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Background: The prognosis of pancreatic cancer, which is among the solid tumors
associated with high mortality, is poor. There is a need to improve the overall survival
rate of patients with pancreatic cancer.

Materials and Methods: The Cancer Genome Atlas (TCGA) dataset with 153 samples
and the International Cancer Genome Consortium (ICGC) dataset with 235 samples
were used as the discovery and validation cohorts, respectively. The least absolute
shrinkage and selection operator regression was used to construct the prognostic
prediction model based on the DNA methylation markers. The predictive efficiency of
the model was evaluated based on the calibration curve, concordance index, receiver
operating characteristic curve, area under the curve, and decision curve. The xenograft
model and cellular functional experiments were used to investigate the potential role of
DNAJB1 in pancreatic cancer.

Results: A prognostic prediction model based on four CpG sites (cg00609645,
cg13512069, cg23811464, and cg03502002) was developed using TCGA dataset.
The model effectively predicted the overall survival rate of patients with pancreatic
cancer, which was verified in the ICGC dataset. Next, a nomogram model based on
the independent prognostic factors was constructed to predict the overall survival rate
of patients with pancreatic cancer. The nomogram model had a higher predictive value
than TCGA or ICGC datasets. The low-risk group with improved prognosis exhibited
less mutational frequency and high immune infiltration. The brown module with 247
genes derived from the WGCNA analysis was significantly correlated with the prognostic
prediction model, tumor grade, clinical stage, and T stage. The bioinformatic analysis
indicated that DNAJB1 can serve as a novel biomarker for pancreatic cancer. DNAJB1
knockdown significantly inhibited the proliferation, migration, and invasion of pancreatic
cancer cells in vivo and in vitro.
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Conclusion: The prognostic prediction model based on four CpG sites is a new
method for predicting the prognosis of patients with pancreatic cancer. The molecular
characteristic analyses, including Gene Ontology, Gene Set Enrichment Analysis,
mutation spectrum, and immune infiltration of the subgroups, stratified by the model
provided novel insights into the initiation and development of pancreatic cancer.
DNAJB1 may serve as diagnostic and prognostic biomarkers for pancreatic cancer.

Keywords: LASSO, WGCNA, pancreatic cancer, DNA methylation, prognostic prediction, DNAJB1

INTRODUCTION

Pancreatic cancer, which is one of the gastrointestinal tract
malignancies associated with high mortality, is the fourth most
common cause of cancer-related deaths in the United States
of America (1). Due to the specific anatomical position and
malignant phenotype of pancreatic cancer, most patients exhibit
insidious onset and unspecific clinical symptoms at the earlier
stage of pancreatic cancer. Large proportions of patients with
pancreatic cancer are diagnosed at an advanced stage along
with early distant metastasis and neural or vascular invasion.
Thus, patients with pancreatic cancer exhibit a low survival rate
with a 5-year survival rate of less than 5% (2, 3). Currently,
the classical TNM staging and blood tumor markers (CA 19–9,
CA 125, and CEA) are used to assess the risk level in patients
with pancreatic cancer and predict the prognosis, which are not
highly efficient or accurate (4, 5). There is an urgent need to
devise strategies to increase the overall survival rate of patients
with pancreatic cancer, which can be achieved by developing a
sensitive and specific risk prediction model for prognosis. The
novel biomarkers derived from the risk prediction model can
serve as diagnostic, therapeutic, and prognostic biomarkers for
pancreatic cancer.

The initiation and progression of various cancers are
reported to be regulated by epigenetic alterations. DNA
methylation, an important epigenetic regulation, silences tumor
suppressor genes, and upregulates oncogenic genes through
hypermethylation and hypomethylation of the corresponding
CpG islands in the promoter regions, respectively. Several
studies have demonstrated that numerous genes with deregulated
methylation status, such as KRAS, CDKN2A, TP53, CD1D,
MUC4, and MUC1 play vital roles in the progression of
pancreatic cancer (6–8). Moreover, specific DNA methylation
signatures in the circulating DNA from pancreatic juice and
plasma can be used as novel biomarkers for pancreatic cancer
(9, 10). Several prognostic prediction models using DNA
methylation data have been proposed for prostate, gastric,
colorectal, and esophageal cancers (11–14). These studies
indicated that the DNA methylation status is closely associated
with the prognosis of multiple cancers. The development of
high-throughput sequencing and construction of large cancer
genome databases, such as The Cancer Genome Atlas (TCGA)
and International Cancer Genome Consortium (ICGC) have
enabled access to massive sequencing data and the corresponding
clinical data. This study aimed to explore the potential prognostic

values of prognostic prediction model generated based on CpG
sites in pancreatic cancer.

In this study, a prognostic prediction model based on four
CpG sites was established using TCGA dataset. The conclusion
of this model was verified in the external ICGC dataset. Next, this
study demonstrated that the nomogram model generated using
the independent prognostic factors can be used as an efficient
tool for prognostic prediction. Additionally, the comparisons
between molecular subgroups based on the prognostic prediction
model identified novel biomarkers and therapeutic targets for
pancreatic cancer. The molecular characteristic analyses among
subgroups may aid in elucidating the mechanisms underlying
pancreatic cancer.

MATERIALS AND METHODS

Downloading and Preprocessing Data
The DNA methylation, RNA sequencing (RNA-Seq; HTSeq
counts type), single nucleotide variation (MuTect type) data of
patients with pancreatic cancer were downloaded from TCGA
database1. The latest clinicopathological information and clinical
follow-up data of patients with pancreatic cancer in TCGA were
downloaded on 13 November 2019 (15). The DNA methylation
status and clinical data of patients with pancreatic cancer in
the ICGC database (the Australian Pancreatic Cancer Genome
Initiative, https://icgc.org) were used as the validation cohort
(16). In the DNA methylation data, the CpG sites with absent
values in >70% of the samples were removed and the K-nearest
neighbor algorithm was used to estimate and replace the missing
values. The probes from upstream 2 kb to downstream 200 bp of
the transcription start site region were used for further analysis.
In the RNA-Seq data, the genes with missing values in >50% of
the total samples were deleted. The silent mutation and mutation
in the intron region of single nucleotide variation data were
deleted (17). The detailed information of the pancreatic cancer
samples obtained from TCGA and ICGC databases is shown in
Supplementary Tables 1, 2, respectively.

Construction of the Prognostic
Prediction Model Based on CpG Sites
The Cancer Genome Atlas dataset was used as the discovery
cohort. The differentially methylated CpG sites between 10

1https://portal.gdc.cancer.gov/
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normal and 185 tumor samples were identified from TCGA
database. The R package “minfi” was used to normalize the
β-values of methylation data. The Mann–Whitney U test was
performed to select the differentially methylated CpG sites with
adjusted p-value < 0.05 and | log2 fold-change| > 2 (11, 18). The
samples of patients with pancreatic cancer exhibiting survival
time of less than 30 days were removed. In total, 153 samples were
selected to identify the survival-related CpG sites. The CpG sites
with p-value < 0.05 in both Cox and log-rank tests were used for
the generation of prognostic prediction model. The least absolute
shrinkage and selection operator (LASSO) regression was used to
construct the prognostic prediction model using the R package
“glmnet” (19, 20). To verify the effectiveness of the model, the
ICGC dataset with 235 pancreatic cancer samples was used as the
validation cohort.

Nomogram Model Development
To comprehensively utilize the clinicopathological data to
increase the predictive ability of the LASSO model, the
independent prognostic factors were identified based on the
univariate and multivariate Cox analyses. The nomogram was
generated based on the selected independent prognostic factors
and used to predict the 1-, 3-, and 5-year overall survival rates of
patients with pancreatic cancer. The discriminative ability of the
nomogram model was evaluated based on the calibration curve,
concordance index (C-index), receiver operator characteristic
(ROC) curve, and area under the curve (AUC). The decision
curve analysis (DCA) was used to compare the clinical benefits
among these models. The R packages “rms,” “survcomp,”
“timeROC,” “survival,” and “stdca.R” were used for the analysis
(21–23).

Molecular Characteristic Analyses of the
Prognostic Prediction Model
To further explore the mechanisms underlying the prognostic
prediction model, several molecular characteristic analyses were
performed using the high-risk and low-risk groups depending
on the model. The immunological infiltrations of six types of
immune cells were calculated using TIMER (Tumor Immune
Estimation Resource, https://cistrome.shinyapps.io/timer/) (24,
25). The R package “maftools” was used to perform the mutation
spectrum analysis (26). The R packages “clusterProfiler” and
“ggplot2” were utilized to perform and visualize the results of
Gene Ontology (GO) analysis and Gene Set Enrichment Analysis
(GSEA) (27, 28).

Weighted Correlation Network Analysis
(WGCNA) to Identify the Hub Genes
Associated With the Model
The prognostic prediction model effectively predicted the
prognosis of the patients with pancreatic cancer and categorized
the samples into high-risk and low-risk groups. The differentially
expressed genes between the high-risk and low-risk groups
may play a vital role in the progression of pancreatic cancer.
The differentially expressed genes between different groups
were calculated and selected using the R package “DESeq2”

with an adjusted p-value < 0.05 and | log2 fold-change|
> 1 (29). To identify the most relevant genes of the model,
weighted correlation network analysis (WGCNA) was performed
according to the official guideline of the R package “WGCNA”
(30, 31). The parameters used in the analysis were set as follows:
best soft power threshold, 4; minimum module size, 30; merge cut
height, 0.25. The Cytoscape software (version 2.8.3) was used to
calculate and visualize the hub genes in the gene network (32, 33).

Gene Expression Profiling Interactive
Analysis (GEPIA), Kaplan-Meier (KM)
Plotter, and TISIDB Databases
The Gene expression profiling interactive analysis (GEPIA)
website provided the differentially expressed genes between
179 pancreatic tumor samples and 171 normal samples based
on the integrated RNA-Seq data from TCGA and Genotype-
Tissue Expression (GTEx) databases (34). The KM plotter
website provided the genes associated with overall survival and
relapse-free survival of patients from TCGA dataset (35). The
TISIDB website was used to analyze the relationship between
clinicopathological information and gene expression (36).

Cell Culture and Transfection
The four human pancreatic cancer cell lines (AsPC-1, Capan-2,
MIA PaCa-2, and SW1990) and one human normal pancreatic
cell line (hTERT-HPNE) used in this study were purchased
from the American Type Culture Collection (ATCC). The cells
were cultured following the official guidelines provided in the
ATCC website at 37◦C and 5% CO2. The pHBLV-U6-ZsGreen-
puro lentiviral RNAi expression system containing the DNAJB1
shRNA sequence (5′-GGTGCCAATGGTACCTCTTTC-3′) were
designed and provided by Hanbio Biotechnology Co. Ltd.
(Shanghai, China).

Western Blotting and
Immunohistochemical Assay
The western blotting analysis was performed following the
methods of a previous study (37). Equal amounts (30 µg) of
protein were subjected to sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) using a 10% gel. The following
primary antibodies used for the western blotting analysis were
purchased from Proteintech Group (Rosemont, United States):
anti-DNAJB1 (Catalog number: 13174-1-AP; 1:1000): and anti-
alpha tubulin (Catalog number: 11224-1-AP; 1:3000) antibodies.
The immunohistochemical assay was performed following the
methods of a previous study (38).

Cell Proliferation, Invasion, and
Migration Assays
The CCK-8 and colony formation assays were used to estimate
the proliferative ability of different groups. For CCK-8 assay, 2000
cells of different groups were seeded into a 96-well plate. The
cells in each well were incubated with 10 µL of CCK-8 solution
(Beyotime biotechnology Co. Ltd., Shanghai, China) for 60 min.
The optical density of the mixture was measured at 450 mm using
a microplate spectrophotometer. The colony formation assay was
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performed using 1000 cells of different groups seeded in a 6-well
plate. The culture medium was replaced every 3 days. After the
appearance of visible colonies, 4% paraformaldehyde and crystal
violet were used to fix and stain the colonies. The transwell and
wound healing assays were used to analyze the cellular invasion
and cellular migration, respectively. These assays were performed
following the methods described in a previous study (37). The 96-
well plates, 6-well plates, transwell system, and cell culture flask
were purchased from Guangzhou Jet Bio-Filtration Co., Ltd.

Xenograft Tumor Mouse Model
The subcutaneous tumor mouse model was used to assess the
tumor cell proliferative ability in vivo following the method
described in a previous study (39). Twelve BALB/c nude
mice (4-week-old, female) were purchased from Huafukang
Biotechnology Co. Ltd. (Beijing, China). The cells (1 × 106)
of different groups in 100 µL phosphate buffer solution were
injected into the right axillary area of each nude mouse.
The subcutaneous tumor volume was measured and recorded
once a week. The tumor volume was measured as follows:
volume = 0.5 × L × W2, where L is the long axis of the tumor
and W is the short axis of the tumor.

Statistical Analysis
The statistical analyses were performed in the R software (version
3.5.3) and RStudio software. The data were analyzed by two-
tailed Student’s t-test and one-way analysis of variance (ANOVA).
The difference was considered statistically significant when the
p-value was less than 0.05.

RESULTS

Construction of the Prognostic
Prediction Model Based on Four CpG
Sites
To establish the prognostic prediction model based on CpG
sites, 3173 differentially methylated CpG sites were identified
among 10 normal and 185 tumor samples from TCGA dataset
(Supplementary Table 3). Next, 1325 prognosis-related CpG
sites with p-value < 0.05 in both Cox and log-rank tests were
selected for further LASSO regression analysis (Supplementary
Table 4). After the LASSO regression analysis, a prognostic
model based on four CpG sites, namely cg00609645, cg13512069,
cg23811464, and cg03502002, was developed (Figures 1A,B).
The detailed information on the four CpG sites is shown
in Supplementary Table 5. Based on the four CpG site β

values and the corresponding risk coefficients, each patient was
assigned a risk score according to the following formula: risk
score = (cg00609645× 1.461) + (cg13512069×1.226) + (cg23811
464 × 0.539) + (cg03502002 × 0.519). As shown in Figures 1C–
E, the samples from TCGA dataset were separated into
high-risk and low-risk groups based on the median of the
risk scores (cutoff value: 0.694). In order to improve the
universality of the prognostic model, the same cutoff value
was used in the ICGC dataset. The analysis revealed that

the risk score was significantly associated with the overall
survival of patients with pancreatic cancer [Hazard ratio (HR),
11; 95% confidence interval (CI), 5.5–21; p < 0.001] in
the TCGA discovery dataset. Similarly, the risk score also
significantly predicted the overall survival of patients with
pancreatic cancer (HR, 2; 95% CI: 1.4–3; p < 0.001) in the
ICGC validation cohort (Figures 1D–F). These results suggested
that the prediction model based on four CpG sites can be
an effective tool to predict the prognosis of patients with
pancreatic cancer.

Construction of Nomogram Model Based
on the Independent Prognosis-Related
Factors
To develop the nomogram model for predicting the prognosis of
patients with pancreatic cancer, the univariate and multivariate
Cox analyses were performed using the risk score and other
clinicopathological factors. The univariate Cox analysis based
on TCGA dataset revealed that the risk score (HR, 10.72;
95% CI, 5.52–20.80; and p < 0.001), age (HR, 1.03; 95%
CI, 1.01–1.05; and p = 0.016), tumor grade (HR, 1.80; 95% CI,
1.29–2.50; and p < 0.001), clinical stage (HR, 1.54; 95% CI,
1.03–2.29; and p = 0.035), T stage (HR, 2.26; 95% CI, 1.28–
4.00; and p = 0.005), N stage (HR, 2.47; 95% CI, 1.31–4.66;
and p = 0.005), site of resection (HR, 0.50; 95% CI, 0.27–
0.92; and p = 0.026), and radiation therapy (HR, 0.21; 95%
CI; 0.07–0.68; and p = 0.009) can serve as prognosis-associated
factors. According to the general rule, the multivariate Cox
analysis was performed using these prognosis-associated factors
to avoid the overfitting of the multivariable Cox model. The
multivariate Cox analysis revealed that the risk score (HR,
24.68; 95% CI, 7.70–79.14; and p < 0.001), tumor grade (HR,
2.33; 95% CI, 1.16–4.65; and p = 0.017), and radiation therapy
(HR, 0.14; 95% CI 0.04–0.50; and p = 0.003) were independent
prognosis-related factors (Table 1). The nomogram model was
constructed using these independent prognosis factors to predict
the 1-, 3-, and 5-year survival rates of patients with pancreatic
cancer (Figure 2A).

To compare the predictive efficiency among the nomogram
model, TCGA dataset, and ICGC dataset, the AUC of ROC curve
was used to assess the discriminative ability. The nomogram
model (1-year: 0.81, 3-year: 0.91, and 5-year: 0.89) exhibited
better performance in predicting the survival rates than TCGA
dataset (1-year: 0.76, 3-year: 0.87, and 5-year: 0.82) and ICGC
dataset (1-year: 0.64, 3-year: 0.76, and 5-year: 0.55; Figures 2B–
D). The calibration curve of the three models exhibited
satisfactory consistency between the predicted survival rate and
the actual survival rate. However, the C-index of the nomogram
model (C-index, 0.83; 95% CI, 0.78–0.88) was higher than
that of TCGA dataset (C-index, 0.79; 95% CI, 0.73–0.85) and
ICGC dataset (C-index, 0.60; 95% CI, 0.56–0.65; Figures 2E–
G). Moreover, the DCA curve revealed that the predicted clinical
benefits of the nomogram model were better than those of TCGA
dataset and ICGC dataset (Figure 2H). These results suggested
that the prognostic prediction model based on four CpG sites can
serve as an effective model for predicting prognosis in patients
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FIGURE 1 | Development and verification of the prognostic prediction model based on four CpG sites by least absolute shrinkage and selection operator (LASSO)
regression. (A) The selection of tuning parameter (λ) in the LASSO model based on the 10–fold cross–validation with minimum criteria. The log(λ) value of -1.863678
is used for further analysis. (B) The four CpG sites (cg00609645, cg13512069, cg23811464, and cg03502002) and their coefficients were used to construct the
model. (C) The Cancer Genome Atlas (TCGA) dataset (discovery cohort) is divided into high-risk (N = 77) and low-risk (N = 76) groups based on the risk scores
generated from the LASSO model. The Kaplan-Meier survival plots of high-risk and low-risk groups. (D) The Kaplan-Meier survival plot of the high-risk (N = 188) and
low-risk (N = 47) groups of the International Cancer Genome Consortium (ICGC) dataset (validation cohort). (E) From top to bottom, the heatmap of the four CpG
sites in the high-risk and low-risk groups of TCGA dataset (top). The distribution plot of survival time and survival status of high-risk and low-risk groups of TCGA
dataset (middle). The X-axis is the patients’ number with increasing risk scores and the Y-axis is the survival time. The distribution plot of the risk scores of the
high-risk and low-risk groups of TCGA dataset (bottom). (F) The heatmap of the four CpG sites of the high-risk and low-risk groups of the ICGC dataset (top). The
distribution plot of survival time and survival status of the high-risk and low-risk groups of the ICGC dataset (middle). The distribution plot of the risk scores of the
high-risk and low-risk groups of the ICGC dataset (bottom).
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TABLE 1 | Univariate and multivariate Cox analyses of clinicopathological information and risk score of the prognostic prediction model.

Prognostic factors Univariate Cox regression Multivariate Cox regression

HR 95% CI P-value HR 95% CI P-value

Risk score 10.72 5.52–20.80 <0.001 24.68 7.70–79.14 < 0.001

Age 1.03 1.01–1.05 0.016 1.00 0.96–1.04 0.977

Gender 0.82 0.49–1.35 0.428

Grade 1.80 1.29–2.50 <0.001 2.33 1.16–4.65 0.017

Stage (AJCC 7th) 1.54 1.03–2.29 0.035 0.87 0.23–3.23 0.836

T 2.26 1.28–4.00 0.005 1.80 0.51–6.31 0.360

M 0.55 0.07–4.08 0.560

N 2.47 1.31–4.66 0.005 1.50 0.59–3.78 0.395

Alcohol history 1.28 0.72–2.26 0.402

Alcoholic exposure 0.88 0.70–1.10 0.266

Site of resection 0.50 0.27–0.92 0.026 0.48 0.22–1.05 0.066

Radiation therapy 0.21 0.07–0.68 0.009 0.14 0.04–0.50 0.003

Smoking history 0.90 0.75–1.08 0.273

Histologic grading 0.71 0.35–1.45 0.346

with pancreatic cancer. The nomogram model based on the risk
score and other independent factors improved the efficiency of
the prediction model based on four CpG sites.

Molecular Characteristics of the
Subgroups Based on the Prognostic
Prediction Model
The Cancer Genome Atlas dataset was divided into the high-
risk and low-risk groups based on the risk score obtained from
the prognostic prediction model based on four CpG sites. As
the model was significantly associated with the prognosis, it is
important to explore the underlying molecular mechanisms. The
top 10 results of GO analysis of high-risk and low-risk groups,
including molecular function (MF), biological process (BP), and
cellular component (CC), are shown in Figure 3A. The GO
terms were enriched in several important molecular mechanisms,
such as regulation of ion transmembrane transport, regulation of
trans-synaptic signaling, signal release, presynapse, ion channel
complex, postsynaptic membrane, ion channel activity, cation
channel activity, and potassium channel activity, which indicated
a close relationship between cell signaling transduction and the
model. As shown in Figure 3B, the GSEA revealed that glycolysis,
MYC targets, Notch signaling, base excision repair, nucleotide
excision repair, and p53 signaling pathway were significantly
activated, whereas pancreas beta cells, ABC transporters, calcium
signaling pathway, neuroactive ligand-receptor interaction, and
type II diabetes mellitus were significantly inhibited in the
high-risk group. The comparative mutation spectrum analysis
identified genes with different mutational frequencies between
the high-risk and low-risk groups (Supplementary Table 6).
The top 10 genes are shown in Figure 3C. The classical genes
associated with the progression of pancreatic cancer, such as
KRAS, TP53, and CDKN2A exhibited increased mutational
frequency in the high-risk group. Next, the immune cell
infiltration was analyzed using the TIMER website. The immune
scores of CD4 T cell, CD8 T cell, and macrophage in the high-risk

group were significantly lower than those in the low-risk group.
This indicated the immunological enhancement of the low-risk
group (Figure 3D and Supplementary Table 7).

Hub Genes Associated With the
Prognosis Model Were Identified by
WGCNA
The differentially expressed genes between high-risk and low-
risk groups were calculated based on the RNA-Seq data from
TCGA dataset. In total, 1861 differentially expressed genes
with adjusted p-value < 0.05 and | log2 fold-change| > 1
(Supplementary Table 8 and Figure 4A) were obtained. These
differentially expressed genes were used as input data for
WGCNA to identify the correlations between gene co-expression
modules and clinical traits. The best soft power threshold of
WGCNA was set as 4 to maintain the scale-free topology
and competent connectivity (Figures 4B,C). The hierarchical
clustering of WGCNA was utilized to construct five gene co-
expression networks (Figure 4D). As shown in Figure 4E,
the brown module was significantly correlated with the risk
score (correlation coefficient = 0.6, p = 6e–16). Moreover, the
brown module was significantly positively correlated with tumor
grade, clinical stage, and T stage (Figure 4E). These results
suggested that the 247 genes in the brown module played a
significant role in the progression of pancreatic cancer. The
detailed information on the genes of brown module is provided
in Supplementary Table 9. To further identify the hub genes of
the brown module, the correlation between module membership
and gene significance for risk score (Figure 4F) was analyzed. The
top 15 hub genes were obtained using the Cytoscape software and
DNAJB1 served as the hub gene of the network (Figure 4G).

DNAJB1 Was Identified as a Novel
Biomarker for Pancreatic Cancer
To comprehensively analyze the role of DNAJB1 and its
family members in the progression of pancreatic cancer,
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FIGURE 2 | Construction of the nomogram model based on three independent prognosis-related factors. (A) The nomogram model developed to predict 1-, 3-, and
5-year survival rates of patients with pancreatic cancer from The Cancer Genome Atlas dataset. (B) The receiver operating characteristic (ROC) curves of TCGA
dataset to predict the 1-, 3-, and 5-year survival rates. (C) The ROC curves of the International Cancer Genome Consortium (ICGC) dataset to predict the 1-, 3-, and
5-year survival rates. (D) The ROC curves of the nomogram model to predict the 1-, 3-, and 5-year survival rates. (E) The calibration curves for predicting the 1-, 3-,
and 5-year survival rates of patients from TCGA dataset. (F) The calibration curves for predicting the 1-, 3-, and 5-year survival rates of patients from ICGC dataset.
(G) The calibration curves for predicting the 1-, 3-, and 5-year survival rates in the nomogram model. (H) Decision curve analysis of TCGA, ICGC, and nomogram
models.

a systematic analysis of the DNAJB gene family members
(DNAJB1-DNAJB9 and DNAJB11-DNAJB14) was performed.
These differentially expressed genes were all obtained from
patients with pancreatic cancer based on the stratification of
risk score. To verify the diagnostic value of specific genes, the
RNA-Seq data of 179 pancreatic cancer tissues and 171 normal
pancreatic tissues from TCGA and GTEx databases (Figure 5A)

were integrated. As shown in Figure 5B and Supplementary
Figure 1A, the expression levels of DNAJB1, DNAJB5, DNAJB6,
DNAJB11, DNAJB12, DNAJB13, and DNAJB14 were significantly
upregulated in the tumor tissues. The expression of DNAJB1
and DNAJB13 was positively correlated with the clinical stage
(Figure 5D and Supplementary Figure 1B, p < 0.05). The
members of DNAJB gene family associated with overall survival
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FIGURE 3 | Molecular characteristic analyses of the high-risk and low-risk groups based on the prognostic prediction model. (A) The results of Gene Ontology
analysis of the high-risk and low-risk groups, including biological process (BP), cellular component (CC), and molecular function (MF). (B) The activated (top) and
inhibited (bottom) signaling pathways in the high-risk and low-risk groups were subjected to Gene Set Enrichment Analysis (GSEA). (C) The comparative mutation
spectrum analysis of the top 10 genes in the high-risk and low-risk groups. (D) The immune infiltration analysis of six immune cell types in the high-risk and low-risk
groups based on the Tumor Immune Estimation Resource (TIMER) website.

and relapse-free survival were analyzed. The detailed information
is provided in Figures 5G–J and Supplementary Figure 2.
The results indicated that only DNAJB1 could serve as an
unfavorable prognostic factor for overall survival and relapse-
free survival. In contrast, DNAJB2, DNAJB5, and DNAJB7 served

as favorable prognostic factors for overall survival and relapse-
free survival. These results demonstrated that DNAJB1 might
serve as a novel biomarker for pancreatic cancer. The diagnostic
ROC curve revealed that DNAJB1 can be used as an effective
diagnostic marker, which had a diagnostic value of 4.8 and AUC
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FIGURE 4 | Identification of hub genes associated with the prognosis model by weighted correlation network analysis (WGCNA). (A) Heatmap of the differentially
expressed genes between the high-risk and low-risk groups. (B) The correlation between soft threshold power and scale-free topology model fit. (C) The correlation
between soft threshold power and mean connectivity. (D) Identification of co-expression modules by the hierarchical cluster tree. (E) The relationships between gene
modules and clinical traits. The correlation coefficient (top) and p-value (bottom) of each cell display in the corresponding cell. (F) The correlation between module
membership and gene significance of the brown module. (G) The top 15 hub genes of the brown module are calculated and visualized using the Cytoscape software.

of 91.6% (95% CI: 82.5–93.3%, Figure 5C). To confirm whether
DNAJB1 can be used as a novel biomarker in the plasma, the
plasma exosomal RNA-Seq data of 6 healthy donors and 14

patients with pancreatic carcinoma from the GSE106804 (40) and
GSE100232 (41) datasets were downloaded and integrated. The
principal component analysis suggested that RNA-Seq data of
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healthy donors and patients with pancreatic carcinoma clustered
separately (Figure 5E). The expression level of exosomal DNAJB1
was upregulated in patients with pancreatic cancer. A large
cohort study is needed to further investigate its diagnostic
value (Figure 5F).

In addition to the top 15 hub genes, the other genes also
deserved to be investigated. The expression levels of TMPRSS4,
KCNN4, GJB3, ITGB4, PLEKHN1, TRIM29, GPRC5A, and
NECTIN4 were also significantly upregulated in the pancreatic
cancer tissues (Figure 6A). Moreover, the overall survival analysis
indicated that these genes can be used as unfavorable prognostic
factors (Figure 6B). These results suggested that WGCNA
can effectively select survival-related genes. The detailed roles
of these genes in pancreatic cancer should be investigated
in future studies.

DNAJB1 Knockdown Inhibits Malignant
Phenotype of Pancreatic Cancer in vitro
and in vivo
To evaluate the specific role of DNAJB1 in pancreatic cancer,
the relative expression level of DNAJB1 in the four pancreatic
cancer cell lines (AsPC-1, Capan-2, MIA PaCa-2, and SW1990)
and a hTERT-HPNE was analyzed. The expression level of
DNAJB1 in the AsPC-1 and MIA PaCa-2 cell lines was higher
than that in the other cell lines (Figure 7A). Therefore, the
AsPC-1 and MIA PaCa-2 cell lines were chosen for further
functional assays. The efficiency of DNAJB1 knockdown was
detected by western blotting (Figure 7B). The results of
CCK8 and colony formation assays indicated that DNAJB1
knockdown significantly inhibited the proliferation and colony
formation rate of AsPC-1 and MIA PaCa-2 cells (Figures 7C–
E). The results of transwell assay revealed that the AsPC-1
and MIA PaCa-2 cells exhibited markedly decreased invasion
upon DNAJB1 knockdown (Figures 7F,G). The results of wound
healing assay demonstrated that the knockdown of DNAJB1
significantly decreased the migration of AsPC-1 and MIA PaCa-
2 cells (Figures 7H,I). The subcutaneous xenograft model was
utilized to detect the cellular proliferation ability in vivo. The
group injected with DNAJB1 knockdown AsPC-1 cells exhibited
significantly smaller tumoral volumes than the negative control
group (Figures 7J,K). The relative expression of DNAJB1 was
detected by the immunohistochemical assay (Figure 7L). These
results indicated that DNAJB1 may be a novel promoter of
pancreatic cancer. Further studies are needed to elucidate the
underlying molecular mechanisms.

DISCUSSION

Pancreatic cancer, a malignancy associated with high mortality,
has high heterogeneity. The patients with pancreatic cancer
receiving similar therapies exhibit varied clinical outcomes (42).
Therefore, the development of a risk stratification model may
help clinicians to design personalized treatment programs for
different patients. Previous studies have proposed various risk
stratification models for the diagnosis, prognosis, and recurrence
of pancreatic cancer, which exhibited better efficiency than

the classical TNM stage (43–45). The rapid development of
sequencing techniques has enabled the access to multi-omics
data and high-quality clinical information through different
databases, such as TCGA, ICGC, and Gene Expression Omnibus
(17, 46, 47). These resources provide novel insights into the
initiation and progression of multiple cancers. There is an urgent
need to devise strategies to increase the overall survival of
patients with pancreatic cancer. The development of a prognosis
prediction model based on genome data can be a useful tool for
molecular and precise medicine.

Several recent studies have demonstrated that the prognosis
model based on DNA methylation data can be used to predict
the prognosis of patients with various cancers with satisfactory
efficiency. The circulating tumor DNA methylation markers
can be utilized to generate a risk model for the diagnosis
and prognosis prediction of ovarian cancer, colorectal cancer,
and hepatocellular carcinoma (13, 48, 49). Additionally, the
DNA methylation markers originating from tissues can also
be employed to construct a prognosis prediction model for
esophageal, gastric, and prostate cancers (11, 12, 14). These
studies demonstrated that the DNA methylation status can
serve as novel biomarkers to generate the prognosis prediction
model. However, there are limited studies that have reported
the significance of prognosis prediction model in pancreatic
cancer. In this study, a prognostic prediction model based on
four CpG sites, namely cg00609645, cg13512069, cg23811464,
and cg03502002, was established. The model was generated based
on TCGA dataset and the conclusion was verified in the external
ICGC dataset. Next, a nomogram model was constructed based
on the independent prognostic factors of pancreatic cancer. Chen
H, et al. used three hypomethylated genes (SULT1E1, IGF2BP3,
and MAP4K4) to construct a prognostic prediction model using
the AUC (1-year: 0.62, 3-year: 0.69, and 5-year: 0.69) (50). Liao
X, et al. had constructed a prognostic model comprising 9 hub
genes and reported that the AUC for 1-, 3-, and 5-year was
0.641, 0.623, and 0.554, respectively (51). Compared to these two
models, the nomogram model exhibited better prediction ability
using the AUC (1-year: 0.81, 3-year: 0.91, and 5-year: 0.89). These
results suggested that the nomogram model can be employed as
an effective instrument for prognosis prediction in patients with
pancreatic cancer. The model can be improved with increased
access to sequencing data and clinical information.

To further elucidate the molecular mechanisms underlying
the prognostic model, the GO, GSEA, mutation spectrum, and
immune infiltration analyses were performed on the subgroups
stratified by the prognostic prediction model. The low-risk group
with improved prognosis exhibited less mutational frequency and
high immune cell infiltration. The analysis of several important
signaling pathways in the subgroups can aid in a better molecular
understanding of the prognostic model.

Furthermore, the WGCNA was performed using the clinical
traits and differentially expressed genes. The brown module
containing 247 genes was significantly correlated with the
prognostic model, tumor grade, clinical stage, and T stage. Next,
DNAJB1 was identified as the hub gene of the brown gene
module. These results indicated that DNAJB1 can play a vital
role in pancreatic cancer. Previous studies have reported that
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FIGURE 5 | DNAJB1 serves as a novel biomarker for pancreatic cancer. (A) Heatmap of the differentially expressed genes between 171 normal pancreatic tissues
and 179 pancreatic cancer tissues based on the integrated analysis of The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) datasets. (B) The
relative expression level of DNAJB1 in 171 normal pancreatic tissues and 179 pancreatic cancer tissues. (C) The diagnostic receiving operating characteristic (ROC)
curve of DNAJB1 based on the integrated data from TCGA and GTEx datasets. (D) The relationship between DNAJB1 expression level and different clinical stages
of pancreatic cancer. (E) The principal component analysis of the blood exosome RNA sequencing (RNA-seq) data of healthy donors (N = 6) and patients with
pancreatic carcinoma (N = 14). (F) The relative expression level of DNAJB1 in the blood exosome of healthy donors (N = 6) and patients with pancreatic carcinoma
(N = 14). (G) The overall survival analysis of patients from TCGA dataset based on DNAJB1 expression. (H) The relapse-free survival analysis of patients from TCGA
dataset based on DNAJB1 expression. (I) The forest plot shows the overall survival analyses of patients from TCGA dataset based on the expression of DNAJB gene
family. (J) The forest plot demonstrates the relapse-free survival of patients from TCGA dataset based on the expression of DNAJB gene family members.

DNAJB1 expression, which is upregulated in the tissues, cell lines,
and bile of cholangiocarcinoma, can serve as a new biomarker
for cholangiocarcinoma (52). DNAJB1-PRKACA gene fusion is
reported to play an oncogenic promoter role in fibrolamellar

hepatocellular carcinoma (53, 54). In addition, several researches
have demonstrated that the DNAJB1–PRKACA gene fusion can
also be found in the pancreatic and biliary intraductal oncocytic
papillary neoplasm (IOPN), as well as in the intraductal papillary
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FIGURE 6 | The differential expression levels of top 15 hub genes, except for DNAJB1, and analysis of overall survival based on these genes. (A) The relative
expression levels of TMPRSS4, KCNN4, GJB3, ITGB4, PLEKHN1, TRIM29, GPRC5A, and NECTIN4 in 171 normal pancreatic tissues and 179 pancreatic cancer
tissues based on the integrated data from The Cancer Genome Atlas (TCGA) and Genome-Tissue Expression (GTEx) datasets. (B) The overall survival analyses of
patients from TCGA dataset based on the expression of TMPRSS4, KCNN4, GJB3, ITGB4, PLEKHN1, TRIM29, GPRC5A, and NECTIN4.

mucinous neoplasm (IPMN) of pancreas and pancreatic ductal
adenocarcinoma. The specific functions of the gene fusion in the
initiation and progression of IOPNs, IPMNs, and their associated
neoplasms need further research (55, 56). Cui X, et al. reported
that DNAJB1 can suppress apoptosis and promote cancer cell

proliferation via ubiquitin degradation of PDCD5 in the lung
cancer cell line (A549) (57). To identify the specific role of
DNAJB1 in pancreatic cancer, a systematic analysis of DNAJB
family members was performed. The analysis indicated that
DNAJB1 may serve as a novel biomarker for the diagnosis and
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FIGURE 7 | Knockdown of DNAJB1 inhibits proliferation, migration, and invasion of pancreatic cancer cells in vitro and in vivo. (A) The relative expression level of
DNAJB1 in the AsPC-1, Capan-2, MIA PaCa-2, SW1990, and hTERT-HPNE cell lines detected by western blotting. (B) The transfection efficiency of sh-DNAJB1 in
the AsPC-1 and MIA PaCa-2 cell lines detected by western blotting. (C) The CCK-8 assay was used to detect the effect of DNAJB1 knockdown on the proliferation
of AsPC-1 and MIA PaCa-2 cell lines. (D) Statistical analysis of the colony formation assay results after knockdown of DNAJB1 in the AsPC-1 and MIA PaCa-2 cell
lines. (E) Representative images of the colony formation assay, including control, sh-control, and sh-DNAJB1 groups. (F) Statistical analysis of the transwell assay
results after knockdown of DNAJB1 in the AsPC-1 and MIA PaCa-2 cell lines. (G) Representative images of the transwell assay. (H) Representative images of the
wound healing assay. (I) Statistical analysis of the wound healing assay results after knockdown of DNAJB1. (J) Subcutaneous tumor tissues of sh-control and
sh-DNAJB1 groups at 3 weeks after initial implantation. (K) Relative DNAJB1 expression in the tumor tissues excised from sh-control and sh-DNAJB1 groups was
detected by immunohistochemical assay. (L) The growth curve of subcutaneous tumor tissues of sh-control and sh-DNAJB1 groups. *p < 0.05, **p < 0.01, and
***p < 0.001.
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prognosis of pancreatic cancer. The role of DNAJB1 in the
proliferation, migration, and invasion of pancreatic cancer cells
was verified in vivo and in vitro. The molecular mechanisms of
DNAJB1 in pancreatic cancer must be elucidated in future studies.

CONCLUSION

A novel prognostic prediction model was established based on
four CpG sites for pancreatic cancer. The molecular characteristic
analyses based on the model provided new insights into the
initiation and development of pancreatic cancer. The WGCNA
can serve as an excellent tool to identify the genes correlated with
specific clinical traits. DNAJB1 can serve as a potential diagnostic
and prognostic biomarker for pancreatic cancer.
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