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Synthesis and characterization 
of partially silane‑terminated 
polyurethanes reinforced 
with acid‑treated halloysite 
nanotubes for transparent armour 
systems
Rafaela Aguiar, Ronald E. Miller* & Oren E. Petel

In the present work, nanocomposites based on the partially silane-terminated polyurethanes 
reinforced with sulfuric acid-treated halloysite nanotubes were synthesized and evaluated as a 
potential candidate for transparent blast resistant configurations. The polyurethane must present 
high tensile ductility at high strain rates to be able to contain fragments and increase the survivability 
of the system. Gas-gun spall experiments were conducted to measure the dynamic tensile 
strength (spall strength) and fracture toughness of the nanocomposite and neat polyurethane. The 
nanocomposite presented a 35% higher spall strength and 21% higher fracture toughness compared 
to the neat polyurethane while maintaining transparency. The recovered samples following the spall 
tests were analysed via scanning electron microscope fractographies. The nanocomposite and neat 
polyurethane samples were chemically characterized via Fourier transform infrared spectroscopy and 
melting behaviour via differential scanning calorimetry. The improved properties can be attributed, 
in large part, to the presence of more rigid spherulitic structures, and a rougher fracture surface 
constituting of several micro-cracks within the nanocomposite.

Transparent armour systems must protect against blast and ballistic threats while maintaining structural integ-
rity and optical transparency. Generally, transparent armour systems are composed of laminated glasses sheets 
bonded together by thin adhesive interlayers of polyvinyl butyral, polyurethane, and/or ethylene–vinyl acetate 
films, normally combined with polycarbonate as a backing layer. To achieve ballistic protection requirements; 
the glass layers are generally much thicker than the polymeric layers, which leads to thick and heavy armour 
solutions1,2. Material improvements that allow weight reductions among transparent armour systems are of great 
interest for personal and vehicular applications.

Polymers are extensively used in armour applications. Stretched polymers fibers (e.g., Aramids) are widely 
used in the ballistic fabrics integrated into soft armour and spall liner applications3. Transparent polymers have 
historically seen broad use in transparent armour applications, and while they continue to be used as cost-
effective solutions in some visor and ballistic eyewear applications, their primary role in more robust armour 
solutions has been relegated to interlayer or backing support for transparent ceramics1,4. Figure 1a shows an 
illustrative representation of a typical transparent armour structure. Polyurethanes (PU) are commonly adopted 
as interlayers in ceramic laminated systems due to their high-tensile ductility and adhesive properties, which 
provides the containment of armour fragments and increases the spall resistance of the ceramic layers5. Figure 1b 
presents a relative transparency comparison between a 9.5-mm-thick polycarbonate plate with and without a 
halloysite/polyurethane nanocomposite adhesive backing layer. The adhesive layer consisted of a 1.5-mm-thick 
layer of silane-terminated PU reinforced with HNT. The red arrows show the edges of the backing layer, beyond 
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which the layer is thin or not evenly applied, however, the central region of the two plates can be compared for 
their relative transparency.

Polyurethanes can be defined as a class of polymers which have urethane group in their structure. Polyure-
thanes are block copolymers, formed by a combination of hard and soft domains. The mechanical properties of 
PUs are related to the relative volumetric fractions of these hard and soft segments, the intrinsic properties of 
each block, the details of molecular packing of the constituents within the phases, and the density of hydrogen 
bonding. From a macromolecular scale perspective, the structure of PU consists of a soft matrix with hard 
domains acting as a reinforcement segmented phase6.

Halloysite (HNT) is a hydrated polymorph of the kaolin group, which includes kaolinite, dickite and nacrite. 
Kaolin minerals are 1:1 dioctahedral clays, with the empirical formula Al2Si2O5(OH)4 . The external surface of 
the HNT has a tetrahedral sheet structure that consists of siloxane groups (Si–O–Si), while its internal structure 
has a gibbsite octahedral structure is formed by aluminol groups (Al–OH). The hydrated HNT presents a basal 
spacing (d001) of 10 Å, and the dehydrated HNT has a 7 Å spacing7,8. Kaolinite and HNT can frequently be found 
together. The kaolinite generally presents a platy morphology, while the HNTs can exhibit tubular, spheroidal, or 
platy morphologies9. Information about the mesoscopic structures of HNTs obtained from different geological 
deposits can be obtained via Small-Angle Neutron Scattering10. The characteristic dimensions of HNTs varying 
over ranges of 300–1,500 nm in length, 40–120 nm for the outer diameter, and 15–100 nm for the inner diameter. 
Some of the main characteristics of this aluminosilicate are high aspect (L/D) ratio, high mechanical strength 
and modulus, the possibility of modifying its polar surface, straight morphology with no entanglement, low 
cost, and availability in abundance8.

Published results indicate that the introduction of a low content of HNT can substantially improve mechani-
cal and thermal properties of PU based materials. Gong et al.11 reported an increase of 35% in tensile strength 
of NCO-terminated castor oil-based PU with the introduction of 0.5 wt% of HNTs. Wu et al.12 synthesized 
waterborne PU reinforced with aminosilane modified HNT for coating applications and, reported an increase 
in 200% in tensile strength and 30% increase in elongation at break. Mohammadzadeh et al.13 reported the 
increase in phase separation of shape-memory thermoplastic PU due to the incorporation of 1 and 2 wt% HNT. 
They described an increase in the crystallinity of the polymeric matrix due to a nucleation effect of the HNT 
in the crystallization process13. Smith et al.14 reduced the flammability of PU foam by introducing multilayer 
nanocoatings based on HNT stabilized by poly (acrylic acid) or by branched polyehylenimine, deposited via 
aqueous suspensions. Cone calorimetry results indicated a reduction of 61.7% in the peak heat release rate and 
a 60.1% decrease in the total smoke release.

The reactivity of the HNTs is limited to Si–OH and Al–OH groups that are exposed due to HNT surface 
and crystallographic defects15. The treatment of HNT with sulfuric acid can increase its reactivity, through a 
reaction between the acid and both the inner and outer surfaces of the nanotubes. Thus, the density of potential 

Figure 1.   (a) Illustrative representation of a typical transparent armour configuration and (b) transparency 
evidence of silane terminated PU reinforced with HNT. A 9.5-mm-thick polycarbonate plate without a backing 
layer (left) and the same plate backed with a 1.5-mm layer of the nanocomposite (right).
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sites for bonding increases through the breakage of the HNT structures via dissolution of the AlO6 octahedral 
layers and the breakdown and collapse of SiO4 tetrahedral layers16. As a consequence of this reactivity increase, 
the dispersion of HNTs can be improved within the polymeric matrix, improving the overall transparency and 
mechanical properties of the nanocomposite17.

The introduction of inorganic groups in an organic polymeric structure can generate hybrid materials 
with outstanding properties, that have different potential applications, which depend on their building block 
combinations18. The addition of silane groups even in small quantities can improve different material properties 
in polymeric materials19. Luca et al.20 synthesised hybrid films from epoxidised castor oil, γ-glycidoxypropylt
rimethoxysilane and tetraethoxysilane that had high adhesion to aluminum surfaces, with increased hardness 
and tensile strength, which increased with the concentration of inorganic precursors. Wang et al.21 developed 
waterborne PU/nanosilica composites with triethoxysilane side chain groups. These composites resulted in an 
increase to the tensile strength and hardness at low concentrations, but these properties decreased with increasing 
concentrations of nanosilica incorporation. The authors proposed that this response was due to the anchoring 
of these nanosilica particles onto the side chain of the PU due the condensation reaction between the surface 
silanol groups of nanosilica and the triethoxysilane groups in the side chains of PU. Wu et al.22 overcame the 
very high incompatibility between waterborne PU and polysiloxane via the introduction of alkoxysilane groups 
in waterborne PU’s prepolymer. The authors proved the good dispersibility of the polysiloxane via transmission 
electron microscopy and dynamic light scattering analysis.

In this work, we developed a PU/HNT nanocomposite that maintains high transparency, while significantly 
improving both its dynamic tensile strength and fracture toughness in comparison to the neat PU polymer. 
The PU’s prepolymer was partially terminated through a reaction between the NCO terminations of the pre-
polymer and a secondary aminosilane (3-(N-ethylamino) isobutyl) trimethoxysilane). This reaction resulted in 
monodentate urea linkages and trimethoxysilane terminations in the PU’s prepolymer23. The hydrolysis of these 
silane terminations during the post-curing can possibly result in silanol terminations in the prepolymer end 
groups, which would potentially react via condensation with surface hydroxyl groups of HNT16. The secondary 
aminosilane was added at a weight fraction of 0.6% of the pre-polymer weight. A lower content was preferred to 
prevent a significant increase in the viscosity of the HNT/prepolymer solution. It should be noted that the same 
curative was selected for the neat PU and nanocomposite.

As PU plays an important role in providing tensile ductility to an armour system, the tensile behaviour under 
high strain rates was evaluated in terms of its dynamic tensile (spall) strength and fracture toughness in a classic 
spall failure test configuration. Post-spall recovery of the impacted polymers enabled an evaluation via Scanning 
Electronic Microscopy of alterations to the fracture surface of the polymer.

The spall testing was carried out in a 64-mm smooth-bore single-stage light gas gun at the Impact Research 
Lab facility at Carleton University. These experiments were conducted to measure the dynamic tensile strength 
and fracture toughness of the polymeric samples. Acrylic flyer plates were selected to induce spall in the nano-
composite and neat PU, due to the requirement for plate rigidity and the similarity of their shock Hugoniots24. 
The back-face of the samples were coated with Silver using the SC7620 Quorum sputter coater to provide a 
reflective surface. The velocity histories of the free surface were measured using a two-channel photonic Doppler 
velocimeter (PDV)25,26. A schematic of the experimental configuration is illustrated in Fig. 2a.

The analysis of the free surface velocity history of the spalled sample (Fig. 2b) provides insight into the fracture 
stress and failure kinetics27. After the impact, compression waves propagate in opposite directions in the flyer 
and target materials introducing a steep rise in the free-surface velocity and saturation to a value proportional 
to the impact velocity. When these waves reach the free surface, they are reflected as rarefaction fans leading to 
a progressive decrease on the free surface velocity. The slope of this velocity decay is proportional to the tensile 
strain rate in the target. The spallation occurs if the resultant tensile stresses are high enough to generate mac-
roscopic failure by material separation. A compressive disturbance (Spall Pulse) is generated by the relaxation 
of the tensile stress at fracture, resulting in an increase of the back-face velocity24,28. Information about fracture 
kinetics can be obtained from the analysis of the flow associated with stress relaxation during spalling29.

Figure 2.   (a) Schematic configuration of the gas-gun setup used on the Spall Testing and (b) Illustrative free 
surface velocity history of a spalled material.
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The spall strength (σsp) was calculated using a linear approximation that accounts for elastic–plastic effects 
using the acoustics approach provided by Stepanov30

where ρ , CL , C0 and �ufs represent the initial density, longitudinal sound speed, bulk sound speed, and pullback 
velocity of the free surface, respectively. The acoustic properties of the polymers were determined using an 
Olympus 45MG ultrasonic thickness gage coupled with a delay line transducer at a frequency of 10 MHz. The 
sound speeds were measured to be 1.98 km/s and 2.03 km/s for the neat PU and nanocomposite, respectively. 
The strain rate under tensile unloading ( ̇εu ) was calculated using31.

The strain rate magnitudes experienced by the samples during tensile unloading are on the magnitude of 
104 s−1, thus, the PU presents a glassy-like behaviour under these conditions and the PU failure occurs in a brittle 
fashion32. The fracture toughness (KC) was calculated using the equation proposed by Grady33 for brittle solids

Results and discussion
The Fourier transform infrared spectroscopy (FTIR) spectra for the acid-treated HNT is presented on Fig. 3a, 
where we observed the O–H stretching of the inner surface Al–OH at 3,695 cm−1 groups and inner Al–OH 
groups at 3,620 cm−1. The inner O–H deformation vibration was detected at 910 cm−116. The inner Si–O stretch-
ing vibration was detected at 1,033 and 1,089 cm−1 and intramolecular O–H at 3,427 cm−134. The FTIR spectra 
for PU prepolymer with dispersed HNT before and after the incorporation of the secondary aminosilane are 
shown in Fig. 3a. The reaction was monitored based on the intensity decrease of the NCO peak (2,270 cm−1) and 
emergence of urea (C=O) peaks at 1,610 cm−1, hence the reaction between the prepolymer’s NCO groups and 
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Figure 3.   (a) FTIR spectra (green) of prepolymer with dispersed HNT (HNT-PP), and (blue) HNT-PP after 
addition of aminosilane; (b) scheme of the reaction between the PP and aminosilane; (c) FTIR spectra (green) 
of cured neat PU and (blue) nanocomposite and (d) DSC curves of (green) neat PU and (maroon) HNT-PU 
nanocomposite.
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secondary amine results in urea linkages (Fig. 3b). The resulting trimethoxysilane terminations can be observed 
at 817–774 cm−1. The reaction was observed to reach completion in approximately 8 min.

Considering the measured FTIR spectra of the neat PU and the HNT-PU (Fig. 3c) nanocomposite after cure, 
we observed the disappearance of the NCO peak for both materials, indicating the completion of the cure. The 
nanocomposite presented a more intense and broader N–H stretching peak. This peak shifts from 3,297 cm−1 
for the neat PU to 3,302 cm−1 for the nanocomposite. The upward shift of this absorption band likely occurs due 
to an increase in the overall hydrogen bonding density35.

Through DSC results of the neat-PU and the nanocomposite (Fig. 3d) we identified two endothermic peaks 
at elevated temperatures. These peaks are related with different morphologies of hard segments crystallites; the 
lower temperature peak (Type I) corresponding to the melting of more phase mixed (lower rigidity) crystallites 
and, the higher temperature (Type II) associated with high order (tightly packed) crystallites36.

Both samples presented very similar values of melting temperature for Type I crystallites around 190 °C, 
however the HNT-PU material presented a Type II peak at 244.81 °C and the neat-PU at 229.10 °C. The higher 
melting point of HNT-PU’s Type II crystallites is likely due to a higher density of hydrogen bonding of N–H 
groups from the hard domain segments. This is evidence of a more phase-segmented structure in the HNT-PU 
nanocomposite.

Spectrogram profiles of the flyer plate-impacted samples (Fig. 4) based on the back-face velocity history were 
used to determine information about spall strength for a fixed tensile strain-rate. The results showed a strain rate 
during tensile unloading of approximately 2.75 (104) s−1 for the neat PU and 2.76 (104) s−1 for the nanocomposite. 
The spall strengths of the neat PU and, the nanocomposite were found to be 105 MPa and 143 MPa, respectively. 
The spall pulse from the neat PU velocity profile (Fig. 4a) presents a very sharp front, which indicates a high 
rate of fracture at the spall plane. This is in stark contrast with the spall pulse in the nanocomposite (Fig. 4b), at 
similar strain rate, where the slow and weak spall pulse response indicates a decrease in the damage evolution rate. 
The differences in pulse shape is further evidence of a favorable material response in the nanocomposite, which 
fails through a more energy dissipative failure mechanism. The back-face velocity history of the nanocomposite 
without silane end-groups can be seen on Fig. 4c. For this composite, the measured spall strength was 129 MPa, 
which was measured for a tensile unloading strain rate of approximately 2.79 (104) s−1. Considering the spall 
values obtained for the HNT-PU and the neat PU, the spall strength of the HNT-PU composite without silane 
end-groups was determined to have an intermediate value of spall strength at the same strain rates.

The fracture toughnesses were measured from spall tests that had similar peak shock stresses of 0.96 GPa for 
the neat PU and 0.99 GPa for the nanocomposite. Based on their free-surface spectrogram profiles (Fig. 5), the 
neat PU presented a spall strength of 134 MPa at a strain rate of 3.16 (104) s−1 and HNT-PU material spall strength 
of 149 MPa at a strain rate of 2.83 (104) s−1. The fracture toughnesses were found to be 3.41 and 4.13 MPa m1/2 
for the neat PU and nanocomposite, respectively. These results show that the nanocomposite have a 35% higher 
spall strength and 21% higher fracture toughness compared to the neat PU under similar dynamic conditions.

Figure 4.   Velocity histories for (a) neat PU; (b) HNT-PU and (c) HNT-PU without silane end-groups at the 
same strain rate during tensile unloading.



6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:13805  | https://doi.org/10.1038/s41598-020-70661-3

www.nature.com/scientificreports/

Rate-dependent behaviour was observed for all samples, as the spall strength increased with the tensile strain 
rate. This can be observed by comparing the velocity histories of the neat PU in Figs. 4a and 5a, where with the 
increase of tensile strain-rate a decrease on the slope of the spall pulse front occurs, again indicates a decrease 
in the damage evolution rate, evidence of greater energy dissipation in the PU failure mode29. Through the 
analysis of the SEM fractography of the samples spalled surfaces (Fig. 6), the neat PU at a higher tensile strain 
rate presented a rougher fracture surface with several micro-cracks. The presence of spherulitic superstructures 
(spherical semi-crystalline regions) can be noticed on the fracture surface of the neat PU (indicated on Fig. 6), 
where we also see a tendency for cracks to propagation around the spherulitic regions.

Comparing the fractographies of the neat PU (Fig. 6a) and the nanocomposite (Fig. 7a) for the same tensile 
strain rate, the nanocomposite presented a rougher fracture surface with several micro-cracks. This evidence sug-
gests that the crack propagation in the nanocomposite occurred at a lower strain rate than the comparative neat 
PU sample37. From Fig. 7a, we observed well-dispersed and heavily-coated nanotubes within the nanocomposite 
(Fig. 7a), which indicates good interfacial adhesion between the filler and the PU matrix. The incorporation of 
these HNTs influences the micro-crack nucleation mechanism involved in the spall process in the PU and was 
also seen qualitatively to influence the spherulitic size of the nanocomposite (Fig. 7b). This suggests an interfer-
ence of the HNTs on the spherulite nucleation process within PU. The more tortuous crack propagation path 
due to the mechanisms of multiple micro-cracks and spherulitic deviation are possibly the main toughening 
mechanisms of the nanocomposite38.

This work shows how the partial amino-silane end-capping of PU pre-polymer and incorporation of 0.8wt% 
of HNT can significantly improve the dynamic response of the PU while maintaining transparency as a thin 
layer. The nanocomposite presented a 35% higher spall strength and 21% higher fracture toughness compared 
to the neat PU under the studied dynamic conditions.

FTIR and DSC results provide evidence of enhanced rigidity in the crystallite structures of the nanocomposite. 
Furthermore, through the analysis of the SEM fractography of the spalled surfaces, the nanocomposites presented 
a fracture mechanism with higher energy dissipation than the neat PU. The reinforcement in the macromolecular 

Figure 5.   Velocity histories for (a) neat PU and (b) HNT-PU nanocomposite at the same dynamic loading 
conditions.

Figure 6.   SEM images of fractured spalled surface of neat PU showing spherulitic morphology at tensile strain-
rates of (a) 2.75 (104) s−1 and (b) 3.16 (104) s−1.
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structure, combined with the ability of the HNTs to act as multiple sites for micro-crack nucleation are possibly 
the main toughening mechanisms of the nanocomposite.

The obtained results present the potential of amino-silane end-capping in PU prepolymer formulations as a 
way to improve chemical compatibility between filler and matrix. The composite material formulation strategy, 
which was focused on the ability of the HNTs to favorably alter the polymeric macromolecular structure during 
polymerization rather than the idea of the HNTs as a reinforcing fiber in a traditional composite, has the potential 
to improve other polymer-based composite systems.

Materials and methods
Materials.  Silane-terminated PU was produced through a reaction between the prepolymer (Poly (propyl-
ene glycol), tolylene 2,4) with NCO content of 7.4% was obtained from Taiwan PU corporation and (3-(N-ethyl-
amino) isobutyl) trimethoxysilane purchased from Gelest Inc. The curative used was 4,4′-Methylenebis (2-chlo-
roaniline), which was obtained from Sigma-Aldrich. The amount of curative added was calculated to ensure 
that all free NCO groups in the prepolymer would be completed reacted following the stochiometric ratio. HNT 
nanotubes, having diameters in the range of 30–70 nm, lengths of 1–3 μm, and surface area of 64 m2/g were 
supplied by Sigma Aldrich.

Acid treatment of HNTs.  The HNTs were dispersed via sonication in distilled water and the sulfuric acid 
was added slowly to obtain a 3 M solution. The solution was kept under constant stirring for 1 h at 90 °C. The 
nanotubes were removed from the acid solution via centrifugation and washed with distilled water. The HNTs 
were dried in a vacuum oven at 120 °C for 12 h and then crushed with a mortar.

Synthesis of nanocomposite.  The HNTs were incorporated into the liquid pre-polymer at a weight frac-
tion of 0.8% and dispersed via sonication prior to the silane termination process. The secondary aminoalkoxy 
silane was added dropwise at a weight fraction of 0.6% of the pre-polymer weight and stirred at 80 °C for 20 min. 
An inert atmosphere was maintained during the process to prevent the premature hydrolysis of the siloxane 
groups. The curative was melted at 110 °C prior adding to pre-polymer, and the mixture was post-cured for 22 h 
at 120 °C in a metallic mold. Next, the samples were kept at room temperature and with a relative humidity of 
50% for 14 days to allow the complete cure.

Material characterization.  The chemical structure of the nanocomposite and neat PU samples were ana-
lysed via Fourier Transform Infrared Spectroscopy (FTIR) in a wavenumber range from 600 to 3,600 cm−1 using 
an Agilent Cary 630 spectrometer. The cured polymeric samples used in the FTIR analysis were flat and had 
dimensions of approximately 80 mm × 20 mm and thickness of 3 mm. Also, were introduced a higher content 
of aminosilane in the liquid prepolymer (5 wt%) to obtain more clear peaks that evidence the reaction progress. 
Differential Scanning Calorimetry (DSC) analyses were performed using a TA Instruments DSC Q20, in a tem-
perature range from 30 to 300 °C with a heating rate of 20 K/min. The thermal analysis was conducted based 
on test method proposed by Frick and Rochman39 for thermoplastic PU. The DSC analysis was performed to 
investigate the influence of the synthesis and process conditions in the resultant crystalline morphology. Scan-
ning Electron Microscopy (SEM) of the recovered samples following the spall tests were recorded using a Tescan 
Vegal microscope. Energy-dispersive X-ray spectroscopy analysis was conducted together with SEM in order to 
identify the HNTs in the PU matrix via INCA Energy Dispersive Spectroscopy.

Spall testing.  The experimental parameters and conditions selected for this study are provided in Table 1. 
To study the effect of HNT reinforcement and silane end-capping on the spall strength of PU, experiments were 

Figure 7.   SEM image of fractured spalled surface HNT-PU nanocomposite at strain-rate of 2.76 (104 s−1) (a) 
rough fractured surface with highlighted spherulitic structure; (b) evidence of heavily-coated nanotube.
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conducted under conditions that would introduce similar tensile strain rates and comparable shock stresses on 
both samples. Identical strain rates were achieved between samples by changing the sample thickness of the 
neat polymer. Fracture toughness comparisons between the neat polymer and HNT-reinforced nanocomposite 
involved tests involving similar values of peak compressive shock stresses in the samples. Considering the glassy-
like response of PU under these strain rate conditions, the spall strength is not assumed to be strongly dependent 
on the peak compressive shock stress. Similar observations have been made in polymethylmethacrylate29.

Received: 5 May 2020; Accepted: 28 July 2020
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