica (Figure 5B; PFisher < 0.05/21 = 2.43 10�3). A relatively higher

prevalence of the b crAss-like phages in Africa was also
Cell Genomics 2, 100219, December 14, 2022 7
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Figure 4. Reconstruction of the viral genomes and the comparison with the other databases

(A) A pie chart illustrating the family-level phylogenetic composition of the JVD. The families comprising <0.3% of the genomes are collapsed into ‘‘Other.’’

(B) Venn diagrams represent the sharing of the vOTUs (left, family level; middle, genus level; right, species level) among the different databases. Reference

genomes are composed of RefSeq and Yutin et al.42 (STAR Methods). See also Figures S8 and S9 and Tables S5, S6, and S7.
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supported by the read-based quantification of the crAss-like

phages (Figure 5C). Thus, it was suggested that the Japanese

people’s subfamily-level composition of the crAss-like phages

was mostly similar to populations such as Asian, European,

and North American, and b crAss-like phages were associated

with the African and Oceanian populations. These results might

reflect the differences in dietary habits.

Although crAss-like phageswere assumed to be a core compo-

nent of the healthy gut virome, their association to diseases had

not been fully evaluated. Therefore, we evaluated the association

between the subfamily- and genus-level vOTU of the crAss-like

phages and affection status of the diseases, namely rheumatoid

arthritis (RA) (NCase = 113, NControl = 114), systemic lupus erythe-

matosus (SLE) (NCase = 36, NControl = 205), multiple sclerosis

(MS) (NCase = 30, NControl = 77), ulcerative colitis (UC) (NCase =

35, NControl = 40), Crohn disease (CD) (NCase = 39, NControl = 40),

and colorectal cancer (CoCa) (NCase = 40, NControl = 39;

Figures 5D and 5E; Tables S9, S10, and S11). The ag, clus-

ter_1743, cluster_1322, and cluster_655 crAss-like phages

decreased at least nominally (p < 0.05) in both the RA and SLE pa-

tients. InMSpatients, we could not detect any significant changes

in the abundance of the crAss-like phages (p > 0.05). In patients

with inflammatory bowel disease (IBD), namely UC and CD,

most of the clades, including the ag, cluster_1743, and clus-

ter_655 decreased (p = 3.2 3 10�3 and 3.0 3 10�4 for ag, p =

1.9 3 10�4 and 9.0 3 10�5 for cluster_1743, and p = 3.5 3 10�5

and 7.4 3 10�6 for cluster_655, respectively). In contrast, in-

creases of some clades, such as the ag crAss-like phages were

observed in CoCa. Given that decreases of the diversity of the

bacteria were reported for SLE,25 UC, and CD,47,48 but an in-

crease was reported for CoCa,49 we hypothesized that crAss-

like phages were associated with the diversity of the bacteria.

We evaluated the association between the crAss-like phage

clades and Shannon index, which is a measurement of the diver-

sity of the bacteria, and found that most of the clades were posi-

tively associated with the Shannon index (Figures 5D and 5E;

Tables S10 and S11).

Virus-host interaction analysis with CRISPR, prophage,
and co-abundance
CRISPR (clustered regularly interspaced short palindromic re-

peats) and CRISPR-associated (Cas) proteins comprise the
8 Cell Genomics 2, 100219, December 14, 2022
CRISPR-Cas system, a prokaryotic adaptive immune system

against predators such as bacteriophages.50 The CRISPR-Cas

system intakes short fragments of the viral sequences as

CRISPR spacers to efficiently eject the viruses during subse-

quent infections. Thus, CRISPR sequences in the prokaryotic

genomes are evidence of previous infections by viruses. Utilizing

the CRISPR sequences in the JMAG genomes, we predicted the

virus-prokaryote interaction.We detected 296,915 spacers in to-

tal, and 147,354 (49.6%) matched and 149,561 (50.4%) did not

match the viral sequences recovered from the gut metagenome

(Figure S10A). We then evaluated the taxonomic composition of

the linked MAGs and viral targets of the CRISPR spacers, which

reflected the host ranges of the viruses (Figure S10A; Table S12).

For example, the major host of the crAss-like phages was Bac-

teroidota, while several crAss-like phages infected Firmicutes_A,

as expected from previous studies.20,42 We also searched

the viral target sequences of the CRISPR spacers in the

286,997 UHGG genomes,20 and 59% of the pairs of species-

level vOTU and prokaryotic genus conferred from the analysis

on the JMAG were replicated by the UHGG (Figure 6A). We

also evaluated the virus-prokaryote interaction inferred from

the proviral sequences in the JVD genomes (Figure S10B;

Table S13). We got additional implications, such as the lack of

the proviral sequences of the crAss-like phages and Salasmavir-

idae. The lack of proviral sequences of crAss-like phages in the

JVD could reflect the lack of lysogeny of the crAss-like phages,

as previously suggested.20 As for Salasmaviridae, it was re-

ported that Salasmaviridae follow a strict lytic life cycle with no

evidence of lysogenic activity.51 Thus, our large-scale analysis

supported the previous implication for the newly classified virus.

Co-abundance analysis of the virus and prokaryote had been

used for implicating virus-prokaryote interaction, but how much

did it concordant to the result of the CRISPR-based and

prophage-based analyses, which had not been well evaluated.

Utilizing this large dataset, we evaluated the association be-

tween the abundances of viruses and prokaryotes stratified by

the existence of supports from the CRISPR spacers in the

JMAG (Figure S10C; Table S12). Inflation of the p values of the

virus-prokaryote association tests was much more severe for

the pairs supported by the CRISPR spacers than those without

supports (Figure 6B). Z scores of the virus-prokaryote pairs sup-

ported by the CRISPR spacers were severely biased positively,
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suggesting that the abundances of the viruses and their putative

hosts tended to be positively correlated (Figure 6C). We

performed the same analysis for the CRISPR sequences in

the UHGG and the prophages in the JMAG and replicated the re-

sults obtained from the CRISPR sequences in the JMAG

(Figures S10D–S10G).

Then, we performed the inter-database comparison of species-

level vOTUs (JVD and MGV) and prokaryotic genome clusters

(JMAG and UHGG) and integrated the results of these analyses

based on the results of the CRISPR spacers. We calculated the

odds ratio of the Japanese-derived genomes for each species-

level vOTU and prokaryotic genome cluster. We found the enrich-

ment of the CRISPR-supported virus-bacteria pairs that had the

same sign of the log odds ratios for being Japanese derived (Fig-

ure 6D; STARMethods). The log fold changes between the abun-

dances in Japanese and other populations also tended to have

same the signs for viruses and prokaryotes linked by the

CRISPR spacers (Figure S10H). Thus, it was suggested that inter-

populational differences of the viruses and their host were posi-

tively associated. For example, species-level vOTU 23245, which

was frequently recovered and relatively abundant among the Jap-

anese gut metagenome, infected Blautia sp001304935, which

was also frequently recovered and relatively abundant among

the Japanese gut metagenome (Figure 6E).

Virus-bacterium interaction network for crAss-like
phages
Based on the result of the CRISPR analysis, we constructed a vi-

rus-bacterium interaction network of crAss-like phages (Fig-

ure 7A). The bacterial genera belonging to phylum Bacteroidota,

such as Parabacteroides, Prevotella, Bacteroides, and Phocaei-

cola were highly connected to the crAss-like phages (Figure 7B),

suggesting that the major host of the crAss-like phage was Bac-

teroidota as reported previously.42 In addition, several Firmi-

cutes were also present in the network. Although most of the

crAss-like phage subfamilies infected various bacterial genera,

ε crAss-like phages had strong preferences for the genus

Parabacteroides.

DISCUSSION

In this study, we reconstructed the 19,084 MAGs and 31,395

viral genomes from the 787 Japanese gut MSS data. Utilizing

these data, we performed a comparative analysis among data-

bases, interpopulational and case-control comparisons of the

crAss-like phages, and virus-prokaryote interaction analysis.

While a large part of the species-level diversity of the Japanese

gut prokaryotes was covered by the UHGG catalog possibly due
Figure 5. Interpopulational and case-control comparisons of the crAss

(A) A maximum-likelihood phylogenetic tree reconstructed from the TerL proteins

clusters present only in the JVD (magenta), present only in the reference (green), or

and genus-level (outer) taxonomic annotation of the crAss-like phages.

(B) A bar plot depicting the compositions of the subfamilies of the crAss-like pha

according to their continental origin.

(C) A bar plot depicting the compositions of the subfamilies of the crAss-like pha

(D and E) Heatmaps represent the association of the crAss-like phages to the dise

respectively. The colors indicate the Z score in each test. *p < 0.05. **p < 0.05/nu

diseases (only for association tests for diseases). See also Tables S8, S9, S10, a
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to the partially westernized dietary habits of the Japanese, some

Japanese population-specific traditional diet-associated features

of the gutmicrobiome, such as the presenceof theBacillus subtilis

natto and enrichment of b-porphyranase, were identified. Natto

is a Japanese traditional fermented food that is still widely

consumed and expected as a potential probiotic food.52 Although

a previous 16S rRNA sequencing study suggested the presence

of the family Bacillacea in the Japanese gut,53 whether it was

Bacillus subtilis natto was not confirmed due to the insufficient

taxonomic resolution. Thus, our analysis suggested that the

reconstruction of the MAG enabled us to evaluate Bacillus subtilis

natto in the gutmore accurately than 16S rRNA analysis and could

be useful for future implementation of the probiotics.

b-Porphyranase is an enzyme that degrades seaweed-derived

polysaccharides that are contained in the nori, a traditional Jap-

anese food made from porphyra.21 In our analysis, we confirmed

the enrichment of the b-porphyranase in the Japanese gut with a

large Japanese dataset, which had not been available in the pre-

vious study.21 Although not as apparent as in the Japanese pop-

ulation, the frequency of b-porphyranase was relatively high in

the Chinese population. Relative enrichment of b-porphyranase

in the Chinese population could be because the Chinese popu-

lation also eats porphyra as zicai or the long-standing traffic

among East Asia.

Through strain-level analysis, we revealed that five strains

of food-related bacterial species were reproducibly shared

among the Japanese. A previous comparative analysis of

gut-derived and food-derived MAGs revealed that the major

source of several gut bacteria, including L. paracasei and

S. thermophilus, was food.33 Since the bacterial strains used

formaking fermented food are often determined by themanufac-

ture, sharing of the strain for food-associated bacteria was ex-

pected when the major sources of the bacteria were food.

rs671:G>A in ALDH2 is the East Asian-specific missense variant

that is associatedwith alcohol intolerance.We identified the pos-

itive association between the abundance of dairy-associated

bacteria and A alleles of the rs671, which was also associated

with high dairy consumption.38 This finding suggested that hu-

man genetic variants could affect the gut microbiome via dietary

habits, while we could not completely reject the possibility of the

opposite (i.e., the high abundance of dairy consumption led to

higher dairy consumption). Although not available for our data-

sets, future analysis with dietary information will be beneficial

for deepening the insights into this association.

We mined the viral genomes from the MSS data. Among

the taxonomically annotated viruses, Siphoviridae, Myoviridae,

crAss-like phage, and Podoviridae were relatively frequent, as

previously reported.16,17,20,54 In addition, newly classified
-like phages

of the crAss-like phages. The color of the nodes represents the species-level

neither of the cases (navy). The outer rings represent the subfamily-level (inner)

ge genomes for the JVD and MGV. The genomes from the MGV are grouped

ges calculated from the abundances (RPKM) in each group.

ases (upper) and Shannon index (lower) at the subfamily (D) and genus (E) level,

mber of clades (per objective variables). ***p < 0.05/number of tests across all

nd S11.
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Figure 6. Virus-prokaryote interaction analysis based on the CRISPR and abundances
(A) Number of the pairs of the species-level vOTU and prokaryotic genus detected in the JMAG and UHGG.

(B) A quantile-quantile plot of the p values from the virus-prokaryote association analysis stratified by whether the virus-prokaryote pairs are supported by the

CRISPR spacers in the JMAG (magenta) or not (gray). The x axis indicates �log10(P) expected from the uniform distribution. The y axis indicates the observed

�log10(P). The diagonal dashed line represents y = x, which corresponds to the null hypothesis.

(C) A density plot of the Z score from the virus-prokaryote association analysis stratified by whether the virus-prokaryote pairs are supported by the CRISPR

spacers in the JMAG (magenta) or not (gray). The upper limit of the Z score is set at 50. The diagonal dashed line represents y = x, which corresponds to the

null hypothesis. The vertical dashed lines indicate the mean of the Z score for each group of the virus-prokaryote pair.

(D) A scatterplot of the odds ratios for being the Japanese-derived viruses (y axis) and prokaryotes (x axis) for the virus-prokaryote pairs supported by the CRISPR

in the JMAG. The size of the dots represents the number of spacers supporting the virus-prokaryote pairs. The horizontal and vertical dashed lines represent odds

ratio = 0 for virus and prokaryote, respectively.

(E) Violin plots of the species-level vOTU 23245 (left) and Blautia sp001304935 (right) abundances (RPKM) in each group. The red center lines indicate the median

values. See also Figure S10 and Tables S12 and S13.
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Salasmaviridae was also relatively frequent. As observed in the

previous studies,19,20 JVD included a significant amount of taxo-

nomically unknown viruses possibly due to the underrepresenta-

tion of human gut phages in the taxonomic reference database.

In contrast to prokaryotic genomes, a large part of the species-

level diversity of the JVD was not covered by previous studies,

such as GPD and MGV. This could be because of the enormous

species-level diversity of the viruses, while differences in the

populations and viral genome detection methods could also

contribute.

We identified virus-prokaryote interaction by CRISPR and pro-

phage analysis. Of the CRISPR spacers, 49.6% matched the
viral sequence data composed of the JVD and the current largest

gut virus databases (i.e., MGV andGPD), and future expansion of

the viral sequence database may contribute to the further iden-

tification of the virus-prokaryote interaction. The abundance of

the viruses and prokaryotes linked by the CRISPR spacers or

proviral sequences was correlated positively in the gut. The

Piggyback-the-Winner model,55 in which phages take a lyso-

genic or pseudo-lysogenic cycle to ‘‘piggyback on’’ the success

of their host rather than killing their host is supposed to be a ma-

jor strategy for the gut virome.56,57 Given that the lytic activities of

the phages could result in a loss of positive correlation between

the phages and their hosts,58 our results could reflect the
Cell Genomics 2, 100219, December 14, 2022 11
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Figure 7. Network plot for the crAss-like phages and their predictive hosts

(A) A network plot of the CRISPR-based links (edges) between the species-level vOTU of the crAss-like phages (circle nodes) and bacterial genus (rhombus

nodes). The color of the edges represents the derivation of the CRISPR spacers. The color of the circle nodes represents the subfamily level taxonomic an-

notations of the crAss-like phage genomes. The color of the rhombus nodes represents the genus level taxonomic annotations of the candidate hosts of the

crAss-like phages. The magenta dashed box indicates the interaction between the ε crAss-like phages and Parabacteroides.

(B) A bar plot indicates the top 10 bacterial genera that have the highest number of the species-level crAss-like phage vOTU linked by the CRISPR spacers.
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peaceful symbiosis as indicated in the Piggyback-the-Winner

model. The interpopulational differences of the number of the

recovered genome or read-based abundance had the same

trend for the virus-prokaryote pairs supported by the CRISPR

spacers. These results suggested that interpopulational differ-

ences of the viruses and their hosts were positively associated

possibly because the abundances of the viruses and their hosts

tended to be positively correlated.

At the subfamily level, the frequency of the recovery and read-

based abundance of the b crAss-like phages were relatively high

in the populations with the non-westernized dietary habits, such

as African compared with populations with westernized dietary

habits, including the Japanese. This result could reflect the

impact of dietary habits on the crAss-like phages. In case-con-

trol comparisons of crAss-like phages, we revealed that several

clades of the crAss-like phages decreased in RA, SLE, UC, and

CD patients, but increased in CoCa patients. During the prepara-

tion of this manuscript, a study on Dutch cohorts reported de-

creases of the crAss-like phages in IBD.59 Thus, decreases of
12 Cell Genomics 2, 100219, December 14, 2022
the crAss-like phages in IBD could be a general event observed

in multiple populations rather than a population-specific event.

The diversity of the gut bacteriome has been reported to be

associated with various diseases and is often suggested as a

marker for microbiome health.60 The positive association be-

tween the crAss-like phage abundances and bacterial diversity

suggested that the abundance of the crAss-like phage could

reflect the overall healthiness of the gut microbiome.

In virus-prokaryote interaction analysis, we could not find the

proviral sequences of the crAss-like phages. Since the currently

isolated two crAss-like phages (FcrAss001 and 002) neither

possess lysogeny-associated genes nor can form stable lyso-

gens,61,62 this result could reflect the unique life cycle of crAss-

like phages. Virus-prokaryote interaction analysis based on the

CRISPR sequences predicted that the major host of the crAss-

like phages was Bacteroidota, consistent with the previous

finding.42 Although most of the crAss-like phage subfamilies in-

fected the various bacterial genus, ε crAss-like phages mostly

exclusively infected the genus Parabacteroides. The limited
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host range might reflect relatively short evolutionary distances

(length of the branches in phylogenetic trees) among the

currently identified ε crAss-like phages.

In summary, we recovered the MAGs and viral genomes from

the Japanese gut MSS data. Based on the recovered microbial

genomes, we revealed the features of the Japanese gut metage-

nome, associations of the crAss-like phages to populations and

diseases, and virus-prokaryote interactions. The reconstructed

microbial genomes and related information are available at

the National Bioscience Database Center (https://humandbs.

biosciencedbc.jp). We believe that our dataset, which includes

MAGs, viral genomes, and CRISPR spacers, will be a useful

resource for future studies.

Limitation of the study
The JVD did not include viruses that were classified as RNA vi-

ruses or eukaryotic viruses because they were not efficiently

detected by our pipeline due to the nature of the sequencing

data and property of the virus detection pipeline. Future inves-

tigation on the other type of datasets such as meta-transcrip-

tome data and further expansion of the reference databases

will be beneficial to increase the known diversity of the gut

virome.

Although the positively associated interpopulational differ-

ences were confirmed by the two different analyses (i.e., based

on the number of the genomes and abundances) with the

different outer datasets, batch/study effects were potential

limitations of the current microbiome study focusing on the

interpopulational differences. Ongoing efforts to collect and

sequence stool samples from various populations in a unified

framework will be promising.63
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Biological samples

Fecal samples This study N/A

Human DNA extracted from blood This study N/A

Chemicals, peptides, and recombinant proteins

Tris-HCl NIPPON GENE Cat#316-90385

SDS Sigma Aldrich Cat#28-3270

EDTA Nacalai Tesque Cat#06894-14

Phenol/chloroform/isoamyl alcohol Nacalai Tesque Cat#25970-56

TE saturated phenol Nacalai Tesque Cat#26829-96

Sodium acetate Sigma Aldrich Cat#28-1560

Isopropanol JUNSEI Cat#67-63-0

Ethanol JUNSEI Cat#64-19-5

RNA later Thermo Fisher Scientific Cat#AM7021

Critical commercial assays

KAPA Hyper Prep Kit illumina Cat#KK8504

Glass beads (diameter 0.1 mm) biospec Cat#11079101

Deposited data

Metagenome shotgun sequencing data This study National Bioscience Database Center (NBDC)

Human Database: hum0197

Metagenome shotgun sequencing data Kishikawa et al. 2020a23 National Bioscience Database Center (NBDC)

Human Database: hum0197

Metagenome shotgun sequencing data Kishikawa et al. 2020b24 National Bioscience Database Center (NBDC)

Human Database: hum0197

Metagenome shotgun sequencing data Tomofuji et al., 2021a25 National Bioscience Database Center (NBDC)

Human Database: hum0197

Metagenome shotgun sequencing data Tomofuji et al., 2021b26 National Bioscience Database Center (NBDC)

Human Database: hum0197

Metagenome shotgun sequencing data Otake et al., 202228 National Bioscience Database Center (NBDC)

Human Database: hum0197

Metagenome shotgun sequencing data Yachida et al., 201927 DDBJ Sequence Read Archive: DRA006684

Metagenome shotgun sequencing data Zhu et al. 202064 Europea Nucleotide Archive: ERP111403

Metagenome shotgun sequencing data Dhakan et al. 201965 Sequence Read Archive: SRP114847

Metagenome shotgun sequencing data Thomas et al. 201949 Sequence Read Archive: SRP136711

Metagenome shotgun sequencing data Wirbel et al. 201966 Europea Nucleotide Archive: ERP110064

Metagenome shotgun sequencing data Xie et al. 201667 Europea Nucleotide Archive: ERP010700

Metagenome shotgun sequencing data Price et al. 201948 Sequence Read Archive: SRP115494

Metagenome shotgun sequencing data Tett et al. 201968 Sequence Read Archive: SRP168387

Metagenome shotgun sequencing data Tett et al. 201968 Sequence Read Archive: SRP189832

Metagenome shotgun sequencing data Tett et al. 201968 Sequence Read Archive: SRP189572

RefSeq Virus NCBI https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/

Bacillus subtilis genomes NCBI GenBank https://www.ncbi.nlm.nih.gov/genbank/

crAss-like phage genomes Yutin et al. 202142 https://zenodo.org/record/4437596

CRISPR spacers Nayfach et al. 202120 https://portal.nersc.gov/MGV

CRISPR spacers in JMAG genomes This study National Bioscience Database Center (NBDC)

Human Database: hum0197

dbCAN HMMdb v10 Zhang et al., 201869 https://bcb.unl.edu/dbCAN2/index.php
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GPD Camarillo-Guerrero et al.

202119
http://ftp.ebi.ac.uk/pub/databases/metagenomics/

genome_sets/gut_phage_database/

JMAG This study National Bioscience Database Center (NBDC)

Human Database: hum0197

JVD This study National Bioscience Database Center (NBDC)

Human Database: hum0197

List of the AMGs Kieft et al., 202046 https://doi.org/10.1186/s40168-020-00867-0

MGV Nayfach et al. 202120 https://portal.nersc.gov/MGV

Scripts for recovering and analyzing

microbial genomes

This study https://doi.org/10.5281/zenodo.7053099

and https://github.com/ytomofuji

UHGG and UHGP Almeida et al. 20218 http://ftp.ebi.ac.uk/pub/databases/metagenomics/

mgnify_genomes/

VOG Grazziotin et al., 201744 https://vogdb.org

b-porphyranase sequences Hehemann et al., 201021 https://doi.org/10.1038/nature08937

Bacillus subtilis genomes NCBI GenBank https://www.ncbi.nlm.nih.gov/genbank/

Multiple sequence alignment

files generated in this study

(JMAG representative genomes,

b-porphyranase, and TerL of

crAss-like phages)

This study https://doi.org/10.5281/zenodo.7053099

Software and algorithms

Barrnap https://github.com/tseemann/

barrnap

https://github.com/tseemann/barrnap

bcl2fastq Illumina https://support.illumina.com/sequencing/sequencing_

software/bcl2fastq-conversion-software/downloads.html

BMTagger ftp://ftp.ncbi.nlm.nih.gov/pub/

agarwala/bmtagger/70
ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/bmtagger/

bowtie2 Langmead and Salzberg, 201271 http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml

CheckM Parks et al., 201529 https://github.com/Ecogenomics/CheckM

CheckV Nayfach et al., 202141 https://bitbucket.org/berkeleylab/checkv/

CONCOCT Alneberg et al., 201472 https://github.com/BinPro/CONCOCT

coverM Queensland University of

Technology Microbiome

Research Group

https://github.com/wwood/CoverM

DAS Tool Sieber et al., 201873 https://github.com/cmks/DAS_Tool

DIAMOND Buchfink et al., 202174 https://github.com/bbuchfink/diamond

dRep Olm et al., 201775 https://github.com/MrOlm/drep

eggNOG-mapper Cantalapiedra et al. 202176 https://github.com/eggnogdb/eggnog-mapper

EIGENSTRAT Price et al., 200677 https://www.hsph.harvard.edu/alkes-price/

software/

Ggraph https://github.com/

thomasp85/ggraph

https://github.com/thomasp85/ggraph

GTDB-tk Chaumeil et al., 201931 https://github.com/Ecogenomics/GTDBTk

Hmmer http://hmmer.org/download.html http://hmmer.org/download.html

inStrain Olm et al., 202132 https://github.com/MrOlm/instrain

Iqtree Nguyen, L.-T et al., 201578 http://www.iqtree.org

iTOL Letunic & Bork, 201979 https://itol.embl.de

MAFFT Katoh & Standley, 201380 https://mafft.cbrc.jp/alignment/software/

Mash Ondov et al., 201681 https://github.com/marbl/Mash

MaxBin Wu et al., 201682 https://sourceforge.net/projects/maxbin/
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MCL Enright et al., 200283 http://micans.org/mcl/

MetaBAT Kang et al., 201984 https://bitbucket.org/berkeleylab/metabat/src/master/

MinCED Bland et al., 200785 https://github.com/ctSkennerton/minced

MMseqs2 Steinegger & Söding, 201786 https://github.com/soedinglab/MMseqs2

MUMmer Marçais et al., 201887 https://github.com/mummer4/mummer

muscle Edgar, 200488 https://drive5.com/muscle/downloads_v3.htm

ncbi-blast-plus Camacho et al., 200989 https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_

TYPE=BlastDocs&DOC_TYPE=Download

PLINK Purcell et al., 200790 https://www.cog-genomics.org/plink/

PRINSEQ Schmieder and Edwards, 201191 http://prinseq.sourceforge.net/

Prodigal Hyatt et al., 201092 https://github.com/hyattpd/Prodigal

Prokka Seemann, 201493 https://github.com/tseemann/prokka

Python Python Software Foundation https://www.python.org/downloads/release/python-376/

R The R Foundation for Statistical

Computing

https://www.r-project.org

RefineM Parks et al., 201794 https://github.com/dparks1134/RefineM

Samtools Li et al., 200995 http://www.htslib.org/download/

Script for clustering of the viral genomes Nayfach et al., 202120 https://github.com/snayfach/MGV

SPAdes Prjibelski et al., 202096 https://github.com/ablab/spades#sec5

Trimmomatic Bolger et al., 201497 http://www.usadellab.org/cms/?page=trimmomatic

tRNAScan-SE Chan et al., 202198 http://lowelab.ucsc.edu/tRNAscan-SE/

TwoSampleMR Hemani et al., 201838 https://mrcieu.github.io/TwoSampleMR/

Vegan https://github.com/vegandevs/

vegan

https://github.com/vegandevs/vegan

VirFinder Ren et al., 201740 https://github.com/jessieren/VirFinder

VirSorter Roux et al., 201539 https://github.com/simroux/VirSorter

Custom codes used in this study This study https://doi.org/10.5281/zenodo.7053099

and https://github.com/ytomofuji/JMAG_JVD
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Yukinori

Okada (yokada@sg.med.osaka-u.ac.jp).

Materials availability
The materials that support the findings of this study are available from the corresponding authors upon reasonable request. Please

contact the lead contact for additional information.

Data and code availability
The JMAG genomes, JVD genomes, and CRISPR sequences are available in NBDC Human Database (http://humandbs.

biosciencedbc.jp/) with the accession number of hum0197. The JMAG genomes, JVD genomes, and CRISPR sequences can

also be downloaded from the DNADataBank of Japan (DDBJ) with the accession numbers provided in Table S14. Detailed metadata

for the JMAG and JVD genomes are provided as Tables S2 and S5, respectively. The MSS data are under the controlled access in

NBDC Human Database (http://humandbs.biosciencedbc.jp/) with the accession number of hum0197 to protect the participants’

privacy. Applications from all the researchers who comply with the NBDC’s data terms of use are quickly assessed and accepted.

Multiple sequence alignment files for the maximum-likelihood phylogenetic trees (representative JMAG genomes, b-porphyranase,

and TerL of crAss-like phages) are available in Zenodo (https://doi.org/10.5281/zenodo.7053099). Codes used for the analysis and

instructions for downloading JMAG genomes, JVD genomes, and CRISPR sequences from DDBJ are available in GitHub (https://

github.com/ytomofuji/JMAG_JVD) and Zenodo (https://doi.org/10.5281/zenodo.7053099).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subject participation
818 Japanese gut metagenome sequencing data from 787 subjects were used in this study (Table S1). In addition, 432 gut metage-

nome sequencing data from various populations48,49,64–68 were used for the comparative analyses. Although most of the data was

derived from previous studies,23–25,27,28 136 Japanese sequencing data (included healthy control [HC], Unruptured cerebral aneu-

rysm [UA], Sub-arachnoid hemorrhage [SAH], and stroke [ST] subjects) was newly obtained in this study. The newly recruited HC

subjects were enrolled at the Osaka University Graduate School of Medicine. Participants with UA and SAH were recruited from

the Osaka University, Osaka Neurological Institution, Hanwa Memorial Hospital, and Iseikai Hospital as previously described.99 Par-

ticipants with ST were recruited from the Osaka University.

Participants with extreme diets (e.g., strict vegetarians) were not included in the dataset. All subjects provided written informed

consent before participation. Those who took antibiotics within a month were reported as the patients treated with antibiotics.

The study protocol was approved by the ethics committees of Osaka University and related medical institutions.

METHOD DETAILS

Sample collection and DNA extraction
For the ST patients, fecal samples had been immediately frozen after production in an insulated container for storage at �20�C and

subsequently stored at �80�C within 24 h after production. For the HCs, samples were stored at �80�C within 6 h after production.

For the participants with UA, fecal samples were collected at home, immediately packed with frozen gel packs within insulated con-

tainers, and stored at �20�C. By the next day, the sample collection kits were returned by refrigerated shipping keeping at �20�C,
and stored at �80�C until processing, as previously described.99 For the participants with SAH, the fecal samples were collected

within 48 h following admission and before the induction of antibiotics to minimize changes in the gut microbial community, as

previously described.99 Microbial DNA was extracted according to the previously described method.23 Briefly, 0.3 g glass beads

(diameter: 0.1 mm) (BioSpec) and 500 mL EDTA-Tris-saturated phenol were added to the suspension, and the mixture was vortexed

vigorously using a FastPrep-24 (MPBiomedicals) at 5.0 power level for 30 s. After centrifugation at 20,000 g for 5min at 4�C, 400 mL of
supernatant was collected. Subsequently, phenol-chloroform extraction was performed, and 250 mL of supernatant was subjected to

isopropanol precipitation. Finally, DNAs were suspended in 100 mL EDTA-Tris buffer and stored at �20�C.

Whole-genome shotgun sequencing
A shotgun sequencing library was constructed using the KAPA Hyper Prep Kit (KAPA Biosystems), and 150-bp paired-end reads

were generated on NovaSeq 6000. The sequence reads were converted to the FASTQ format using bcl2fastq (version 2.19).

Quality control of sequencing reads
We followed a series of steps to maximize the quality of the datasets. The main steps in the quality control process were as follows:

(i) trimming of low-quality bases, (ii) identification and masking of human reads, and (iii) removal of duplicated reads. We marked

duplicate reads using PRINSEQ-lite91 (version 0.20.4; -derep 1). We trimmed the raw reads to clip Illumina adapters and cut off

low-quality bases at both ends using the Trimmomatic97 (version 0.39; parameters: ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10:8:true

LEADING:20 TRAILING:20 SLIDINGWINDOW:3:15 MINLEN:60). We discarded reads less than 60 bp in length after trimming. Next,

we performed duplicate removal by retaining only the longest read among the duplicates. When there were multiple reads with the

same sequences and length, we randomly selected one of the reads. As a final quality control step, we aligned the quality-filtered

reads to the human reference genome (hg38) using bowtie271 (version 2.3.5.1) with default parameters and BMTagger70 (version

3.101). We kept only the reads of which both paired ends failed to align in either tool.

Reconstruction of MAGs
The de novo assembly of the filtered paired-end reads into the contigs was conducted using SPAdes96 (version 3.13.0) with the

‘—meta’ option and the contigs longer than 2kbp were retained for subsequent binning. Then, filtered paired-end reads were map-

ped to the assembled contigs for quantifying the abundance of each contig with bowtie2 (version 2.3.5.1). Binningwas performed per

sample using three different tools with the default options; MaxBin82 (version 2.2.6), MetaBAT84 (version 2.12.1), and CONCOCT72

(version 1.0.0). DAS Tool73 (version 1.1.2) was used to integrate the results of the binning produced by the three tools. To refine the

quality of the bins, we utilized RefineM94 (version 0.1.2) and filtered out scaffolds with the divergent genomic properties or incon-

gruent taxonomic classification (based on Genome Taxonomy Database release 95). Then, we evaluated the quality of the MAGs

with CheckM29 (version 1.0.12) using the ‘lineage_wf’ workflow to select only genomes that passed the following criteria; >50%

genome completeness, <5% contamination, and an estimated quality score (completeness – 5 3 contamination) > 50. After the

filtering, we obtained 19,084 MAGs which were used for the subsequent analyses.

To evaluate the strain-level diversity of the MAGs, we mapped the filtered paired-end reads to the reconstructed MAGs with bow-

tie2 and calculated the average nucleotide diversity by inStrain32 (version 1.5.4) per sample. Evaluation of the average nucleotide

diversity was performed per dataset because it was originally reported to be affected by the sequencing batches. Then, the read
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coverages of the reconstructed MAGs in originated samples were calculated by coverM (version 0.6.1). We searched for the pres-

ence of rRNAs in each MAG by barrnap (version 0.9) with the following parameters; –kingdom bac (for MAGs determined as bacteria

by CheckM), –kingdom arc (for MAGs determined as archaea by CheckM), –reject 0.8, –evalue 1e-3. tRNAs of the standard 20 amino

acids were identified by tRNAScan-SE98 (version 2.0.7) with the following parameters; -A (for MAGs determined as bacteria by

CheckM), -B (for MAGs determined as archaea by CheckM).

Analysis for the species-level representative MAGs
The 19,084 reconstructed MAGs were clustered into estimated species-level clusters (ANIR95%) by dRep75 (version 3.2.0) with the

following parameters; -pa 0.9 -sa 0.95 -nc 0.30 -cm larger. Following score was calculated for each MAGs based on the output of

CheckM and the genome with the highest score was selected as the representative genome for each species-level cluster; score =

Completeness �5 3 Contamination +0.5 3 log10(N50). After the dereplication at the species level, we obtained 1,273 species-level

clusters and representative genomes. We then annotated taxonomy to the species-level representative genomes with GTDB-tk31

(version 1.5.3) based on the Genome Taxonomy Database release 202. Taxonomy of the non-representative genomes was assigned

according to the taxonomy of the representative genomes of their clusters. For the subsequent comparisons, the UHGG genomes

were also subjected to taxonomic annotation because the reference database for GTDB-tk was updated from the version used in the

original study.8

For each of the species-level representative genomes, we checked the existence of the same species-level clusters in the UHGG.

First, we estimated the ANI between the 1,273 reconstructed MAGs and the 4,644 UHGG genomes by mash81 (version 2.3) with the

sketch size 1000. Based on the result of mash, we extracted pairs of the genomes with mash-based ANIR90%. Then, we calculated

ANI for the extracted pairs of the genomes with the dnadiff function of MUMmer87 (version 4.0.0.rc1). For each of the 1,273MAGs, we

assigned corresponding species-level genomes in the UHGG which had ANIR95%, aligned fractionR30%, and the highest ANI to

the query MAGs.

Among the 1,273 species-level representative MAGs, we extracted 1,267 bacterial MAGs for the construction of a maximum-

likelihood phylogenetic tree. A multiple sequencing alignment (MSA) of the core genes generated by GTDB-tk were subjected to

the iqtree78 (version 2.1.2). ‘LG + F + R10’ was chosen as the best-fit model by the ModelFinder100 and constructed phylogenetic

tree was visualized with iTOL79 (version 6).

Comparative analysis of Bacillus subtilis genomes
To characterize the reconstructed Bacillus subtilisMAGs (26 genomes), we performed a comparative analysis with the Bacillus sub-

tilis genomes retrieved from the GenBank (162 genomes) and UHGG (1 genome). We calculated pair-wide ANI for all the pairs of the

Bacillus subtilis genomes with the dnadiff function of MUMmer. Then, we performed hierarchical clustering by the hclust function in

the R (version 4.0.1) with the ‘method = ’’average’’’ option. After clustering, we extracted a cluster which included all theBacillus sub-

tilis MAGs in the JMAG by cutree function in the R with the ‘k = 10’ option. Then, we performed NMDS of the extracted cluster.

To confirm thatBacillus subtilisMAGs in the JMAGwere closely related toBacillus subtilis natto, we checked the genetic variations

of the degQ promoter and swrAA (yvzD) coding regions which were previously reported to be different between Bacillus subtilis natto

and Bacillus subtilis 168101.We made MSAs of these genomic regions from the Bacillus subtilis natto genomes, Bacillus subtilis 168

genomes, and Bacillus subtilis genomes in JMAG by muscle88 (version 3.8.31).

For the comparison of themicrobial abundances in boxplots, only theHC sampleswere used. Quality-controlled readswere down-

sampled to 1,000,000 paired-ends reads to adjust the differences of the library sizes between the datasets. Then, the down-sampled

reads weremapped to the reference genome of the reconstructed 1,273MAGswith bowtie2 and the abundances were calculated as

Reads Per Kilobase of exon per Million mapped reads (RPKM) by coverM.

Functional analysis of the MAGs
Protein-coding genes for each of the 19,084MAGswere predicted with Prokka93 (version 1.14.6) with the specification of the kingdom

annotated by CheckM. Predicted proteins were subjected to the eggNOG-mapper76 (version 2.1.2) for the annotation of Cluster of

Orthologous Groups (COG) and KEGG and the calculation of the database coverage ratio and functional annotation ratio. The data-

base coverage ratio was defined as the ratio of the protein sequences which were assigned with any eggNOG-mapper hits including

unknown functions. The functional annotation ratio was defined as the ratio of the protein sequences which were assigned with COG

annotations other than S (Function unknown) and R (General function prediction only). Annotation of the carbohydrate-active enzymes

(CAZyme) was performed separately with the hmmscan function in hmmer (version 3.1b2) and dbCAN HMMdb v1069 was used as a

reference hmm profile. E-values less than 1 3 10�18 were regarded as significant in the annotation of the CAZymes.

The predicted protein sequences on the MAGs were dereplicated with MMseqs286 (version 13.45111) with the following

parameters; –cov-mode 1 -c 0.8 –kmer-per-seq 80 –min-seq-id 1. The Dereplicated set of the protein sequences were then merged

with the UHGP-100 and subjected to further clustering with the following parameters; –cov-mode 1 -c 0.8 –kmer-per-seq 80. The

‘–min-seq-id’ option in the second clustering was set at 1, 0.95, 0.9, and 0.5 to dereplicate the protein sequences at 100%, 95%,

90%, and 50% amino acid sequence identity, respectively.

We identified the b-porphyranase sequences in the JMAG and UHGP. We first performed a blastp search with diamond74 (version

2.0.4) ‘–ultra-sensitive’ mode. The dereplicated protein sequences for the JMAG and UHGP were queried against the
e5 Cell Genomics 2, 100219, December 14, 2022



Resource
ll

OPEN ACCESS
b-porphyranase sequences identified in the previous study21 and available in NCBI (PorA, PorB, PorC, PorD, and PorE). Since the

b-porphyranase has high sequence similarity to other proteins such as b-agarase and k-carrageenase, we set a relatively strict

threshold for E-values (<1 3 10�40). In addition, we constructed a maximum-likelihood phylogenetic tree from the identified b-por-

phyranase sequences and other related proteins (i.e. b-porphyranase, b-agarase, and k-carrageenase) published in the previous

study21 for confirming that our pipeline discriminated b-porphyranase from other related proteins. First, we made an MSA with

MAFFT80 (version 7.486) with the ‘–auto’ parameter. Then, we generated a phylogenetic tree by iqtree with the ‘VT + F + R4’ model

which was chosen as the best-fit model by the ModelFinder and visualized it with iTOL. To profile the taxonomic and geographic

features of the b-porphyranase among the JMAG and UHGP, we extracted all the protein sequences which belong to the protein

clusters of the b-porphyranase. For the calculation of the AAI between the b-porphyranase sequences, we performed an all vs all

blastp search with the default setting and pident was used as the AAI. For the read-based quantification of the b-porphyranase,

we translated and mapped the 1,000,000 paired-ends reads against the non-redundant b-porphyranase sequences in the JMAG

and UHGP (Figure S6A), using the ‘blastx’ function in the diamond. We extracted the blastx hits with R95% identity and

E-value < 10�10. If the blastx had multiple hits, hits with the highest bitscore were selected. Abundance was calculated as a (total

length of the alignment length of the query sequences)/(total sequencing length).

Analysis of the Japanese-specific species-level clusters
To identify Japanese-specific species-level clusters, we checked the (i) number of the JMAG genomes and (ii) number of the non-

Japanese-derived MAGs contained in the corresponding UHGG clusters for all of the species-level clusters in the JMAG. The

species-level clusters which contained R10 JMAG genomes and %1 UHGG genome were defined as the Japanese-specific spe-

cies-level clusters. Based on the eggNOG-mapper annotation, we profiled the CAZyme profiles of the MAGs in these clusters. We

extracted the CAZymes which satisfied (i) [within-cluster ratio of the MAGs which had the CAZymes] > 0.75, (ii) [within-cluster ratio of

the MAGs which had the CAZymes] > 53 [within-phylum ratio of the MAGs which had the CAZymes], and (iii) [within-cluster ratio of

the MAGs which had the CAZymes] > 5 3 [within-JMAG ratio of the MAGs which had the CAZymes]. We extracted the protein

sequence clusters made by MMSeqs2 (dereplicated at 90% AAI) which included the extracted CAZymes. For the extracted protein

sequence clusters, we checked the (number of the protein sequences from the Japanese-specific species-level cluster)/(number of

the protein sequences in the JMAG) to evaluate the uniqueness of the CAZyme profiles of the Japanese-specific species-level clus-

ters among the JMAG.We also checked the (number of the protein sequences in the JMAG)/(number of the protein sequences in the

JMAG and UHGP) to evaluate the Japanese-specificity of the extracted CAZymes. For the read-based quantification of the

CAZymes, we translated and mapped the 1,000,000 paired-ends reads against the extracted CAZyme sequences described in Fig-

ure S3A, using the ‘blastx’ function in the diamond. We extracted the blastx hits withR95% identity and E-value < 10�10. If the blastx

had multiple hits, hits with the highest bitscore were selected. Abundance was calculated as a (total length of the alignment length of

the query sequences)/(total sequencing length). Only the HC samples were used for the calculation of the mean abundances.

Strain-level analysis of the JMAG
Reference prokaryotic genomes composed of the 1,273 species-level representative JMAG genomes were indexed with bowtie2.

Then, wemapped the quality-controlled sequencing reads to the reference genomeswith bowtie2. Themapped-read data were con-

verted to bam format by samtools95 (version 1.10) and individually subjected to the ‘profile’ function in inStrain with the ‘–database_

mode’ option. Then, the results of the ‘profile’ function were merged with the ‘compare’ function in inStrain per dataset because

merging the results of all the samples was not computationally scaled. We set a threshold for the population ANI (popANI; a metric

introduced by Olm et al.32 to detect the strain-sharing) at R99.999% to define the sharing of the strain between two individuals ac-

cording to the validation in the original study. As for the taxa for which strain sharing was detected in at least three datasets, the

‘compare’ function in inStrain was run with all the samples with the specification of the single taxa.

Association tests between food-related bacteria and rs671
We genotyped the 550 subjects using Infinium Asian Screening Array (Illumina, San Diego, CA, USA). This genotyping array was

built using an East Asian reference panel including whole-genome sequences, which enabled effective genotyping in East Asian

populations.

We applied stringent quality control filters to the genotyping dataset using PLINK90 (version 1.90b4.4) as described elsewhere.102

We confirmed that genotyping call rate was <0.98 for all the individuals. For pairs of closely related individuals (PI_HAT calculated by

PLINK >0.185), we removed either of the related individuals. We confirmed that only the individuals of the estimated East Asian

ancestry were included in this study, based on the principal component analysis with the samples of the HapMap project using

EIGENSTRAT.77 After the quality control procedures, we obtained the genotype data of rs671 for 546 subjects (Table S3).

As for the five bacterial species which satisfied (number of the samples involved in the strain-sharing)/(number of the samples used

for the analysis of the target species) R 0.5 in the strain-sharing analysis, we obtained the abundances. Note that samples with the

usage of antibiotics were not included in this analysis. Quality-controlled reads were mapped to the reference genome of the recon-

structed 1,273MAGswith bowtie2, and themean coverages of each genome calculated by coverM genome function were divided by

‘total sequencing length/1,000,000,000’ and subjected to the log transformation.
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We evaluated the association between the bacterial abundances and the genotypes of rs671 by linear regression analysis with the

following formula; normalized abundance of the bacterial abundance� rs671 genotype (dosage of the A allele) + age + sex + pheno-

type + dataset + total sequencing length. The significance of the associations was evaluated by Wald’s test for the effect size of the

rs671 genotype. In the sub-analysis without disease samples, we performed linear regression analysis with the following formula;

normalized abundance of the bacterial abundance� rs671 genotype (dosage of the A allele) + age + sex + dataset + total sequencing

length.

In the MR analysis for the five food-related bacteria, we used the result of the previous dietary habits GWAS in the Japanese pop-

ulation.37 Since dairy (milk and yoghurt) and natto had genome-wide association (p < 53 10�8) only with the rs671 (effect size = 0.113

and p = 6.43 10�18 for milk; effect size = 0.113 and p = 6.03 10�21 for yoghurt; effect size =�0.114 and p = 2.73 10�24 for natto), we

performed Wald’s test as implemented in the TwoSampleMR package.38

Reconstruction of viral genomes
The assembled contigs longer than 5kbp were used for the detection of viral genomes by VirSorter39 (version 1.0.6) and VirFinder40

(version 1.1). VirSorter was performed using Viromes (–db 2) databases, and sequences sorted as viruses with the ‘‘most confident’’

prediction (category 1, 4) or ‘‘likely’’ prediction (category 2, 5) were extracted for further analysis. Contigs with the VirFinder score of

R0.9 and p < 0.01 were also extracted for further analysis. We applied CheckV41 (software version 0.7.0, database version 1.0) to all

the viral sequences to estimate the completeness of the viral genomes and remove the flanking host regions on the assembled pro-

phages. Subsequently, we checked the number of the viral genes and host genes based on the CheckV annotations. We extracted

31,395 viral genomes of which genome completeness >50% and the number of viral genes > the number of host genes for further

analyses.

Clustering and taxonomic annotation of the viral genomes
The 31,395 viral genomes were clustered into species-level vOTUs at the 95% ANI and 85% alignment fraction of the shorter

sequence as previously described.20 We performed all vs all blast using the blastn function in the blast+89 (version 2.5.0) with the

’–max_target_seqs 100000 option and the result were subjected to the greedy clustering with the previously published custom

scripts.20 After the clustering, we obtained 12,213 species-level vOTUs. Same clustering procedures were performed for the viral

genomes with completeness >50% in the GPD and MGV.

We extracted all the representative viral genomes from the JVD, GPD, and MGV and they were merged with the RefSeq viral

genomes and previously published crAss-like phage genomes (taxonomic reference genomes) for subsequent clustering and taxo-

nomic annotation. Themerged viral genomeswere clustered into species-level vOTU as described above and resulted in 94,714 spe-

cies-level vOTUs. We extracted representative genomes from each of the species-level vOTUs and clustered them into family- and

genus-level vOTUs based on the gene sharing ratio and AAI as previously described.20 The 94,714 viral genomes were subjected to

prodigal92 (version 2.6.3) with the ‘-p meta’ option. Then all vs all blastp search by diamond was performed with the ‘–max_target_

seqs 10000 –evalue 1e-5’ options. Then, pairwise gene-sharing and AAI were calculated for all the pairs of the viral genomes. For

clustering, edges between viral genomes were filtered based on their minimum AAI and gene sharing ratio. We performed Markov

clustering by MCL (version 14.137)83 using the following parameters and thresholds for gene sharing ratio and AAI; inflation factors:

1.1, 1.4, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0; gene sharing ratio: 10, 15, 20, 30; AAI: 10, 15, 20, 25, 30, 40, 50, 60. We then selected the following

filtering thresholds andMCL inflation factor that resulted in the highest accuracy103 for the family- and genus-level annotations of the

RefSeq viral genomes and previously published crAss-like phage genomes; genus-level vOTU:R40% AAI,R30% gene sharing ra-

tio, inflation factor = 2.0; family-level vOTU: R25% AAI, R10% gene sharing ratio, inflation factor = 1.4. In this setting, accuracies

were 0.77 for the genus-level vOTU and 0.68 for the family-level vOTU (Table S6).

Using the clustering results, we performed taxonomic annotation of the viral genomes based on the taxonomic information of the

reference genomes. First, if the viral genome was clustered into a species-level vOTU which contained taxonomic reference ge-

nomes, we annotated the taxonomic information which was concordant among the R75% of the taxonomic reference genomes

and higher than genus-level. Second, the same procedures were repeated based on the genus-level vOTU information for unanno-

tated genomes. Third, unannotated viral genomes clustered into a family-level vOTU which contains R2 taxonomic reference ge-

nomes, we annotated the taxonomic information which was concordant among the R75% of the taxonomic reference genomes

and higher than family-level. After the taxonomic annotation procedures, we annotated family-level taxonomy for the 8,873 of

31,395 newly reconstructed viral genomes. The 9,167 GPD genomes and 43,817 MGV genomes were taxonomically annotated at

the family level both in the original studies and this study. Although the recent taxonomic modification of the Podoviridae lowered

the overall family-level taxonomic concordance between the original study and this study (73.1% for the GPD and 83.9% for the

MGV), high family-level taxonomic concordance was observed for viruses that were not annotated as Podoviridae in the previous

studies (95.7% for the GPD and 97.9% for the MGV).

Functional analysis of the viral genomes
Protein-coding genes for each of the viral genomes were predicted by prodigal with the ‘-p meta’ option. Predicted proteins were

subjected to the eggNOG-mapper and hmmscan function in the hmmer against the VOG database44 (E-value < 1 3 10�5) for the

annotation of the KEGG and VOG and calculation of the database coverage ratio and functional annotation ratio. The database
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coverage ratio was defined as the ratio of the protein sequences which were assigned with any eggNOG or VOG hits including un-

known functions. The functional annotation ratio was defined as the ratio of the protein sequences which were assigned with either

COG annotations other than S (Function unknown) and R (General function prediction only) or VOG annotations other than Xu (Func-

tion unknown). AMGs among the KEGG genes were defined based on the previously published manually curated list of the AMGs.46

Predicted protein sequences on the viral genomes from the JVD, MGV, and GPD were dereplicated with MMseqs2 with

the following parameters; –cov-mode 1 -c 0.8 –kmer-per-seq 80 –min-seq-id 1. The Dereplicated set of the protein sequences

from the JVD, MGV, and GPD were then merged and subjected to further clustering with the following parameters; –cov-mode

1 -c 0.8 –kmer-per-seq 80. The ‘–min-seq-id’ option in the second clustering was set at 1, 0.95, 0.9, and 0.5 to dereplicate the protein

sequences at 100%, 95%, 90%, and 50% amino acid sequence identity, respectively.

Subfamily-level annotation of the crAss-like phages
We extracted the 1,378 putative crAss-like phage genomes which represented the species-level vOTUs. We annotate the subfamily

of the crAss-like phage genomes based on the major annotation of the taxonomic reference genomes which were co-clustered into

the same genus-level vOTUs. We checked the validity of the subfamily of crAss-like phages by constructing the maximum-likelihood

phylogenetic trees for TerL, a previously reported marker gene.42,104 First, we identified the TerL from the predicted protein se-

quences on the crAss-like phage genomes by the hmmsearch function in hmmer against previously constructed hmm profiles.42

We then extracted the significant hits (E-value < 0.05) and constructed MSAs by MAFFT with the default parameter. The detection

ratio of the TerL was 87.9%. We constructed phylogenetic trees from the MSAs by iqtree, and results were visualized by iTOL. ‘LG +

R9’ model was selected as the best model by the ModelFinder.

Interpopulational comparisons of the crAss-like phages
For the interpopulational comparisons based on the number of the viral genomes, we utilized the viral genomes from the JVD and

MGV. The geographical origin of the viral genomes from the MGV was defined in the original study. Fisher’s exact tests were per-

formed for the contingency tables made from the following four numbers; (i) number of the b crAss-like phage genomes from the

target population, (ii) number of the non-b crAss-like phage genomes from the target population, (iii) number of the b crAss-like phage

genomes from the reference population, and (iv) number of the non-b crAss-like phage genomes from the reference population. We

performed 21 tests in total.

For the comparison of the crAss-like phage abundances, only the HC samples were used. The 94,714 representative genomes of

the species-level vOTUswere indexedwith bowtie2. Quality-controlled readswere down-sampled to 1,000,000 paired-ends reads to

adjust the differences of the library sizes between the datasets andmapped to the reference genomewith bowtie2. Abundanceswere

calculated as Reads Per Kilobase of exon per Million mapped reads (RPKM) by coverM and summed up for each subfamily and

genus-level vOTU of the crAss-like phages. Then the compositions among the crAss-like phages were calculated for each sample

and averaged over the samples from the same groups.

Case–control comparisons of the crAss-like phages
Samples with the usage of the antibiotics were removed from case–control comparisons (Table S9). Quality-controlled reads were

mapped to the reference genome with bowtie2. Abundances were calculated as mean coverage of each viral genome by coverM

genome function, divided by ‘total sequencing length/1,000,000,000’, and summed up for each subfamily and genus-level vOTU

of the crAss-like phages. Only the clades which satisfied the following three criteria were retained and subjected to the log transfor-

mation for subsequent analyses; (i) detected in >20% of samples used for case–control comparison (ii) detected in both case and

control samples (iii) adjustedmean coverageR0.001.We evaluated the association between the crAss-like phages and the diseases

(RA, SLE, MS, UC, CD, and CoCa) by logistic regression analysis with the following formula; disease state � crAss-like phage abun-

dance + age + sex + dataset + total sequencing length. The significance of the associations was evaluated by Wald’s test for the

effect size of the crAss-like phage abundance.

As for the tested clades, we also performed the association analyses with the Shannon index. Quality-controlled reads were down-

sampled to 1,000,000 paired-ends reads to adjust the differences of the library sizes between the datasets. Then, the down-sampled

reads were mapped to the reference genome of the reconstructed 1,273 MAGs with bowtie2 and the mean coverage matrix was

calculated with coverM. The resulting matrix of the mean coverage was subjected to the diversity function in the R package vegan

(version 2.5_6) to calculate the Shannon index. We evaluated the association between the crAss-like phages and Shannon index by

linear regression analysis with the following formula; Shannon index� crAss-like phage abundance + age + sex + phenotype + data-

set + total sequencing length. The significance of the associations was evaluated by Wald’s test for the effect size of the crAss-like

phage abundances.

Virus–prokaryote association analysis based on the CRISPR and prophages
We predicted the CRISPR sequences on the reconstructed MAGs with MinCED85 (version 0.4.2). Spacers within the predicted

CRISPR sequences were queried against the viral contigs recovered from the gut metagenome data. Since the MGV and GPD

have significant overlap, we performed MGV vs GPD blastn search and dereplicated at 100% ANI over 100% aligned fraction of

the shorter sequences. Blast hits of the spacers with >95% ANI, end-to-end alignment, and spacer coverage >95% were retained
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for further analysis. For each spacer, we extracted all the blast hits with the highest bit-score, and if the phylum-, class-, order-,

family-, genus-, or species-level taxonomy were consistent among more than a half of the blast subjects, taxonomic information

of the target viruses was annotated to the spacer. If the taxonomy of the target of the spacer could not be determined, an ‘‘ambig-

uous’’ label was assigned. The same procedures were repeated for the CRISPR sequences identified within the UHGG in the

previous study.20

In addition to the CRISPR sequences, we utilized prophage information to identify virus–prokaryote interaction. Among the proviral

contigs determined by CheckV, we extracted contigs of which >50% were covered with host’s sequences.

Virus–prokaryote association analysis based on the abundance
Samples with the usage of antibiotics and insufficient clinical information were removed from this analysis as done in the association

analysis between the crAss-like phages and Shannon index. Quality-controlled reads were mapped to the reference genomes of the

1,273 JMAG genomes, 4,644 UHGG genomes, and 94,714 representative genomes of the species-level vOTUs with bowtie2,

respectively. The mean coverage of each genome was calculated by the coverM genome function and divided by ‘total sequencing

length/1,000,000,000’.

We extracted the viruses and prokaryotes which were conferred to participate in the virus–prokaryote interaction from the JMAG

CRISPR analysis, UHGG CRISPR analysis, and JMAG prophage analysis, respectively. Then, we retrieved the abundance of the vi-

ruses and prokaryotes which passed the following criteria; (i) detected in >20%of samples (ii) detected in all the datasets (iii) adjusted

mean coverage R0.001. Abundances of the viruses and prokaryotes were subjected to the log transformation. We evaluated the

association between the viruses and the prokaryotes by linear regression analysis with the following formula; prokaryotic abundance

� viral abundance + age + sex + phenotype + dataset + total sequencing length. The significance of the associations was evaluated

by Wald’s test for the effect size of the viral abundance.

Comparison of the viral and prokaryotic numbers and abundances between Japanese and other populations
For each species-level vOTU, we counted the number of viruses derived from Japanese and other populations from the JVD and

MGV. Then we defined the odds ratio for being Japanese-derived as follows; (number of the Japanese-derived viruses belonging

to the vOTU/number of the other viruses belonging to the vOTU)/(number of the Japanese-derived viruses not belonging to the

vOTU/number of the other viruses not belonging to the vOTU). For each species-level cluster of the JMAG genome which have

the corresponding cluster in the UHGG, we merged the JMAG and UHGG clusters and defined the odds ratio for being Japa-

nese-derived as follows; (number of the Japanese-derived bacterial genomes belonging to the cluster/number of the other bacterial

genomes belonging to the cluster)/(number of the Japanese-derived bacterial genomes not belonging to the cluster/number of the

other bacterial genomes not belonging to the cluster).

We extracted species-level vOTU–prokaryotic cluster pairs which were detected in the JMAG CRISPR analysis. Among the pairs,

we retained only pairs whose species-level vOTU were included in both the JVD andMGV and the prokaryotic cluster was present in

both the JMAG and UHGG. Then, we evaluated the enrichment of the virus–bacteria pairs which had same sign of the log odds ratios

for being Japanese-derived based on the Fisher’s exact test.

We also checked the differences of the viruses-prokaryotes interaction by read count-based approach. We extracted species-

level vOTU–prokaryotic cluster pairs which were detected in the JMAG CRISPR analysis. Quality-controlled reads were down-

sampled to 1,000,000 paired-ends reads to adjust the differences of the library sizes between the datasets. Then, the down-sampled

reads were mapped to the reference genomes and abundances were calculated as RPKM by coverM for the JMAG and viruses,

respectively. For each comparison between Japan and other populations, only the pairs of which viruses and bacteria satisfied

the following criteria were considered; (i) detected in >20% of samples (ii) detected in both of the populations (iii) RPKM R0.001.

Fold changes between Japan and other populations were calculated for each species-level vOTU and prokaryotic cluster. Then,

we evaluated the enrichment of the virus–bacteria pairs which had the same sign of the log fold-changes between the abundances

in Japanese and other populations based on the Fisher’s exact test.

Network analysis of the crAss-like phages
We extracted all the CRISPR spacers in the JMAG and UHGG genomes which supported the link between the crAss-like phage spe-

cies-level vOTUs and MAGs. Then, we counted the number of the spacers which supported the link between the crAss-like phage

species-level vOTUs and bacterial genus for the JMAG and UHGG, respectively. We constructed a network plot with the ggraph

package (version 2.0.4). We specified ’kk’ as a layout option to place nodes based on the spring-based algorithm by Kamada

and Kawai. The bar plot was based on the combined number of the spacers in the JMAG and UHGG.

QUANTIFICATION AND STATISTICAL ANALYSIS

Please refer to figure legends and method details for details of statistical analysis. Number of the samples used in the analyses are

described in Tables S1, S3, and S9.
e9 Cell Genomics 2, 100219, December 14, 2022


	Prokaryotic and viral genomes recovered from 787 Japanese gut metagenomes revealed microbial features linked to diets, popu ...
	Introduction
	Results
	Reconstruction of MAGs from the Japanese MSS data
	Taxonomic and population annotation of the β-porphyranase
	Strains of food-associated bacteria were shared among the Japanese population
	Reconstruction of viral genomes from Japanese MSS data
	Interpopulational and case-control comparisons of the crAss-like phages
	Virus-host interaction analysis with CRISPR, prophage, and co-abundance
	Virus-bacterium interaction network for crAss-like phages

	Discussion
	Limitation of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Subject participation

	Method details
	Sample collection and DNA extraction
	Whole-genome shotgun sequencing
	Quality control of sequencing reads
	Reconstruction of MAGs
	Analysis for the species-level representative MAGs
	Comparative analysis of Bacillus subtilis genomes
	Functional analysis of the MAGs
	Analysis of the Japanese-specific species-level clusters
	Strain-level analysis of the JMAG
	Association tests between food-related bacteria and rs671
	Reconstruction of viral genomes
	Clustering and taxonomic annotation of the viral genomes
	Functional analysis of the viral genomes
	Subfamily-level annotation of the crAss-like phages
	Interpopulational comparisons of the crAss-like phages
	Case–control comparisons of the crAss-like phages
	Virus–prokaryote association analysis based on the CRISPR and prophages
	Virus–prokaryote association analysis based on the abundance
	Comparison of the viral and prokaryotic numbers and abundances between Japanese and other populations
	Network analysis of the crAss-like phages

	Quantification and statistical analysis



