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Promoter-anchored chromatin interactions
predicted from genetic analysis of epigenomic data
Yang Wu 1,7, Ting Qi 1,7, Huanwei Wang 1, Futao Zhang1, Zhili Zheng1,2, Jennifer E. Phillips-Cremins 3,

Ian J. Deary4,5, Allan F. McRae 1, Naomi R. Wray 1,6, Jian Zeng1 & Jian Yang 1,2✉

Promoter-anchored chromatin interactions (PAIs) play a pivotal role in transcriptional reg-

ulation. Current high-throughput technologies for detecting PAIs, such as promoter capture

Hi-C, are not scalable to large cohorts. Here, we present an analytical approach that uses

summary-level data from cohort-based DNA methylation (DNAm) quantitative trait locus

(mQTL) studies to predict PAIs. Using mQTL data from human peripheral blood (n ¼ 1980),

we predict 34,797 PAIs which show strong overlap with the chromatin contacts identified by

previous experimental assays. The promoter-interacting DNAm sites are enriched in

enhancers or near expression QTLs. Genes whose promoters are involved in PAIs are more

actively expressed, and gene pairs with promoter-promoter interactions are enriched for co-

expression. Integration of the predicted PAIs with GWAS data highlight interactions among

601 DNAm sites associated with 15 complex traits. This study demonstrates the use of mQTL

data to predict PAIs and provides insights into the role of PAIs in complex trait variation.
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Genome-wide association studies (GWASs) in the past
decade have identified tens of thousands of genetic var-
iants associated with human complex traits (including

common diseases) at a stringent genome-wide significance
level1,2. However, most of the trait-associated variants are located
in non-coding regions3,4, and the causal variants as well as their
functional roles in trait aetiology are largely unknown. One
hypothesis is that the genetic variants affect the trait through
genetic regulation of gene expression4. Promoter-anchored
chromatin interaction (PAI)5,6 is a key regulatory mechanism
whereby non-coding genetic variants alter the activity of cis-
regulatory elements and subsequently regulate the expression
levels of the target genes. Therefore, a genome-wide map of PAIs
is essential to understand transcriptional regulation and the
genetic regulatory mechanisms underpinning complex trait
variation.

High-throughput experiments, such as Hi-C7 and ChIA-PET
(chromatin interaction analysis by paired-end tag sequencing)8,
have been developed to detect chromatin interactions by a mas-
sively parallelised assay of ligated DNA fragments. Hi-C is a
technique based on chromosome conformation capture (3C)9 to
quantify genome-wide interactions between genomic loci that are
close in three-dimensional (3D) space, and ChIA-PET is a
method that combines ChIP-based methods10 and 3C. However,
these high-throughput assays are currently not scalable to
population-based cohorts with large sample sizes because of the
complexity of generating a DNA library and the extremely high-
sequencing depth needed to achieve high detection resolution11.
On the other hand, recent technological advances have facilitated
the use of epigenomic marks to infer the chromatin state of a
specific genomic locus and further to predict the transcriptional
activity of a particular gene12,13. There have been increasing
interests in the use of epigenomic data (e.g., DNA methylation
(DNAm) and/or histone modification) to infer chromatin inter-
actions14–17. These analyses, however, rely on individual-level
chromatin accessibility data often only available in small
samples14,16, and it is not straightforward to use the predicted
chromatin interactions to interpret the variant-trait associations
identified by GWAS.

In this study, we propose an analytical approach to predict
chromatin interaction by detecting the association between
DNAm levels of two CpG sites due to the same set of genetic
variants (i.e., pleiotropic association between DNAm sites). This
can be achieved because if the methylation levels of a pair of
relatively distal CpG sites covary across individuals and such
covariation is partly caused by a set of shared genetic variants in
cis (Fig. 1b), it is very likely that the two genomic regions interact
(having contacts or functional links because of their close physical
proximity in 3D space). Our analytical approach is based on two
recently developed methods, i.e., the summary-data–based Men-
delian randomisation (SMR) test and the test for heterogeneity in
dependent instruments (HEIDI)18, which are often used in
combination to detect pleiotropic association between a mole-
cular phenotype (e.g., gene expression or DNA methylation) and
a complex trait18 or between two molecular phenotypes19. The
SMR & HEIDI approach only requires summary-level data from
DNA methylation quantitative trait locus (mQTL) studies, pro-
viding the flexibility of using mQTL data from studies with large
sample sizes to ensure sufficient power. Since the proposed
method is based on cohort-based genetic data, it also allows us to
integrate the predicted chromatin interactions with GWAS results
to understand the genetic regulatory mechanisms for complex
traits. In this study, we analyse mQTL summary data from a
meta-analysis of two cohort-based studies on 1980 individuals
with DNAm levels measured by Illumina 450K methylation
arrays and SNP data from SNP-array-based genotyping followed

by imputation to the 1000 Genome Project (1KGP) reference
panels19,20.

Results
Predicting PAIs using mQTL data. As described above, our
underlying hypothesis was that if the DNAm levels of two rela-
tively distal CpG sites are associated due to the same set of causal
genetic variants (Fig. 1b), then it is very likely that these two
chromatin regions have contacts or functional links because of
their close physical proximity in 3D space. Hence, we set out to
predict PAIs from mQTL data. We applied the SMR & HEIDI
approach18 to test for pleiotropic associations of a DNAm site in
the promoter region of a gene with all the other DNAm sites
within 2Mb distance of the focal promoter in either direction
(excluding those in the focal promoter) using mQTL summary
data from peripheral blood samples (Fig. 1, Supplementary Fig. 1
and Methods). The mQTL summary data were generated from a
meta-analysis of two mQTL data sets from McRae et al.
(n ¼ 1980)19,20. After quality controls (Methods), there were
90,749 DNAm probes with at least one cis-mQTL with
PmQTL < 5´ 10�8, 28,732 of which were located in promoters
annotated based on data from blood samples of the Roadmap
Epigenomics Mapping Consortium (REMC)13. In total, we
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Fig. 1 Schematic of the promoter-anchored chromatin interaction (PAI)
analysis. a A schematic of the PAI analysis. The blue rectangles represent
genes with their promoter regions colour coded in red. The small yellow
bars represent other functional regions (e.g., enhancers). In this toy
example, the promoter region of Gene A is used as the bait for the PAI
analysis. Genes (e.g., genes A and B) whose promoters are involved in
significant PAIs are defined as Pm-PAI genes. DNAm sites (e.g., DNAm
probe 2) that showed significant interactions with the DNAm sites in
promoter regions are defined as promoter-interacting DNAm sites or PIDS.
b DNAm levels of two CpG sites are associated because of shared causal
variant(s). The DNAm level ranges from 0 to 1 (with 0 being unmethylated
and 1 being fully methylated). It is the ratio of the methylated probe
intensity to the overall intensity (sum of methylated and unmethylated
probe intensities). On the violin plots, the centre line shows the median,
box limits are the upper and lower quartiles, whiskers represent 1.5×
interquartile range and individual points are outliers.
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identified 34,797 PAIs between pairwise DNAm sites that passed
the SMR test (PSMR < 1:76 ´ 10�9 based on a Bonferroni correc-
tion for multiple tests; the SMR P-values were computed based on
the two-sided Wald test18) and were not rejected by the HEIDI
test (PHEIDI > 0:01; see Wu et al.19 for the justification of the use of
this HEIDI threshold P-value; the HEIDI P-values were computed
from an approximate, one-sided, sum of chi-squared test18). The
significant PAIs comprises 21,787 unique DNAm sites, among
which 10,249 were the exposure probes in promoter regions of
4617 annotated genes. Most of the DNAm sites in promoters
showed pleiotropic associations with multiple DNAm sites
(mean ¼ 4) (Supplementary Fig. 2a). The distances between 95%
of the pairwise interacting DNAm sites were less than 500 Kb
(mean ¼ 79Kb and median ¼ 23Kb). Only ~0.7% of the pre-
dicted PAIs were between DNAm sites greater than 1Mb apart
(Supplementary Fig. 2b). The summary statistics of the predicted
PAIs are publicly available through the M2Mdb Shiny online
application (see http://cnsgenomics.com/shiny/M2Mdb/).

Overlap of the predicted PAIs with chromatin contacts. We
first examined whether the predicted PAIs are consistent with
chromatin contacts identified by experimental assays, such as Hi-
C21 and promoter captured Hi-C (PCHi-C)5. While the majority
of experimental assays are measured in primary cell lines,
topological-associated domains (TADs) annotated from Hi-C are
relatively conserved across cell types22. We therefore tested the
overlap of our predicted PAIs with the TADs identified from
recent Hi-C and PCHi-C studies5,21,23 (see Supplementary
Table 1 for a full list of data sets used in this study). We found
that 22,024 (63.3%) of the predicted PAIs were between DNAm
sites located in the TADs identified by Rao et al.21 using Hi-C in
the GM12878 cell lines, 27,200 (78.2%) in those by Dixon et al.23

using Hi-C in embryonic stem cells, and 27,716 (79.7%) in those
by Javierre et al.5 using PCHi-C in primary hematopoietic cells5,
all of which were significantly higher than expected by chance
(empirical Penrichment < 0:001; Fig. 2a–c). Note that the P-value was
computed by comparing the observed number to a null dis-
tribution generated by resampling the same number of DNAm
pairs at random from distance-matched DNAm pairs included in
the SMR analysis (Methods); the P-value was truncated at 0.001
due to the finite number of resampling. One example was the
MAD1L1 locus (a ~450 Kb region) on chromosome 7 (Fig. 2d, e)
where there were a large number of predicted PAIs highly con-
sistent with TADs identified by Hi-C from the Rao et al.21 study.
There were also scenarios where the predicted PAIs were not
aligned well with the TAD data. For example, 107 of the 183
predicted PAIs at the RPS6KA2 gene locus did not overlap with
the TADs identified by Hi-C from the Rao et al. study21 (Sup-
plementary Fig. 3a). These predicted interactions, however, are
very likely to be functional as indicated by our subsequent ana-
lysis with GWAS and omics data (see below). Additionally, the
predicted PAIs were slightly enriched for the Hi-C loops identi-
fied from Rao et al.21 (1.49-fold, empirical Penrichment < 0.001, m
= 130; Fig. 3a) and the POLR2A ChIA-PET loops from the
ENCODE24 project (1.44-fold, empirical Penrichment< 0.001, m=
2315; Fig. 3b), although the numbers of overlaps were small. One
notable example was the GNB1 locus where the predicted PAI
between the promoter region of GNB1 and an enhancer nearby is
consistent with the enhancer-promoter interaction identified by
both Hi-C from Rao et al.21 and PCHi-C from Jung et al.25 in the
GM12878 cell lines (Supplementary Fig. 4).

Comparison with other prediction methods. To assess the
performance of our PAI prediction method, we compared it with
two state-of-the-art approaches of this kind, i.e., the correlation-

based method used in Gate et al.26 and the pairwise hierarchical
model (PHM) method developed by Kumasaka et al.17, using the
DNAm data described above or the chromatin accessibility data
(measured by Assay for Transposase-Accessible Chromatin using
sequencing (ATAC-seq)) from Kumasaka et al.17. We used a
recently released chromatin interaction data (PCHi-C loops)
generated by Jung et al.25 in GM12878 cell lines for validation,
and quantified the enrichment of the predicted interactions in the
PCHi-C loops defined based on a range of PCHi-C P-value
thresholds (Methods). We chose the PCHi-C data from Jung et al.
because the P-values of all the tested loops are available and
because compared to other Hi-C data sets, chromatin interactions
identified in GM12878 cell lines may be more relevant to the
predicted PAIs in whole blood. The results showed that our
predicted PAIs using either DNAm or chromatin accessibility
data were highly enriched in the PCHi-C loops and that the fold
enrichment increased with the increase of the significance level
used to claim the PCHi-C loops (Fig. 3c), consistent with the
observation from previous work that Hi-C loops with lower P-
values are more reproducible between biological replicates27. Our
SMR & HEIDI method outperformed the correlation-based
method using either DNAm or chromatin accessibility data, as
evidenced by the larger fold enrichment of our method compared
to the correlation-based method at all the PCHi-C significance
levels (Fig. 3c). We also compared the predicted PAIs with the
interactions identified from the PHM approach17 using the
chromatin accessibility data. Of the 15,487 interactions identified
by the PHM approach, 10,416 were tested in our SMR & HEIDI
analysis; 98.4% were replicated at a nominal significance level
(PSMR < 0:05 and PHEIDI > 0:01), and 36% were significant after
multiple testing correction (PSMR < 4:8 ´ 10�6 ð0:05=10; 416Þ and
PHEIDI > 0:01). While the PHM approach requires individual-level
genotype and chromatin accessibility data and is less computa-
tionally efficient due to the use of Bayesian hierarchical model,
our SMR & HEIDI method that requires only summary-level data
is more flexible and can be potentially applied to all epigenetic
QTL data.

We further performed an aggregate peak analysis (APA)
implemented in Juicer28 to evaluate the performance of the
methods by the aggregate enrichment of the predicted
interactions in the combined Hi-C map in GM12878 produced
by Rao et al.21. We observed that the PAIs predicted by SMR &
HEIDI from DNAm data showed the strongest enrichment
among all the analyses although the APA score of PHM was
higher than that of SMR & HEIDI when using chromatin
accessibility data (Supplementary Table 2). In addition, Juicer
APA also reported a Peak to Mean (P2M) value for each Hi-C
loop (or predicted interaction) to indicate its enrichment
compared to nearby regions in a Hi-C map. We observed that
the P2M value was neither correlated with the strength of a Hi-
C loop nor with that of a predicted interaction (Supplementary
Table 3).

Enrichment of the predicted PAIs in functional annotations.
To investigate the functional role of the DNAm sites that showed
significant interactions with the DNAm sites in promoter regions
(called promoter-interacting DNAm sites or PIDSs hereafter), we
conducted an enrichment analysis of the PIDSs (m= 14,361) in 14
main functional annotation categories derived from the REMC blood
samples (Methods). The fold enrichment was computed as the
proportion of PIDSs in a functional category divided by the mean of
a null distribution generated by resampling variance-matched “con-
trol” probes at random from all the outcome probes used in the SMR
analysis. We found a significant enrichment of PIDSs in enhancers
(fold-enrichment ¼ 2:17 and empirical Penrichment < 0.001), repressed
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Polycomb regions (fold-enrichment ¼ 1:56 and empirical Penrichment

< 0.001), primary DNase (fold-enrichment ¼ 1:43 and empirical
Penrichment< 0.001) and bivalent promoters (fold-enrichment ¼ 1:12
and empirical Penrichment < 0.001) and a significant under-
representation in transcription starting sites (fold-enrichment ¼ 0:21

and empirical Penrichment< 0.001), quiescent regions
(fold-enrichment ¼ 0:74 and empirical Penrichment< 0.001), pro-
moters around transcription starting sites (fold-enrichment ¼ 0:77
and empirical Penrichment< 0.001), and transcribed regions
(fold-enrichment ¼ 0:90 and empirical
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Penrichment< 0.001) (Fig. 4a, b). On one hand, the enrichment test is
not biased by the fact that the Illumina 450K methylation array
probes are preferentially distributed towards certain genomic regions
(e.g., promoters; Fig. 4a) because it tests against control probes
sampled from probes on the array rather than random genomic
positions. On the other hand, however, this test is over conservative
because the control probes are enriched in certain functional genomic
regions (Supplementary Fig. 5a) and can possible contain some of the
PIDSs, which may explain the relatively small fold enrichments
observed above. When we tested the enrichment against random
genomic positions, the fold enrichment values were several-fold lar-
ger than those computed against array probes (Supplementary
Fig. 5b). The depletion of PIDSs in promoters was due to the
exclusion of outcome probes from the focal promoters (Methods;

Supplementary Fig. 6). In addition, a large proportion (~18%) of the
predicted PAIs were promoter-promoter interactions (PmPmI),
consistent with the results from previous studies5,29 that PmPmI
were widespread.

We also examined whether our predicted PAIs were enriched
in the binding regions of proteins known to be involved in 3D
organisation of the genome. We used the chromatin immuno-
precipitation sequencing (ChIP-Seq) data from GM12878 for four
DNA-binding proteins (i.e., CTCF, Rad21, ZNF143, YY1) from
the ENCODE project24 (Methods). Of the 21,787 unique DNAm
sites that showed significant PAIs, 9454 (43.4%), 7588 (34.8%),
6854 (31.5%) and 9477 (43.5%) were located in the binding
regions of CTCF, Rad21, ZNF143 and YY1, respectively. These
overlaps were significantly larger than those for a random set of

Fig. 2 Overlap of the predicted PAIs with TADs identified by Hi-C and PCHi-C. a, b, c overlaps of the predicted PAIs with TADs identified by a Rao et al.21

and b Dixon et al.23 using Hi-C and by c Javierre et al.5 using PCHi-C. The red dash lines represent the observed number and histograms represent the
distribution of control sets. d A heatmap of the predicted PAIs (red asterisks) and chromatin interactions with correlation scores >0.4 (blue dots) identified
by Grubert et al.57 using Hi-C in a 2Mb region on chromosome 7. Black squares represent the TADs identified by Rao et al.21. The heatmap is asymmetric
for the PAIs (red asterisks) with the x- and y-axes representing the physical positions of outcome and exposure DNAm probes, respectively. e the predicted
PAIs at the MAD1L1 locus, a 450-Kb sub-region of that shown between two orange dashed lines in d. The orange curved lines on the top represent the
significant PAIs between 14 DNAm sites in the promoter regions of MAD1L1 (multiple transcripts) and other DNAm sites nearby. The panel on the bottom
represents 14 chromatin state annotations (indicated by different colours) inferred from data of 127 REMC samples (one row per sample). Note that the
predicted PAIs appear to be much sparser than the Hi-C loops largely because the PAIs were predicted from analyses with very stringent significance levels
(see Supplementary Note 2 for discussion).
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Fig. 3 Enrichment of the predicted interactions in chromatin loops. a, b Overlaps of the predicted PAIs with the chromatin loops identified by a Hi-C from
Rao et al.21 and b POLR2A ChIA-PET from the ENCODE project24. The red dash lines represent the observed number and histograms represent the
distribution of control sets. c enrichment of the predicted interactions in the significant PCHi-C loops defined based on a range of P-value thresholds
(P-values were obtained from Jung et al.25). We used the PCHi-C loops identified from Jung et al. in GM12878 cell lines25. PHM: the pairwise hierarchical
model developed by Kumasaka et al.17. The fold enrichment value was computed by a 2 × 2 contingency table and the Fisher’s exact test was used to
assess the statistical significance of the enrichment. The error bar around each estimate represents the 95% confidence interval. The horizontal red dashed
line indicates no enrichment.
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DNAm sites tested in the PAI analysis (1.14-fold on average,
empirical Penrichment < 0.001) or a random set of genomic sites
(3.81-fold on average, empirical Penrichment < 0.001; Supplemen-
tary Fig. 7a).

It has been shown in prior work that allelic imbalance in
DNAm plays an important role in transcriptional regulation30.
We thus tested whether the top associated mQTLs of the DNAm
sites that showed significant PAIs were enriched for variants
associated with allele-specific DNAm identified from Onuchic
et al.30. There were 385 PAI mQTLs overlapping with variants

associated with allele-specific DNAm, and the overlap was
significantly larger than that of the same number of mQTLs
randomly sampled from the mQTLs used in the PAI analysis
(1.44-fold, empirical Penrichment < 0.001; Supplementary Fig. 7b).

Relevance of the predicted PAIs with gene expression. We then
turned to test whether pairwise genes with significant PmPmI
were enriched for co-expression. We used gene expression data
(measured by Transcript Per Kilobase Million mapped reads or
TPM) from the blood samples of the Genotype-Tissue Expression
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(GTEx) project31 and computed the Pearson correlation of
expression levels across individuals between pairwise genes (rP).
To assess the statistical significance of the enrichment, we com-
pared the observed mean Pearson correlation of all the significant
PmPmI gene pairs (m= 2236) to a null distribution of mean
Pearson correlation values, generated by resampling a set of
distance-matched control gene pairs either from the genes whose
promoters were involved in the SMR analysis or from all genes.
The mean correlation for the significant PmPmI gene pairs (�rP)
was 0.367, significantly (empirical Penrichment < 0.001) higher than
that for the control gene pairs sampled either from the genes
whose promoters were involved in SMR (mean�rP ¼ 0:292;
Fig. 4c) or from all genes (mean�rP ¼ 0:156; Fig. 4c), suggesting
that pairwise genes with PmPmI are more likely to be co-
expressed.

We also tested whether genes whose promoters were involved
in significant PAI (called Pm-PAI genes hereafter, Fig. 1) were
expressed more actively than the same number of control genes
randomly sampled either from the genes whose promoters were
involved in SMR or from all genes. Similar to the analysis above,
we used the gene expression data from the blood samples of the
GTEx project and tested the enrichment of Pm-PAI genes in
different expression level groups (Methods). In comparison to the
control sets sampled from the genes whose promoters were
involved in SMR, Pm-PAI genes were significantly overrepre-
sented (empirical Penrichment < 0.001) among the group of genes
with the highest expression levels and significantly under-
represented (empirical Penrichment < 0.001) among genes that were
not actively expressed (median TPM< 0:1) (Fig. 4d). These results
implicate the regulatory role of the PIDSs in transcription and
their asymmetric effects on gene expression. The enrichment was
much stronger if the control sets were sampled from all genes
(Supplementary Fig. 8a). We also performed a similar enrichment
analysis (testing against the control sets sampled from all genes)
for the predicted target genes from the PCHi-C data from Jung
et al.25. There was a significant enrichment of the PCHi-C target
genes in the active gene groups, but the fold enrichment was
slightly smaller than that of the Pm-PAI genes (Supplementary
Fig. 8), suggesting that PAIs could be more functionally relevant
than PCHi-C loops.

Enrichment of eQTLs in the PIDS regions. We have shown that
the PIDSs are located in regions enriched with regulatory ele-
ments (e.g., enhancers) (Fig. 4b) and that the Pm-PAI genes tend
to have higher expression levels (Fig. 4d). We next investigated if
genomic regions near PIDS are enriched for genetic variants
associated with expression levels of the Pm-PAI genes using data
from an expression QTL (eQTL) study in blood32. There were
11,204 independent cis-eQTLs at PeQTL < 5´ 10�8 for 9967 genes,
among which 2019 were Pm-PAI genes (Methods). We mapped
cis-eQTLs to a 10 Kb region centred around each PIDS (5 Kb on
either side) and counted the number of cis-eQTLs associated with
expression levels of the corresponding Pm-PAI gene for each
PIDS. There were 548 independent eQTLs located in the PIDS
regions of the Pm-PAI genes, significantly higher than (empirical
Penrichment < 0.001) the mean of a null distribution (mean= 415)
generated by randomly resampling distance-matched pairs of
DNAm sites used in the SMR analysis (Fig. 5a). These results
again imply the regulatory role of the PIDSs in transcription
through eQTLs and provide evidence supporting the functional
role of the predicted PAIs.

There were examples where a cis-eQTL was located in a PIDS
region predicted to interact with the promoters of multiple genes.
For instance, a cis-eQTL was located in an enhancer predicted to
interact with the promoters of three genes (i.e., ABCB9, ARL6IP4

and MPHOSPH9) (Supplementary Fig. 9), and the predicted
interactions were consistent with the TADs identified by Hi-C
from Rao et al.21 (Supplementary Fig. 3b). Furthermore, the
predicted interactions between promoters of ARL6IP4 and
MPHOSPH9 are consistent with the chromatin contact loops
identified by Hi-C in the GM12878 cells21 (Supplementary Fig. 9).
The eQTL association signals were highly consistent for the three
genes, and the pattern was also consistent with the SNP
association signals for schizophrenia (SCZ) and years of
education (EY) as shown in our previous work19, suggesting a
plausible mechanism whereby the SNP effects on SCZ and EY are
mediated by the expression levels of at least one of the three co-
regulated genes through the interactions of the enhancer and
three promoters (Supplementary Fig. 9).

We have shown previously that the functional association
between a DNAm site and a gene nearby can be inferred by the
pleiotropic association analysis using SMR & HEIDI considering
the DNAm level of a CpG site as the exposure and gene
expression level as the outcome19. We further tested if the PIDSs
are enriched among the DNAm sites showing pleiotropic
associations with the expression levels of the neighbouring Pm-
PAI genes. We found that approximately 15% of the PIDSs were
the gene-associated DNAm sites identified in our previous
study19, significantly higher (empirical Penrichment < 0.001) than
that computed from the distance-matched control probe pairs
(1.3%) described above (Fig. 5b).

Replication of the predicted PAIs across tissues. To investigate
the robustness of the predicted PAIs across tissues, we per-
formed the PAI analysis using brain mQTL data from the
Religious Orders Study and Memory and Aging Project
(ROSMAP)33 (n ¼ 468). Of the 11,082 PAIs with
PSMR < 1:76 ´ 10�9 and PHEIDI > 0:01 in blood and available in
brain, 2940 (26.5%) showed significant PAIs in brain after
Bonferroni correction for multiple testing (PSMR < 4:51 ´ 10�6

and PHEIDI > 0:01). If we use a less stringent threshold for
replication, e.g., the nominal P-value of 0.05, 66.31% of PAIs
predicted in blood were replicated in brain. Here, the replica-
tion rate is computed based on a P-value threshold, which is
dependent of the sample size of the replication data. Alter-
natively, we can estimate the correlation of PAI effects (i.e., the
effect of the exposure DNAm site on the outcome DNAm site of
a predicted PAI) between brain and blood using the rb
method34. This method does not rely on a P-value threshold
and accounts for estimation errors in the estimated effects,
which is therefore less dependent of the replication sample size.
The estimate of rb was 0.527 (SE= 0.0051) for 11,082 PAIs
between brain and blood, suggesting a relatively strong overlap
in PAI between brain and blood.

It is of note that among the 2940 blood PAIs replicated at
PSMR < 4:51 ´ 10�6 and PHEIDI > 0:01 in brain, there were 268
PAIs for which the PAI effects in blood were in opposite
directions to those in brain (Supplementary Data 1). For example,
the estimated PAI effect between the SORT1 and SYPL2 loci was
0.49 in blood and –0.86 in brain. This tissue-specific effect is
supported by the difference in gene expression correlation
(correlation of expression levels between SORT1 and SYPL2 was
−0.07 in whole blood and −0.37 in brain frontal cortex;
Pdifference ¼ 0:0018 by Fisher transformation) and by the differ-
ence in the chromatin state of the promoter of SYPL2 between
brain and blood (bivalent promoter in blood and active promoter
in brain; Supplementary Fig. 10). Taken together, while there are
tissue-specific PAIs, a substantial proportion of the predicted
PAIs in blood are consistent with those in brain.
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Putative target genes of the disease-associated PIDSs. We have
shown above the potential functional roles of the predicted PAIs
in transcriptional regulation. We then turned to ask how the
predicted PAIs can be used to infer the genetic and epigenetic
regulatory mechanisms at the GWAS loci for complex traits and
diseases. We have previously reported 1203 pleiotropic associa-
tions between 1045 DNAm sites and 15 complex traits and dis-
eases by an integrative analysis of mQTL and GWAS data using
the SMR & HEIDI approach19. Of the 1045 trait-associated
DNAm sites, 601 (57.5%) sites were involved in the predicted
PAIs related to 299 Pm-PAI genes (Supplementary Data 2). We
first tested the enrichment of the Pm-PAI genes of the trait-
associated PIDSs using FUMA35. For the 15 complex traits ana-
lysed in Wu et al.19, our FUMA analyses identified enrichment in
multiple GO and KEGG pathways relevant to the corresponding
phenotypes such as the inflammatory response pathway for
Crohn’s disease (CD) and steroid metabolic process for body
mass index (BMI) (Supplementary Data 3), demonstrating the
regulatory role of the trait-associated PIDSs in biological pro-
cesses and tissues relevant to the trait or disease.

There were a number of examples where the predicted PAIs
provided important insights to the functional genes underlying
the GWAS loci and the underlying mechanisms by which the
DNA variants affect the trait through genetic regulation of gene
expression. One notable example was a PIDS (cg00271210) in an
enhancer region predicted to interact in 3D space with the
promoter regions of two genes (i.e., RNASET2 and RPS6KA2), the
expression levels of both of which were associated with ulcerative
colitis (UC) and CD as reported in our previous study19 (Fig. 6).
The SNP association signals were consistent across CD GWAS,
eQTL and mQTL studies, suggesting that the genetic effect on CD
is likely to be mediated through epigenetic regulation of gene
expression. Our predicted PAIs further implicated a plausible
mechanism whereby the expression levels of RNASET2 and
RPS6KA2 are co-regulated through the interactions of their
promoters with a shared enhancer (Fig. 6), although only 41.5%
of the predicted PAIs in this region overlapped with the TADs
identified by Hi-C from the Rao et al. study21 (Supplementary
Fig. 3a) as mentioned above. According to the functional
annotation data derived from the REMC samples, it appears that
this shared enhancer is highly tissue-specific and presents only in
B-cell and digestive system that are closely relevant to CD (Fig. 6).
The over-expression of RNASET2 in spleen (Supplementary

Fig. 11) is additional evidence supporting the functional relevance
of this gene to CD. Another example is the ATG16L1 locus
(Supplementary Fig. 12). We have shown previously that five
DNAm sites are in pleiotropic associations with CD and the
expression level of ATG16L119. Of these five DNAm sites, three
were in an enhancer region and predicted to interact in 3D space
with two DNAm sites in the promoter region of ATG16L1
(Supplementary Fig. 12), suggesting a plausible mechanism that
the genetic effect on CD at this locus is mediated by genetic and
epigenetic regulation of the expression level of ATG16L1 through
promoter–enhancer interactions.

Discussion
We have presented an analytical approach on the basis of the
recently developed SMR & HEIDI method to predict promoter-
anchored chromatin interactions using mQTL summary data.
The proposed approach uses DNAm level of a CpG site in the
promoter region of a gene as a bait to detect its pleiotropic
associations with DNAm levels of the other CpG sites (Fig. 1)
within 2Mb distance of the focal promoter in either direction. In
contrast to experimental assays, such as Hi-C and PCHi-C, our
approach is cost-effective (because of the reuse of data available
from experiments not originally designed for this purpose) and
scalable to large sample sizes. Our method utilises a genetic model
to perform a Mendelian randomisation analysis so that the
detected associations are not confounded by non-genetic factors,
which is also distinct from the methods that predict chromatin
interactions from the correlations of chromatin accessibility
measures14,16. The use of a genetic model to detect PAIs also
facilitated the integration of the predicted PAIs with GWAS data
(see Supplementary Note 1 for more discussion).

Using mQTL summary-level data from human peripheral
blood (n= 1980), we predicted 34,797 PAIs for the promoter
regions of 4617 genes. We showed that the predicted PAIs were
enriched in TADs detected by published Hi-C and PCHi-C assays
and that the PIDS regions were enriched with eQTLs of target
genes. We also showed that the PIDSs were enriched in enhancers
and that the Pm-PAI genes tended to be more actively expressed
than matched control genes. These results demonstrate the
functional relevance of the predicted PAIs to transcriptional
regulation and the feasibility of using data from genetic studies of
chromatin status to infer three-dimensional chromatin
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interactions. The proposed approach is applicable to data from
genetic studies of other chromatin features such as histone
modification (i.e., hQTL)36 or chromatin accessibility (caQTL)26.

There are several reasons why the overlaps between the pre-
dicted PAIs and Hi-C loops were limited. First, Hi-C loops were
detected with errors. We observed that the concordances between
different Hi-C data sets were very limited (Supplementary
Fig. 13), consistent with the conclusion from Forcato et al.37 that
the reproducibility of Hi-C loops is low at all resolutions. Second,
most (65%) of our predicted PAIs are interactions between
DNAm sites within 50 Kb (Supplementary Fig. 2b), which are
often not well captured by the 3C-based methods due to its low
resolution17. Third, the chromatin interactions are cell type spe-
cific5 so that differences between the Hi-C loops identified in cell
lines and our PAIs identified in whole blood are expected. For the
PAIs that were between DNAm sites not located in TADs or Hi-C
loops, we have shown specific examples that these predicted PAIs
are likely to be functionally interacted (Fig. 2d and

Supplementary Fig. 3), suggesting that these PAIs are likely to be
interactions yet to be identified by experimental assays. On the
other hand, compared to the loops identified based on 3C-based
methods, our predicted PAIs are more likely to be functional
interactions due to the use of genetic and regulatory epigenomic
data, as evidenced by the observation that our predicted Pm-PAI
genes showed stronger enrichment in active gene groups com-
pared to the predicted target genes from the PCHi-C data
(Supplementary Fig. 8).

There are some limitations of this study. First, chromatin
interactions are likely to be tissue- and temporal-specific, whereas
our PAI analyses were limited to mQTL data from blood and
brain owing to data availability and thus were unable to detect
PAIs in specific tissues or at different developmental stages.
Second, although the sample size of our blood mQTL summary
data is large (n=∼2000), the PAI analysis could be under-
powered if the proportion of variance in exposure or outcome
explained by the top associated cis-mQTL is small. Third, the
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predicted PAIs are relatively sparse as illustrated in Fig. 2d
because of the sparsity of the DNAm array used, the underlying
hypothesis of the SMR method, and the stringent statistical sig-
nificance level used to claim significant PAIs (see Supplementary
Note 2 for more discussion). The sparsity of the predicted PAIs
can be reduced by the use of mQTL data from large samples
based on whole-genome bisulfite sequencing or accurate DNAm
imputation in the future. Fourth, the functional annotation data
derived from the REMC samples could potentially include noise
due to the small sample sizes, leading to uncertainty in defining
the bait promoter regions. Fifth, if the DNAm levels of two CpG
sites are affected by two sets of causal variants in strong linkage
disequilibrium (LD), these two DNAm sites will appear to be
associated in the SMR analysis and the power of the HEIDI test to
reject such an SMR association will be limited because of the high
LD18,19. However, this phenomenon is likely to be rare given that
most of the promoter-anchored DNAm sites were predicted to
interact with multiple DNAm sites, which are very unlikely to be
all caused by distinct sets of causal variants in high LD. Sixth, the
predicted PAIs including those falling in chromatin loops and
TAD regions were not necessarily functional interactions and
need to be validated by functional assays in the future. Despite
these limitations, our study provides a novel computational
paradigm to predict PAIs from genetic effects on epigenetic
markers with high resolution. Integrating of the predicted PAIs
with GWAS, gene expression and functional annotation data
provides novel insights into the regulatory mechanisms under-
lying GWAS loci for complex traits. The computational frame-
work is general and applicable to other types of chromatin and
histone modification data, to further decipher the functional
organisation of the genome.

Methods
Predicting PAIs from mQTL data by the SMR and HEIDI analyses. This study is
approved by the University of Queensland Human Research Ethics Committee
(approval number: 2011001173). We used summary-level mQTL data to test
whether DNAm levels of two CpG sites are associated because of a set of shared
causal variants. Mendelian Randomisation (MR) is an approach developed to test
for the causal effect of an exposure and an outcome using a genetic variant as the
instrumental variable38,39. Summary-data–based Mendelian Randomisation (SMR)
is a variant of MR, originally designed to test for association between the expression
level of a gene and a complex trait using summary-level data from GWAS and
eQTL studies18 and subsequently applied to test for associations between DNAm
and gene expression and between DNAm and complex traits19. Here, we applied
the SMR analysis to detect associations between DNAm sites. Let x be an exposure
DNAm, y be an outcome DNAm and z be an instrument SNP associated with
exposure DNAm (e.g., PmQTL < 5 ´ 10�8). The SMR estimate of the effect of

exposure DNAm on the outcome DNAm (i.e.,b̂xy) is the ratio of the estimated

effect of instrument on exposure (b̂zx) and that on outcome (b̂zy), b̂xy ¼ b̂zy=b̂zx ,

where b̂zx and b̂zy are available from the summary-level mQTL data. We specified
the DNAm level of a probe within the promoter region of a gene as the exposure
and tested its associations with the DNAm levels of other probes (outcomes) within
2Mb of the exposure probe (Fig. 1 and Supplementary Fig. 1). We excluded the
DNAm pairs within a promoter region from the analysis because the chromatin
interactions identified from Hi-C are often between a promoter region and nearby
regions (i.e., the interactions within a promoter region are not studied) and because
it helps reduce the computational and multiple testing burdens. For a pair of
probes in two different promoter regions, the one with higher variance explained
by its top associated cis-mQTL was used as the exposure and the other one was
used as the outcome. The associations passed the SMR test could possibly be due to
linkage (i.e., distinct sets of causal variants in LD, one set affecting the exposure and
the other set affecting the outcome), which is less of biological interest in com-
parison with pleiotropy (i.e., the same set of causal variants affecting both the
exposure and the outcome). We then applied the HEIDI (heterogeneity in
dependent instruments) test to distinguish pleiotropy from linkage. In brief, the
HEIDI test was developed to test against the null hypothesis that the two DNAm
sites are affected by the same set of causal variants. This is equivalent to testing
whether there is a difference between the b̂xy estimated from any mQTL i (b̂xyðiÞ)

and that estimated from the top associated mQTL (b̂xyðtopÞ). If we define the dif-

ference in estimate between b̂xy at mQTL i and that at top associated mQTL as

d̂i ¼ b̂xyðiÞ � b̂xyðtopÞ , then for multiple mQTLs (i.e., top 20 associated mQTLs after

pruning out SNPs in very strong LD), we have d̂ � MVNðd;VÞ, where d̂ ¼
fd̂1; � � � ; d̂20g and V is the covariance matrix that can be estimated using summary-
level mQTL data and LD information from a reference panel18 (we used the 1KGP-
imputed Health and Retirement Study data as the LD reference in this study).
Therefore, we can test the evidence for heterogeneity through evaluating whether d
= 0 using an approximate multivariate approach40. We rejected the SMR asso-
ciations with PHEIDI < 0:01. All these analyses have been implemented in the SMR
software tool (http://cnsgenomics.com/software/smr). As the mQTL data for the
exposure and the outcome were obtained from the same sample, we investigated
whether the SMR and HEIDI test-statistics were biased by the sample overlap. To
this end, we computed the phenotypic correlation between each pair of exposure
and outcome probes, as well as the variance explained by the top associated cis-
mQTL of each exposure probe, and performed the simulation based on these
observed distributions (Supplementary Note 3). The simulation results showed that
P-values from both SMR and HEIDI tests were evenly distributed under the null
model without inflation or deflation (Supplementary Fig. 14). We have made all the
PAIs analysis scripts publicly available at https://github.com/wuyangf7/PAI.

Data used for the PAI analysis and quality controls. The peripheral blood
mQTL summary data were from the Brisbane Systems Genetics Study (BSGS)41

(n ¼ 614) and Lothian Birth Cohorts (LBC) of 1921 and 193642 (n ¼ 1366). We
performed a meta-analysis of the two cohorts and identified 90,749 DNAm probes
with at least a cis-mQTL at PmQTL < 5 ´ 10�8 (excluding the probes in the major
histocompatibility complex (MHC) region because of the complexity of this
region), of which 28,732 DNAm probes were in the promoter regions defined by
the annotation data derived from 23 REMC blood samples (T-cell, B-cell and
Hematopoietic stem cells). The prefrontal cortex mQTL summary data were from
the Religious Orders Study and Memory and Aging Project (ROSMAP)33 (n=
468), comprising 419,253 probes and approximate 6.5 million genetic variants. In
the ROSMAP data, there were 67,995 DNAm probes with at least a cis-mQTL at
PmQTL < 5 ´ 10�8 (not including the probes in the MHC region), of which 22,285
DNAm probes were in the promoter regions defined by the annotation data
derived from 10 REMC brain samples. The mQTL effects were all in standard
deviation (SD) units of DNAm levels. In the SMR analysis, the promoter DNAm
site was used as the exposure and each of the other DNAm sites in a 2Mb window
was used as the outcome (Fig. 1). Note that we limited the analysis to a 2 Mb
window because chromatin interactions between genomic sites >2Mb apart are
rare21, because summary data from epigenetic QTL studies are often only available
for genetic variants in cis-regions, and because it reduces the computational and
multiple testing burdens. For the exposure probes, we included in the SMR analysis
only the DNAm sites with at least one cis-mQTL (SNPs within 2 Mb of the CpG
site associated with variation in DNAm level) at PmQTL < 5 ´ 10�8. We used such a
stringent significance level because a basic assumption of Mendelian randomisation
is that the SNP instrument needs to be strongly associated with the exposure38,39.
For all the DNAm probes, enhanced annotation data from Price et al.43 (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL16304) were used to annotate
the closest gene of each DNAm probe.

We included in the analysis 15 complex traits (including disease) as analysed in
Wu et al.19. They are height44, body mass index (BMI)45, waist-hip-ratio adjusted
by BMI (WHRadjBMI)46, high-density lipoprotein (HDL)47, low-density
lipoprotein (LDL)47, thyroglobulin (TG)47, educational years (EY)48, rheumatoid
arthritis (RA)49, schizophrenia (SCZ)50, coronary artery disease (CAD)51, type 2
diabetes (T2D)52, Crohn’s disease (CD)53, ulcerative colitis (UC)53, Alzheimer’s
disease (AD)54 and inflammatory bowel disease (IBD)53. The GWAS summary
data were from the large GWAS meta-analyses (predominantly in samples of
European ancestry) with sample sizes of up to 339,224. The number of SNPs varied
from 2.5 to 9.4 million across traits.

Annotations of the chromatin state. The epigenomic annotation data used in this
study were from the Roadmap Epigenomics Mapping Consortium (REMC),
publicly available at http://compbio.mit.edu/roadmap/. We used these data to
annotate the functional relevance of the DNAm sites and their cell type or tissue
specificity. The chromatin state annotations from the Roadmap Epigenomics
Project13 were predicted by ChromHMM12 based on the imputed data of 12 his-
tone modification marks. It contains 25 functional categories for 127 epigenomes in
a wide range of primary tissue and cell types. The 25 chromatin states were further
combined into 14 main functional annotations (as shown in Fig. 4b and Wu
et al.19).

Enrichment of the predicted PAIs in chromatin contacts. To test the enrichment
of our predicted PAIs in chromatin contacts detected by Hi-C, PCHi-C or ChIA-
PET, we used chromatin contact loops and topological-associated domains (TADs)
data from the Rao et al.21 study called in the GM12812 cells and the Dixon et al.23

study in embryonic stem cells, PCHi-C interaction data generated from human
primary hematopoietic cells5, and the POLR2A ChIA-PET chromatin loops from
the ENCODE project24 (Supplementary Table 1). To assess the statistical sig-
nificance of the enrichment, we generated a null distribution by randomly sampling
1000 sets of control probe pairs (with the same number of control probe pairs as
that of the predicted PAIs in each set) from the distance-matched probe pairs
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tested in the SMR analysis. We mapped both the predicted PAIs and the control
probe pairs to the TAD regions or chromatin contact loops detected by previous
experimental assays and quantified the number of overlapping pairs. We estimated
the fold enrichment by the ratio of the overlapping number for the predicted PAIs
to the mean of the null distribution and computed the empirical P-value by
comparing the overlapping number for the predicted PAIs with the null
distribution.

We used the chromatin interaction data generated by Jung et al.25 in GM12878
cell lines as a validation set to evaluate the performance of different interaction
prediction methods. We computed the enrichment of the predicted interactions by
different methods in the significant PCHi-C loops defined based on a range of
PCHi-C P-value thresholds with a 2 × 2 contingency table and used the Fisher’s
exact test to assess the statistical significance of the enrichment.

Enrichment of the PIDSs in functional annotations. To conduct an enrichment
test of the promoter-interacting DNAm sites (PIDSs) in different functional
annotation categories, we first extracted chromatin state data of 23 blood samples
from the REMC samples. We then mapped the PIDSs to 14 main functional
categories based on the physical positions and counted the number of PIDSs in
each functional category. Again, we generated a null distribution by randomly
sampling the same number of control probes (with variance in DNAm level
matched with the PIDSs) from all the probes tested in the PAI analysis and
repeated the random sampling 1000 times. The fold enrichment was calculated by
the ratio of the observed value to the mean of the null distribution, and an
empirical P-value was computed by comparing the observed value with the null
distribution.

Enrichment of the predicted PAIs in protein-DNA interactions. We used the
chromatin immuno-precipitation sequencing (ChIP-Seq) data from GM12878 for
four DNA-binding proteins (i.e., CTCF, Rad21, ZNF143, YY1) from the
ENCODE24 project to test whether our predicted PAIs are enriched in the binding
regions of proteins known to be involved in 3D organisation of the genome. There
were 21,787 unique DNAm sites involved in the predicted PAIs. We mapped the
ChIP-Seq peaks of the four DNA-binding proteins to a 10 Kb region centred
around each PAI DNAm site. To test if the number of overlaps was significantly
larger than expected by chance, we generated a null distribution by mapping the
ChIP-Seq peaks of each protein to either the same number of DNAm sites ran-
domly sampled from those included in the PAI analysis or the same number of
random genomic sites.

Quantifying the expression levels of Pm-PAI genes. To quantify the expression
levels of genes whose promoters were involved in the predicted PAIs (Pm-PAI
genes), we used gene expression data (measured by transcript per kilobase million
mapped reads (TPM)) from blood samples of the Genotype-Tissue Expression
(GTEx) project31 (https://www.gtexportal.org/home/). We classified all the genes
into two groups based on their expression levels in GTEx blood, i.e., active and
inactive (TPM < 0.1). For the active genes, we further divided them into four
quartiles based on their expression levels in GTEx blood, and counted the number
of Pm-PAI genes in each group. To generate the null distribution, we randomly
sampled the same number of control genes whose promoter DNAm sites were
included in the SMR analysis, and repeated the random sampling 1000 times. We
computed the number of Pm-PAI genes and control genes in each group and
assessed the significance by comparing the number of Pm-PAI genes with the null
distribution in each group. We further tested the enrichment of the Pm-PAI genes
against a null distribution sampled from all genes.

Enrichment of eQTLs and gene-associated DNAm in the PIDSs. The eQTL
enrichment analysis was conducted using all the independent cis-eQTLs
(m ¼ 11; 204) from the CAGE32 study. The independent cis-eQTLs were from
SNP-probe associations (P < 5 ´ 10�8) after clumping analysis in PLINK55 followed
by a conditional and joint (COJO) analysis in GCTA56. We only retained the cis-
eQTLs whose target genes had at least a PIDS and mapped the cis-eQTL to a 10 Kb
region centred around each corresponding PIDS of a Pm-PAI gene. To assess the
significance of the enrichment, we generated a null distribution by mapping the cis-
eQTLs to the same number of control gene-DNAm pairs (strictly speaking, it is the
bait DNAm probe in the promoter of a gene together with another non-promoter
DNAm probe) randomly sampled (with 1,000 repeats) from those included in the
PAI analysis with the distance between a control pair matched with that between a
Pm-PAI gene and the corresponding PIDS. In addition, we have identified a set of
DNAm sites that showed pleiotropic associations with gene expressions in a pre-
vious study19. We used the same approach as described above to test the sig-
nificance of enrichment of the gene-associated DNAm sites in the PIDSs.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All the data sets used in this study are available in the public domain (Supplementary
Table 1). The full summary statistics from the PAI analysis are publicly available at
http://cnsgenomics.com/shiny/M2Mdb/.

Code availability
All the analysis scripts used in this study are publicly available at https://github.com/
wuyangf7/PAI.
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