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INRA-LAMETA, Montpellier, France

Abstract
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Introduction

Weitzman [13] is a milestone in the economic theory of

biodiversity. His ‘‘Noah’s Ark Problem’’ is not only a modeled

metaphor that is helpful to organize thinking on how to face

conservation trade-offs with finite resources. It also results in a

practical cost-effectiveness methodology that can serve as inspira-

tion to guide conservation policies. The idea is, for each species i,

to collect information about: i) Ci, the cost of its protection, ii)
DPi, the increase of survival probability resulting from it, iii) Ui,

the direct utility of how much we value the species, iv) Di, its

distinctiveness. From this information, each species is assigned a

number Ri via the formula:

Ri~
DPi

Ci

DizUið Þ , ð1Þ

which indicates its rank in conservation priorities. This ranking

criterion has a theoretical foundation: it is rooted in a rigorous

optimization model ([13], Theorem 4, p. 1295).

This criterion sheds light on real biodiversity issues and has

actually been used in several applications. Some of these have led

to changes in allocation of conservation funding (e.g., in New

Zealand; [9]), and variants have been used to allocate surveillance

effort over space (e.g., [8]). Other applications are quoted in [5].

But it is fair to say that this approach is more appropriate for ex
situ conservation projects - say to build a gene bank or a zoo -

rather than to manage a set of interacting species in their natural

habitats. This is so because formula (1) uses no information of any

kind about the web of life. Yet, in ecosystems, species interact.

Some of them compete to share common resources, others develop

synergies and mutually enhance each other or they simply pertain

to the same trophic chain. Suppose, then, that the conservation

authority has information about those ecological interactions, even

if it is only under the rudimentary form of survival probability

interdependencies. That is, it knows that a marginal increase of

survival probability of species j will have an impact rij on the

survival probability of species i. Could this information be used to

qualify formula (1) and increase its relevance when it comes to in
situ conservation trade-offs?

To our knowledge, three recent articles stress the need to

account for ecological interactions in Weitzman’s diversity

concept. They have in common: i) to take into account the

ecological interactions via interdependent survival probabilities in

a simplified version of the Noah’s Ark metaphor with two species

[1], [11] or three species [12], ii) to show that this consideration

can reverse the conservation priorities. The key of this note is to

provide a general analysis of in situ conservation problems

considering interdependent survival probabilities. Revisiting

Weitzman’s optimization problem, we extend his model in order

to incorporate species interactions. Our principal output is to

forward a general ranking formula that could be used as a rule of

thumb for deciding in situ conservation priorities under a limited

budget constraint.

The sketch of the paper is the following. Section 2 incorporates

ecological interactions in Weitzman’s parable of Noah’s Ark, with

any arbitrary number of species. The crux of the section is to

provide with a new rule for establishing in situ conservation

priorities through the expression (12) below that encompasses

formula (1) as a special case. The link between this formula and

Noah’s optimal policy is explained. Section 3 illustrates the

relevance of this new formula within a two-species example. We

check the robustness of our formula and end the paper with a

discussion on the possibility of ranking reversal in relation to three

stylized kinds of ecological interactions: predation, mutualism and

competition.
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Analysis

The ‘‘Noah’s Ark Problem’’ is a parable intended to be a kind of

canonical form representing how best to preserve biodiversity

under a limited budget constraint. In the initial version of

Weitzman’s modeled allegory, Noah’s decision problem is, for

each species i, to choose a survival probability between a lower

and an upper bound, Pi [ Pi,Pi

� �
, in order to maximize the sum

of the expected diversity function:

W Pif gk
i~1

� �
,

and the expected utility of the set of species:

U Pif gk
i~1

� �
~
Xk

i~1

Ui � Pi :

Weitzman devotes much of his paper to defining the expected

diversity function W Pif gk
i~1

� �
and to explaining its link with the

concept of information content (see his Theorem 1, p. 1284). This

function could take various specific forms, depending on the way

dissimilarity is conceptualized. A precise example, from [13], is

discussed in Section 4. In order for our results to remain as general

as possible, we simply consider in this paper the class of C2

functions, i.e whose first and second order derivative both exist

and are continuous.

And we assume they admit Hessian matrices that are nowhere

negative semi-definite, i.e there is no admissible Pif gk
i~1 such

that the Hessian of W Pif gk
i~1

� �
is negative semi-definite at

Pif gk
i~1. Weitzman’s expected diversity function belongs to this

class. It encompasses - but is not limited to - functions W with a

positive definite Hessian matrix, i.e. that are strictly convex

functions.

Now let us take a step away from this initial metaphor,

towards reality. Two modifications are brought into the

formalism. First, rather than controlling directly the probability

of survival Pi of each species i~1,:::,k, Noah can exert a

protection effort within an admissible range, xi [ 0,�xxi½ �, which

is interpreted as the controlled increase of survival probability

Pi - say that xi is the increase of survival probability for species i
resulting from a protection effort, e.g. an investment in a

vaccination campaign, the provision of supplementary food, the

protection and enhancement of habitat [6]. It is important to

distinguish the effort from the change in the survival probability

because Pi is also determined by other factors, for there are

ecological interactions among species. And this is where our

second, most important, qualification appears: probabilities of

survival are interdependent and the nature of those interactions

are known. Nowadays, Noah can rely on the knowledge gained

from the new and booming conservation biology literature on

species distribution models and population viability analysis. See

for instance[3], [14], [7], or [4] for a recent overview. Note that

this literature does not take into account directly of species

interactions; it just provides estimates of probabilities in space

and time. From there, although applied econometric problems

will have to be overcome, correlations between probabilities

could be estimated.

A group of experts can measure the marginal impact, say rih,

that an increase in the probability of survival of a species h can

have on the probability of survival of another species i: The

experts can also appraise the impact of protection efforts on these

probabilities. Assume, then, that the relationships between

extinction risks are linear. Put differently, a tractable approxima-

tion of all those pieces of information can be summarized by the

system (2) of linear equations:

Pi~qizxiz
X
h=i

rih Ph , qi [ 0,1½ ½ , xi [ 0,�xxi½ �: ð2Þ

There are biological and economic factors that determines

eligible efforts. Formally, admissible ranges of efforts are

|k
i~1 0,�xxi½ �: Implicitly, additional efforts beyond the threshold �xxi

have no effect on the survival probabilities. And we assume:

Pi [ Pi~ Pi,Pi

� �
v 0,1½ �, Vi , V xi [ 0,�xxi½ � :

We denote Pi as the survival probability of species i without any

conservation efforts, xi~0,Pi§Pi: In the absence of natural

interactions, which corresponds to the case studied by Weitzman,

we have rih~0,Vi,Vh. A consequence is that in the very particular

case with no ecological interactions and no conservation efforts,

species i has a probability of survival qi. The survival probabilities

interval, without ecological interactions, would thus take values

ranging from Pi~qi to Pi~Piz�xxi:
Noah also has to cope with a budget constraint:

Xk

i~1

bi � xiƒB : ð3Þ

where B is the total budget to be allocated to conservation -

metaphorically, the size of the Ark - and bi is the cost per unit of

effort to preserve species i.

It is worthwhile making three remarks about this budget

constraint. Firstly, it is assumed that changes in extinction

probability are a linear function of expenditure. This may be

inconsistent in real world applications where the marginal

expense needed to reduce extinction risks is increasing. For

example, [10] documents that the marginal preservation cost of

threatened Australian birds increases when probability of

extinction approaches zero. Weitzman rightly defends this

linearity assumption as an acceptable approximation when the

variation of probability falls in a sufficiently narrow range. But

clearly, if costs are non linear and convex functions of efforts, an

important qualitative result of our paper could change

(Theorem 1 below may not hold any longer). Secondly, as a

formal matter one could retrieve Weitzman’s model with a

simple change of variable, bi:Ci=DPi where Ci is the cost per

unit of increase of survival probability in the range

DPi~Pi{Pi: Thirdly, except when ecological interactions

are negligible, Noah can increase the probability of survival of

any species i via two different channels: a direct one by

increasing the protection effort xi, at a cost bi � xi , and an

indirect one through ecological interactions, due to the

protection of another species j, with a cost bj � xj:

Noah’s Ark problem, when ecological interactions are taken

into account, is then:

Conservation Priorities when Species Interact
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max
xif gk

i~1
[ |k

i~1
0,�xxi½ �

W Pif gk
i~1

� �
zU Pif gk

i~1

� �
, ð4Þ

subject to (2) and (3).

It will be convenient subsequently to work with matrix or vector

expressions, written in bold characters. For any matrix M, let M>

denote its transpose. Further, Ik is the (k|k) identity matrix, ik is

the k dimensional column vector whose elements are all 1, and we

recall the following definition of inequality between two k-

dimensional vectors m and n with components mi and ni

respectively: mƒ{n if miƒni, for all i~1,:::,k: The other basic

relationships between vectors are: i) m~n if mi~ni, for all

i~1,:::,k, ii) mvn if mivni, for all i~1,:::,k, iii) mƒn if miƒni,
for all i~1,:::,k, and m=n: We also need basic matrix operations,

‘‘+’’, ‘‘-’’ and ‘‘*’’, that refer to, respectively the addition, the

subtraction and the multiplication.

Let us define:

Q:

q1

q2

..

.

qk

2
66664

3
77775, R:

0 r12 ::: r1k

r21 0 ::: r2k

::: ::: P
..
.

rk1 rk2 ::: 0

2
66664

3
77775, P:

P1

P2

..

.

Pk

2
66664

3
77775, b:

b1

b2

..

.

bk

2
66664

3
77775

P:

P1

P2

..

.

Pk

2
66664

3
77775, P:

P1

P2

..

.

Pk

2
66664

3
77775, X:

x1

x2

..

.

xk

2
66664

3
77775, X:

�xx1

�xx2

..

.

�xxk

2
66664

3
77775:

In matrix form, the system (2) reads as:

P~QzXzR � P: ð5Þ

Throughout this article, we will assume:

Assumption 1 (INV) The matrix Ik{R is invertible.

Under Assumption (INV), the system (5) can be solved to give:

P~L � QzXð Þ, ð6Þ

where L: Ik{R
� �{1

:

Let P Xð Þ:L � QzXð Þ refer to the affine mapping from efforts

to probabilities. Survival probabilities without protection policies

are therefore:

P~P 0 � ik
� �

, ð7Þ

where 0 � ik is a vector made of k zeroes. Without ecological

interactions, L is the identity matrix, P~Q and

P~PzX~QzX:
Now we can plug (6) into (4) to get rid of probabilities, and

express Noah’s problem only in terms of efforts. Define the two

composite functions, which here are mappings from the values

taken by function P Xð Þ to the set of real numbers:

W 0P Xð Þ:W P Xð Þð Þ,

U0P Xð Þ:U P Xð Þð Þ:

Under Assumption (INV), to each vector X corresponds a

unique vector P~P Xð Þ. Therefore we can define Noah’s problem

with ecological interactions, the constrained maximization of a

function of protection efforts X:

max
X

W 0P Xð ÞzU0P Xð Þ, ð8Þ

subject to:

b> � XƒB , ð9Þ

0 � ikƒ{Xƒ{X : ð10Þ

Results

Two questions arise: i) could anything general be said about the

solution to the problem expressed by (8), (9), (10)? And ii), taking a

more practical stance, could we engineer a simple rule that

approximates the general solution?

Noah’s policy is extreme
Weitzman [13] showed that the solution to Noah’s problem lies

on the boundary of the efforts set. As the set of constraints is made

of linear constraints, the boundary involves corners, e.g. xi~0 or

xi~�xxi, and possibly a segment between two corners, therefore

with xi [ 0,�xxi½ � for at most one species. This can be defined as an

extreme policy. In words, the optimal protection policy gives full

protection to a subset of species, partial protection for at most one

species, and exposes the remaining species to the risk of no

protection.

But what if probabilities are interdependent? We show that

when species interact, the optimal solution is also extreme.

Theorem 1 The solution to Noah’s Ark problem with ecological
interactions, defined by (8), (9) and (10), is an extreme policy.

Proof. The proof rests on two pieces of information:

i) Noahs’ problem is to maximize a continuous function over a

compact set, therefore by Weiestrass extreme value theorem
there exists a solution.

ii) The Hessian matrix of W0P Xð ÞzU0P Xð Þ is not negative

semi-definite, a statement we shall prove below.

Item ii) violates the necessary second order condition for interior

solutions to Noah’s problem and, in combination with item i),

leads to conclude the existence of a solution on the boundary of

the efforts set.

In order to prove item ii), because U0P Xð Þ is linear, we just

have to ensure that the Hessian matrix of W0P Xð Þ is not negative

semi-definite. Recall that P Xð Þ is a k-dimensional vector with

typical element Ph Xð Þ,h~1,:::,k, and let JP Xð Þ stand for the

Jacobian matrix:

Conservation Priorities when Species Interact
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JP Xð Þ:

LP1 Xð Þ
Lx1

LP1 Xð Þ
Lx2

:::
LP1 Xð Þ

Lxk

LP2 Xð Þ
Lx1

LP2 Xð Þ
Lx2

:::
LP2 Xð Þ

Lxk

..

. ..
.

P
..
.

LPk Xð Þ
Lx1

LPk Xð Þ
Lx2

:::
LPk Xð Þ

Lxk

2
66666666664

3
77777777775
:

Note that, since each function Ph Xð Þ is linear, the Jacobian

matrix is made of invariant numbers, so we need not mention the

application point X and we can simply refer to the matrix JP .

Denote +2W0P Xð Þ the Hessian matrix of W 0P Xð Þ, a k � k

matrix with typical elements L2 W0Pð Þ= LxiLxj

� �
. From meticu-

lous derivations of the composite function W0P Xð Þ, and after

simplifications allowed by the linearity of the mapping P Xð Þ, one

obtains:

+2W0P Xð Þ:J>P � +2W Pð Þ � JP :

If +2W0P Xð Þ is negative semi-definite, then for any nonzero

vector m [ Rk we must have:

m> � +2W0P Xð Þ �m~m> � J>P � +2W Pð Þ � JP �mƒ0 :

Notice that JP �m is simply a nonzero (k � 1) vector, which we

may simply call n. Hence we can rewrite the above inequality as:

n> � +2W Pð Þ � nƒ0 ,

which would mean that +2W Xð Þ is negative semi-definite, a

possibility that has been ruled out by assumption. &

A ranking rule for interacting species
Theorem 1 is a qualitative result, that does not indicate which

species should be granted protection and why. This brings us to

our second question; it would be welcome to have an explicit and

easy-to-use approximation of the general solution. Facing the same

problem, this is the practical point of view adopted by [13], which

he describes as ‘‘the main theme’’ of his paper (p. 1294). His

formula (1) offers a ranking that is not really a solution to the

original problem, but rather a first order approximation of an

optimal policy. In order to achieve this, he replaces the objective

function by its linear approximation. He then obtains a classical

linear programming problem, whose solution is to assign grades Ri

given by formula (1) to species (those grades depend on the model

parameters) and order them in decreasing order of importance up

to the point where the budget is exhausted. Those grades are

exactly the practical ranking Noah is looking for.

We follow the same approach here, i.e. we linearize the

objective function. The astute reader knows that, in general, such

approximations can be seriously misleading [2] and should not be

followed blindly. Nevertheless, as proven in Theorem 2 below,

there is something special about Noah’s problem that makes this

practice appropriate here.

Let us denote:

Di :
LW

LPi

����
P~P

, Ui :
LU

LPi

����
P~P

,

and define the two matrices:

A:

D1zU1

D2zU2

..

.

DkzUk

2
66664

3
77775 , U:A> � L:

From simple calculations, the linearized problem in matrix form

turns out to be:

max
X

U � Xzconstant terms, ð11Þ

subject to (9) and (10).

As can be observed in the above approximation of Noah’s

problem, the introduction of ecological interactions changes the

‘‘slope’’ of the objective function to be maximized, which is now

U:A> � L instead of just A>. The crux, from the point of view of

the present note, is to transform the information about ecological

interactions conveyed by matrix R, into operational data via the

matrix L~ Ik{R
� �{1

: Given that Ik{R is invertible, the

computation of the matrix L is easily made and if Lij denotes a

typical element of L, then U is a k-dimensional line vector of the

type:

U~ a1 , a2 , :::, ak½ � ,

where

ai:
Xk

h~1

DhzUhð ÞLhi :

We can now define the ‘‘benefit’’-cost ratios R
i
:ai=bi , or with

explicit reference to relevant information:

R
i
:

DPi

Ci

Xk

h~1

DhzUhð ÞLhi , i~1,:::,k: ð12Þ

As it is well-known, the argmax to the linear programming

problem (11) is to fully protect the species with the highest grade

R
i
, then the species with the second highest grade, and so on and

so forth, up to the point where the budget is exhausted. It means

that there exists a threshold value R
�

such that all species i with

R
i
vR

�
are not embarked in the Ark, whereas those with grade

larger than the threshold are all fully protected, except for at most

one species with grade exactly equal the cutoff value R
�

that is

only partially protected. Let us call XW this policy, which can be

described formally as follows:

Conservation Priorities when Species Interact
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if R
i
vR

�
, species i is granted zero protection, [xi~0 ,

if R
i
wR

�
, species i is granted full protection, [xi~xi ,

if R
i
~R

�
, species i is granted full protection

if there is enough budget,

otherwise the remaining budget

funds its partial protection,

[xi~xi ,

[xi [ 0,xi� ½ :

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð13Þ

As shown in Theorem 2 below, XW is a first order

approximation of the optimal solution to Noah’s Ark problem

with ecological interactions. Put differently, there is a sense in

which expression (12) can be taken for the new practical formula

sought to construct in situ conservation priorities. Observe that the

number assigned to each species i does not depend merely on its

own ‘‘benefits’’ but actually on overall ‘‘benefits’’ generated by

species i on all the species,
Xk

h~1
DhzUhð ÞLhi, via ecological

interactions. Therefore, a species with a strong own interest can be

overridden by another, endowed with a less direct interest, but

whose importance is enhanced because of its ecological role. Of

course, when there are no ecological interactions, L is the identity

matrix, with Lii~1,Lhi~0,Vh=i, and (12) boils down to Weitz-

man’s original system of grades for species i :

R
i
~Ri:

DPi

Ci

DizUið Þ :

One can ask to what extent can we rely on formula (12) to build

a hierarchy among species? Can a conservation policy be based on

such an approximation? Baumol and Bushnell in [2] have

famously attracted the attention on a number of potential flaws

with linear approximations, two of them being important for the

problem at hand: i) a linear approximation to a nonlinear program

need not provide an answer better than a randomly chosen

admissible answer, ii) only if the objective function behaves

monotonically in every variable within the admissible region can

we be assured that a linear approximation will yield results which

represent an improvement over the point where the linearization is

made. Clearly, Noah’s objective function does not meet this last

condition, for an increase of the effort xi can improve the chances

of species i at the expense of another species j (obviously so when i
is a predator for j).

Still, we can prove the following Theorem which establishes a

special interest to the use of a linear approximation in this decision

problem:

Theorem 2 Consider the Noah’s Ark Problem with ecological
interactions, defined by (8), (9) and (10), and call X� its optimal
solution. Then,

i) the approximation of X� by XW , indicated in (13), offers an
improvement compared to the absence of protection,

ii) the approximation error, W0P X�ð Þ{W 0P XW
� �

, is no larger

than K � X
>

ik
� �2

, where K~ max L2 W 0Pð Þ= LxiLxj

� �	 

:

Proof. Item i). The solution proposed in Theorem 2 is

inspired from gradient methods used to find optimal solutions

based on the property of iterative improvements, like the famous

Frank-Wolfe algorithm.

A first step is to replace the objective function by its first order

Taylor approximation Z Xð Þ computed at an admissible vector X0

(here at the zero protection vector X0~0 � ik). Let us note +W0P
the Gradient, a k � 1 vector with typical elements L W 0Pð Þ=Lxi ,

which corresponds actually to the vector U:A> � L given in the

text.

Using those notations:

Z Xð Þ^W 0P 0 � ik
� �

z+W 0P 0 � ik
� �>� X{0 � ik

� �
:

A second step is to find X that maximizes Z Xð Þ subject to the

relevant constraints. Since in Z Xð Þ only the term

+W0P 0 � ik
� �>

X varies, this step is equivalent to maximize (11)

subject to (9) and (10). And the policy XW presented in the

Theorem 2 is exactly the maximizer of this linear programming

problem.

By definition of XW , we must have:

Z XW
� �

§Z 0 � ik
� �

:

u +W0P 0 � ik
� �>� XW {0 � ik

� �
§+W0P 0 � ik

� �>� 0 � ik{0 � ik
� �

~0,
ð14Þ

so the vector XW {0 � ik is an ascent direction for W0P. Although

this means that the approximation Z Xð Þ is non decreasing along

this direction, it is not guaranteed that the non linear objective will

behave similarly, i.e. we cannot yet conclude W 0P XW
� �

§

W 0P 0 � ik
� �

:

By convexity of function W 0P we can write:

W 0P XW
� �

{W0P 0 � ik
� �

§+W 0P 0 � ik
� �>� XW {0 � ik

� �
,

and since we have established in (14):

+W0P 0 � ik
� �>� XW {0 � ik

� �
§0,

we are led to conclude:

W 0P XW
� �

{W0P 0 � ik
� �

§0:

Item ii). Recall that +2W0P stands for the Hessian matrix of

W 0P. Using Taylor expansions, one can write:

W0P X�ð Þ~W 0P 0 � ik
� �

z+W0P 0 � ik
� �>�X�z 1

2!
X�ð Þ �+2W0P Z�ð Þ � X� ,

for some admissible vector Z�, and

Conservation Priorities when Species Interact
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W0P XW
� �

~W 0P 0 � ik
� �

z+W0P 0 � ik
� �>

�XW z
1

2!
XW
� �

�+2W 0P Zwð Þ � XW ,

for some admissible vector Zw: Therefore

W 0P X�ð Þ{W0P XW
� �

~+W0P 0 � ik
� �>� X�{XW

� �

z
1

2!
X�ð Þ �+2W 0P Z�ð Þ � X�

{
1

2!
XW
� �

�+2W 0P Z�wð Þ � XW :

But, by definition of XW

+W0P 0 � ik
� �>� X�{XW

� �
ƒ0 ,

so

W0P X�ð Þ{W0P XW
� �

ƒ

1

2!
X�ð Þ �+2W 0P Z�ð Þ � X�

{
1

2!
XW
� �

�+2W0P Zwð Þ � XW

ƒ

K

2!
X�ð Þ �ik

� �2
{

K

2!
XW
� �

�ik
h i2

ƒK X � ik
� �2

,

where K~max L2 W0Pð Þ= LxiLxj

� �	 

: &

The upper bound K for the approximation error mentioned in

the above theorem if of course related to the non-linearity of

W 0P, formally captured by the second order derivatives

L2 W 0Pð Þ= LxiLxj

� �
. As a matter of interpretation, we can say

that the stronger the curvature of W (the stronger preference for

diversity if W is convex) the larger this upper bound.

A Two-Species Example: Illustration and Discussion
We close this note with an illustration using a simple two-species

example. Let us first study to which extent the consideration of

ecological interactions can alter priorities. Assume for simplicity

that Dr12Dv1,Dr21Dv1. The system (2) becomes:

P1

P2

� �
~

q1

q2

� �
z

x1

x2

� �
z

0 r12

r21 0

� �
P1

P2

� �
:

Here the matrix Ik{R is invertible since r12r21=1.

Solving the system of interactions:

P1~
q1zr12q2zx1zr12x2

1{r12r21
, ð15Þ

P2~
q2zr21q1zx2zr21x1

1{r21r12
: ð16Þ

The grades also can be easily computed. They are:

R
1
~

DP1

C1

D1zU1

1{r12r21

z
r21 D2zU2ð Þ

1{r21r12

� �
,

R
2
~

DP2

C2

r12 D1zU1ð Þ
1{r12r21

z
D2zU2

1{r21r12

� �
:

To further simplify, imagine that C1~C2~C, DP1~

DP2~DP: If ecological interactions are erroneously ignored,

formally Noah assigns zero values by mistake to the system of

interactions: r12~r21~0. Suppose, without loss of generality, that

on this erroneous basis the first species ranks higher:

R1~ D1zU1ð ÞwR2~ D2zU2ð Þ :

In other words D1zU1~k � D2zU2ð Þ, for some kw1:
Two questions arise. Could this ranking be reversed once

interactions are properly taken into account? And, if the answer is

affirmative, why?

When the ranking is reversed:

R
1
vR

2
,

u
D1zU1

1{r12r21
z

r21 D2zU2ð Þ
1{r21r12

v

r12 D1zU1ð Þ
1{r12r21

z
D2zU2

1{r21r12
:

Since 1{r12r21w0, and using D1zU1~k � D2zU2ð Þ, the last

inequality is equivalent to:

u kzr21vkr12z1 ,

u kv

1{r21

1{r12
: (since Dr12Dv1):

So, a ranking reversal occurs when:

1vkv

1{r21

1{r12
: ð17Þ

In order to fix ideas, consider that k is arbitrarily close to one,

i.e. the two species provide similar ‘‘benefits’’ and therefore a

ranking reversal, if any, is due to the consideration of ecological

interactions. Then note that for the above inequality to hold,

necessarily r12wr21, which may occur in various interesting

ecological configurations:

i) Predation: species 1, a predator, feeds on species 2, its prey.

So r21v0 whereas r12w0. Giving conservation priority to
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the prey is the most effective way to enjoy the benefits of both

species.

ii) Mutualism: for example plant-pollinator interactions,

r12,r21w0: The synergistic relation between those two species

is best enhanced by promoting species 2, which has the

largest collective marginal impact.

iii) Competition: two species have to share a common resource in

the same living area that cannot fully support both

populations, hence r12,r21v0, so conservation efforts focus

on species 2 because its marginal negative impact is lower.

Let us now examine the robustness of our results by specifying

an expected diversity function. Denote G the number of genes

jointly owned by the two species whereas Mi is the total number of

genes owned by species i. Assume, as in [13] (expression (5)) that

the expected (genetic) diversity function takes the following

functional form:

W (P1,P2)~P1P2(M1zM2{G)zP1(1{P2)M1

zP2(1{P1)M2z(1{P1)(1{P2)0

~M1P1zM2P2{GP1P2:

Considering relations (15) and (16) between efforts and

probabilities, we obtain:

W 0P x1,x2ð Þ~M1P1 x1,x2ð Þ

zM2P2 x1,x2ð Þ{GP1 x1,x2ð ÞP2 x1,x2ð Þ :

Two questions arise. Can we compare the true solution and the

approximate solution? And can we estimate the error due to the

approximation of the optimal solution? From Theorem 2, the

upper bound on the error due to the approximation can be

computed from the Hessian +2W0P Xð Þ. In this two-species

example, it is easy to derive the following formulae:

L2 W 0Pð Þ= Lx1Lx2ð Þ~L2 W 0Pð Þ= Lx2Lx1ð Þ~{
(1zr12r21)

(1{r12r21)2
G ,

L2 W0Pð Þ= Lx1ð Þ2~{
2r21

(1{r12r21)2
G ,

L2 W0Pð Þ= Lx2ð Þ2~{
2r12

(1{r12r21)2
G :

So the upper bound K on the approximation error, indicated in

Theorem 2, is:

K~(1{r12r21){2 � G �max {2r21,{(1zr12r21),{2r12f g , ð18Þ

a value which depends only on the number of genes owned jointly

by the two species, G, and on the ecological interaction terms, rji:

Of course, this is only an upper bound. In some cases, the

approximation could also give the exact solution. To illustrate this,

assume as before that C1~C2~C, DP1~DP2~DP, that utilities

are identical, U1~U2~U~0, and the upper bounds on efforts

are the same for the two species, �xx1~�xx2~�xx: Assume also that the

total budget can cover the protection cost of only one species,

B~�xx � C=DP. Noah then has to choose among two extreme

policies, the first one x1~0; x2~�xxð Þ that provides the following

expected diversity:

W (0,�xx)~M1
q1zr12q2zr12�xx

1{r12r21
zM2

q2zr21q1z�xx

1{r12r21

{G
(q1zr12q2zr12�xx)(q2zr21q1z�xx)

(1{r12r21)2
,

and the second one x1~�xx; x2~0ð Þ with expected diversity:

W (�xx,0)~M1
q1zr12q2z�xx

1{r12r21
zM2

q2zr21q1zr21�xx

1{r12r21

{G
q1zr12q2z�xxð Þ q2zr21q1zr21�xxð Þ

(1{r12r21)2
:

It is optimal to protect species 2 if:

W (0,�xx)wW (�xx,0)

u
(1{r12r21) M2 1{r21ð Þ{M1 1{r12ð Þ½ �w

G 1{r21ð Þ q1{q2zr12q2{r21q1ð Þz r12{r21ð Þ�xx½ � :

In the particular case where G~0, then Mi~LW=LPi~Di,

and the above condition boils down to a very simple expression:

W (0,�xx)wW (�xx,0)u
M1

M2
~

D1

D2
v

1{r21

1{r12
,

a condition which is also necessary for the approximated solution

to select species 2 (remember condition (17)). It comes as no

surprise that the optimal solution and its approximation concide,

since when G~0 the upper bound on the approximation error is

zero, as can be seen from expression (18).
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