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Abstract: To characterize molecular changes accompanying the stepwise progression to breast cancer
and to identify functional target pathways, we performed miRNA and RNA sequencing using
MCF10A cell lines based model system that replicates the multi-step progression involving normal,
preneoplastic, ductal carcinoma in situ, and invasive carcinoma cells, where the carcinoma most
resemble the basal-like subgroup of human breast cancers. These analyses suggest that 70% of
miRNA alterations occurred during the initial progression from normal to a preneoplastic stage.
Most of these early changes reflected a global upregulation of miRNAs. This was consistent with a
global increase in the miRNA-processing enzyme DICER, which was upregulated as a direct result
of loss of miRNA let-7b-5p. Several oncogenic and tumor suppressor pathways were also found to
change early, prior to histologic stigmata of cancer. Our finding that most genomic changes in the
progression to basal-like breast cancer occurred in the earliest stages of histologic progression has
implications for breast cancer prevention and selection of appropriate control tissues in molecular
studies. Furthermore, in support of a functional significance of let-7b-5p loss, we found its low levels
to predict poor disease-free survival and overall survival in breast cancer patients.

Keywords: basal-like breast cancer; preneoplastic; miRNAomics; RNA sequencing; integromics

1. Introduction

According to a well-established model of cancer development, sporadic breast cancer develops
through progressive accrual of driver molecular aberrations in the normal breast tissue [1]. On the
basis of this model, one would envision early, high-risk lesions to possess a limited amount of
molecular alterations, with lesions further down the histologic spectrum (such as ductal carcinoma
in situ [DCIS]) showing disproportionally higher rates of mutational change. In contrast to this
prevailing notion, several recent studies have found a plethora of molecular changes, such as loss of
heterozygosity, miRNA, and gene aberrations in normal tissues immediately adjacent to areas of breast
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carcinoma [2–5]. This suggests that a substantial amount of molecular alteration may be occurring
early in the tumorigenic process.

To evaluate these two competing models of the molecular evolution across the preneoplastic state,
we seek to comprehensively characterize the genomic changes within a model system that has been
shown to closely resemble the development of basal-like human breast cancers [6–9], an aggressive
breast cancer subtype. This model comprises cell lines that recapitulate the key histologic lesions in
tumorigenesis: atypia, DCIS, and invasive cancer. Our objectives are to understand the breadth and
timing of molecular alterations and their relationship to well-accepted stages of histologic progression
and to identify the functional networks that may suggest opportunities for targeted prevention.
We performed miRNAomic- and transcriptomic- studies on these samples and integrated the findings
across these datasets to identify miRNA-mediated functional gene targets and signaling pathways
that underlie both the early and late stages of tumor evolution. Our findings support the premise that
a substantial amount of molecular alterations occur before any histologic evidence of cancer, with
a global upregulation of miRNA that subsequently drives substantial downstream change in gene
expression and pathway regulation. Further, we report a key role for let-7-mediated upregulation of
the enzyme DICER in driving the global upregulation in mature miRNAs that we observed during
breast cancer progression. let-7 family members are well-known tumor suppressor miRNAs that have
reduced expression in cancers [10]. DICER is known to be deregulated in several cancers, but its
pattern of deregulation does not appear to conform to those of typical tumor suppressors or oncogenes.
Its partial suppression is known to increase tumorigenesis, and complete deletion is required for the
inhibition of tumor growth [11]. Its deregulation has also been shown to be variable across cancers.
A transient upregulation of DICER is detected in early stages of lung adenocarcinoma, whereas it is
downregulated during the most advanced stages of lung cancer [12]. In contrast, DICER expression is
shown to be increased in prostate adenocarcinoma and Burkitt’s lymphoma [13]. In the setting of breast
cancer, DICER expression varies by subtype, with hormonally sensitive breast cancers expressing
higher levels than the hormonally insensitive basal-like subtype of breast cancer [14,15]. Loss of DICER
expression is also reported to be associated with breast cancer progression and poor prognosis [14,15].

2. Results

2.1. An Early Global Increase in miRNAs is Seen during Breast Tumorigenesis

A stepwise approach was taken in order to identify miRNAs that change significantly across the
histologic progression model, according to the predefined tumor progression profiles based on the
biological hypotheses detailed in Figure 1A. We were particularly interested in identifying miRNAs
that followed one of eight expression patterns: early (between MCFA10.P and MCF10.AT1) and
continuous increase across the spectrum (G1), early and continuous decrease across the spectrum (G8),
early increase followed by a plateau (G2), early decrease followed by a plateau (G7), delayed (between
MCF10.AT1 and MCF10.DCIS) increase (G3), delayed decrease (G6), late (between MCF10.DCIS and
MCF10.CA1D) increase (G4), and late decrease (G5).

As the first step, we performed miRNA sequencing (miRNA-seq; Figure 1B). This yielded 1983
annotated miRNAs. We removed 1533 miRNAs that were expressed at the same levels across all of the
samples (i.e., variance was equal to 0), as these were deemed uninformative for the primary objective of
examining the molecular alterations that underlie histologic progression. The remaining 450 miRNAs
were used for downstream analysis (Figure S1). In the second step, we applied the ANOVA test
to identify miRNAs that were significantly altered across any histologic step along the continuum
(normal, preneoplastic, DCIS, and invasive cancer) and used the false discovery rate (FDR) to adjust the
type I error due to the multiple comparisons. Lastly, on the basis of the ANOVA results, we employed
the Tukey post-hoc pairwise test to identify significant differences. These analyses provided a list of
296 miRNAs that significantly (FDR p < 0.05) changed across any point in the histologic spectrum
(Figure 2A). Next, K-means clustering was applied to map these 296 miRNAs to the eight predefined
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groups of expression patterns (Figure S2). Of the 296 significantly altered miRNAs, 213 miRNAs
mapped to these groups (Figure 2B,C); 83 miRNAs did not follow any consistent pattern and were
excluded from further analyses. We sought to validate the expression pattern of 3 (of 83) random
miRNAs in the MCF10A panel by quantitative PCR (qPCR) assay, and all of these miRNAs showed
similar expression patterns using both assays (Figure S3).
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Figure 1. Bioinformatics pipeline. Schematics showing eight patterns of interest (including early 
changes, early sustained changes, and late changes) that were used as criteria for identifying 
meaningful changes in (A) miRNAs and in (C) mRNAs and pathways that define breast cancer 
progression across a panel of cell lines comprising normal-like (MCF10A.P), preneoplastic 
(MCF10.AT1), DCIS (MCF10.DCIS), and invasive cancer (MCF10.CA1D) cells. The red lines (Figure 
1A and 1C) indicate that miRNA/mRNA expression levels and pathway scores are higher in 
progressive stages and the green lines indicate that miRNA/mRNA expression levels and pathway 
scores are lower in progressive stages compared to MCF10A.P. (B) Flowchart showing the 
bioinformatics pipeline for processing of miRNA- and RNA-sequencing datasets to derive target 
genes and pathways. First, statistical significance analysis (as described in Methods) was used to 
identify meaningful miRNAs and RNAs across the breast cancer progression steps, and parametric 
analysis of gene set enrichment (PAGE) was used to calculate scores of the pathways. Then, a k-mean 
clustering analysis was used to group the significant miRNAs, RNAs, or pathways for the patterns of 
interest. TargetScan was applied to determine miRNAs’ targets, which were used to determine the 
target pathways, if the target genes are among the pathway gene membership. At the last, networks 
were drawn to visualize the relationships between miRNA, target genes, and pathways. None of the 
miRNA conforming to the expression pattern of G8 were identified, therefore G8 is missing in the 
miRNA set. 
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Figure 1. Bioinformatics pipeline. Schematics showing eight patterns of interest (including early
changes, early sustained changes, and late changes) that were used as criteria for identifying meaningful
changes in (A) miRNAs and in (C) mRNAs and pathways that define breast cancer progression across a
panel of cell lines comprising normal-like (MCF10A.P), preneoplastic (MCF10.AT1), DCIS (MCF10.DCIS),
and invasive cancer (MCF10.CA1D) cells. The red lines (Figure 1A,C) indicate that miRNA/mRNA
expression levels and pathway scores are higher in progressive stages and the green lines indicate
that miRNA/mRNA expression levels and pathway scores are lower in progressive stages compared
to MCF10A.P. (B) Flowchart showing the bioinformatics pipeline for processing of miRNA- and
RNA-sequencing datasets to derive target genes and pathways. First, statistical significance analysis
(as described in Methods) was used to identify meaningful miRNAs and RNAs across the breast
cancer progression steps, and parametric analysis of gene set enrichment (PAGE) was used to calculate
scores of the pathways. Then, a k-mean clustering analysis was used to group the significant miRNAs,
RNAs, or pathways for the patterns of interest. TargetScan was applied to determine miRNAs’ targets,
which were used to determine the target pathways, if the target genes are among the pathway gene
membership. At the last, networks were drawn to visualize the relationships between miRNA, target
genes, and pathways. None of the miRNA conforming to the expression pattern of G8 were identified,
therefore G8 is missing in the miRNA set.

Two patterns of interest emerged from the global miRNA analyses. First, most of the miRNAs were
upregulated during tumorigenic progression, with expression levels of 177 (83%) of the 213 miRNAs
increasing in this multistep model. Second, the majority of the miRNA changes were noted in the initial
progression from normal to preneoplastic cells. Using a log fold change of 2 as a threshold and Tukey
pairwise comparison, 107 miRNAs were identified to be significantly altered across transition states,
of which 80 (75%) (Figure 2B,C) occurred in the transition from normal (MCF10A.P) to preneoplastic
(MCF10.AT1), 22 (20%) occurred in the transition from MCF10.AT1 to MCF10.DCIS, and 5 (5%)
occurred in the transition from MCF10.DCIS to MCF10.CA1D. Sixty miRNAs were found to be common
between the three comparisons (normal to preneoplastic, preneoplastic to DCIS, and DCIS to invasive)
(Figure 2D). These common miRNAs are likely to have a role in early-stage, as well as late-stage,
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transitions in breast cancer progression. Thus, targeting of their downstream genes/pathways may be
suitable for prevention, as well as treatment purposes.
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3A) and DICER protein (2.89 fold, p < 0.05, Figure 3B and C) levels in MCF10.AT1 preneoplastic cells, 
as compared to the normal MCF10A.P cells. miRNA binding prediction databases such as 
miRTarBase and Target Scan were used to identify miRNA candidates that can directly bind and 
regulate DICER. miRTarBase predicted six and Target Scan predicted ten miRNAs that overlapped 
with Next-Gen miRNA sequence expression data in our study. Heatmaps for these putative DICER 
regulating miRNAs are shown in (Figure S4). Six miRNAs were found to be common between these 
two prediction algorithms. Out of these six miRNAs- miR-21-5p, miR-195-5p and miR-497-5p failed 

Figure 2. miRNAs that changed significantly during breast cancer progression. (A) Heat map showing
the expression pattern of all miRNAs (n = 296) that significantly changed across the spectrum of
breast cancer progression comprising normal-like (MCF10A.P), preneoplastic (MCF10.AT1), DCIS
(MCF10.DCIS), and invasive cancer (MCF10.CA1D) cells. The color key shows blue as the lowest
expression and red as the highest expression. (B) Bar diagram showing the number of miRNAs that
mapped to the predefined groups of interest. (C) Heat map showing the expression pattern of 213
miRNAs that mapped to one of the eight predefined groups of interest, which depicts global miRNA
changes during breast cancer progression. (D) Venn diagram showing the number of miRNA changes
that were distinct or shared among normal to preneoplastic (MCF10A.P to MCF10.AT1), preneoplastic
to DCIS (MCF10.AT1 to MCF10.DCIS), and DCIS to invasive cancer (MCF10.DCIS to MCF10.CA1D).

2.2. let7b-5p Mediated DICER Regulation Causes Early Global miRNA Upregulation

To study the mechanism underlying the observed global upregulation of mature miRNAs, we
tested the hypothesis that an increase in miRNA processing enzyme DICER might be involved.
Consistent with this hypothesis, we observed an increase in DICER mRNA (1.8 fold, p < 0.05, Figure 3A)
and DICER protein (2.89 fold, p < 0.05, Figure 3B,C) levels in MCF10.AT1 preneoplastic cells, as
compared to the normal MCF10A.P cells. miRNA binding prediction databases such as miRTarBase
and Target Scan were used to identify miRNA candidates that can directly bind and regulate DICER.
miRTarBase predicted six and Target Scan predicted ten miRNAs that overlapped with Next-Gen
miRNA sequence expression data in our study. Heatmaps for these putative DICER regulating miRNAs
are shown in (Figure S4). Six miRNAs were found to be common between these two prediction
algorithms. Out of these six miRNAs- miR-21-5p, miR-195-5p and miR-497-5p failed to show a pattern
of expression that is consistent with DICER expression pattern, suggesting that these were unlikely to
be regulating DICER in our model system. In contrast, miRNA-29c-3p and let-7b-5p showed a steady
down regulation in our breast cancer development model that is consistent with a general upregulation
of DICER. Our previous studies have shown miRNA-29c-3p to be a tumor suppressor miRNA that is of
relevance to TNBC, and is lost in the MCF10A-based breast cancer progression model consistent with
upregulation in DICER [16]. Therefore, we tested the hypothesis that miRNA-29c-3p plays a role in the
observed upregulation of DICER1 in the breast cancer progression model. These experiments revealed
that although miRNA-29c expression is appropriately lost in the breast cancer progression model [16],
and is predicted to regulate DICER, this regulation is not relevant in the setting of breast tumorigenesis
(Figure S5). Specifically, these results show that the restoration of miRNA-29c-3p, which is lost in
preneoplastic MCF10.AT1 cells by sequence specific miRNA mimics, did not relieve the repression of
DICER mRNA and DICER protein levels remained unchanged compared to scramble control mimic
transfected cells (Figure S5).
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panel. DICER1 mRNA levels were first normalized to a housekeeping gene, RPL19. The Ct values 
were converted to fold change using the delta Ct method and setting the lowest gene expression 
(MCF10A.P cells, in this case) as 1. (B and C) Western blot analysis and its quantification showing 
upregulation in endogenous DICER1 protein in the breast cancer progression panel. DICER protein 
levels were normalized to the loading control, vinculin. The relative DICER expression was set as 1 
in MCF10A.P cells, and the relative fold change was calculated in other cell lines. The graph represents 
mean values + SEM. p values were calculated using student’s t test. * indicates p < 0.05. 

let-7 miRNA family members have been previously demonstrated to directly bind and repress 
DICER1 [17]. We performed several correlative and causal experiments to test if let-7b-5p, a let-7 
family member, regulates DICER1 in the setting of breast cancer as well. Although, there is no perfect 
correlation between let7b-5p expression and DICER expression, there is an overall inverse trend 
between the molecules that was strongly suggestive of interplay, which we further confirmed 
through direct assays using let-7b mimics. First, we validated the miRNA sequencing by examining 
the endogenous expression of let 7b-5p miRNA by qPCR in the progression panel. In these correlative 
experiments, we found let-7b-5p basal levels decreased by 30% in preneoplastic MCF10.AT1 cells 
compared to normal MCAF10.P cells (p < 0.05), and further decreased by 43% in MCF10.DCIS cells 
compared to MCF10.AT1 cells (p < 0.05; Figure 4A), confirming the miRNA sequencing results. Next, 

Figure 3. DICER upregulation during breast cancer progression. (A) Relative mean expression of
endogenous DICER1 mRNA assayed by qPCR across the MCF10A-based breast cancer progression
panel. DICER1 mRNA levels were first normalized to a housekeeping gene, RPL19. The Ct values were
converted to fold change using the delta Ct method and setting the lowest gene expression (MCF10A.P
cells, in this case) as 1. (B and C) Western blot analysis and its quantification showing upregulation
in endogenous DICER1 protein in the breast cancer progression panel. DICER protein levels were
normalized to the loading control, vinculin. The relative DICER expression was set as 1 in MCF10A.P
cells, and the relative fold change was calculated in other cell lines. The graph represents mean values
+ SEM. p values were calculated using student’s t test. * indicates p < 0.05.

let-7 miRNA family members have been previously demonstrated to directly bind and repress
DICER1 [17]. We performed several correlative and causal experiments to test if let-7b-5p, a let-7
family member, regulates DICER1 in the setting of breast cancer as well. Although, there is no
perfect correlation between let7b-5p expression and DICER expression, there is an overall inverse
trend between the molecules that was strongly suggestive of interplay, which we further confirmed
through direct assays using let-7b mimics. First, we validated the miRNA sequencing by examining
the endogenous expression of let 7b-5p miRNA by qPCR in the progression panel. In these correlative
experiments, we found let-7b-5p basal levels decreased by 30% in preneoplastic MCF10.AT1 cells
compared to normal MCAF10.P cells (p < 0.05), and further decreased by 43% in MCF10.DCIS cells
compared to MCF10.AT1 cells (p < 0.05; Figure 4A), confirming the miRNA sequencing results.
Next, in order to establish the direct association between let-7b-5p and DICER regulation, let-7b-5p
was ectopically expressed in preneoplastic MCF10.AT1 cells by transiently transfecting let-7b-5p or
scramble control mimics. These experiments revealed an average 42% reduction of endogenous
DICER mRNA levels (Figure 4B) and an average 60% reduction in DICER protein levels by let-7b-5p
mimics, relative to scramble control miRNA (Figure 4C). Lastly, in order to directly assess whether
let7b-5p-mediated regulation of DICER is sufficient to account for the global upregulation in miRNAs
observed through miRNA-seq, we transfected let-7b-5p or scramble control mimics into MCF10.AT1
cells and tested a panel of 12 randomly selected miRNAs that were noted from the sequencing data to
be endogenously increased during breast cancer progression (Figure 2C). Indeed, rescue of let-7b-5p
significantly inhibited the expression of a majority of these mature miRNAs (75%, 9 of 12 miRNAs
tested; Figure 4D), further validating that let-7b-5p-mediated regulation of DICER was involved in the
global miRNA alterations that we observed.
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expression in scramble-treated MCF10.AT1 cells as 1. The graphs represent mean values + SEM. p 
values were calculated using student’s t test. * indicates p < 0.05. 

2.3. let-7b-5p Predicts Patient Prognosis in TCGA Dataset 

In order to investigate the patient relevance of let-7b-5p loss, which we observed during the 
early steps of breast cancer development, and that has been reported to be associated with higher 

Figure 4. let-7b-mediated DICER regulation causes global miRNA changes. (A) Relative mean
expression of endogenous let-7b-5p miRNA assayed by TaqMan-based qPCR across the breast cancer
progression panel. let-7b levels were first normalized to a small nucleolar RNA, RNU44. The Ct
values were converted to fold change using the delta Ct method and setting the lowest gene expression
(MCF10A.P cells, in this case) as 1. (B) Relative mean expression of endogenous DICER1 mRNA
assayed by qPCR in MCF10.AT1 cells transfected with either scramble mimic or let-7b-5p mimics.
DICER1 mRNA levels were first normalized to a housekeeping gene, RPL19. The Ct values in let-7b-5p
mimic-treated cells were converted to fold change using the delta Ct method and setting the gene
expression in scramble-treated MCF10.AT1 cells as 1. (C) Western blot analysis and its quantification
showing repression in endogenous DICER1 protein caused by let-7b-5p mimics compared to scramble
control mimics in preneoplastic MCF10.AT1 cells. DICER protein levels were normalized to a loading
control, vinculin. The graphs represent mean values + SEM. (D) Relative mean expression of indicated
miRNAs as assayed by qPCR in MCF10.AT1 cells transfected with either scramble mimic or let-7b-5p
mimics. miRNA levels were first normalized to a loading control, RNU44. The Ct values in let-7b-5p
mimic-treated cells were converted to fold change using the delta Ct method and setting the gene
expression in scramble-treated MCF10.AT1 cells as 1. The graphs represent mean values + SEM. p
values were calculated using student’s t test. * indicates p < 0.05.

2.3. let-7b-5p Predicts Patient Prognosis in TCGA Dataset

In order to investigate the patient relevance of let-7b-5p loss, which we observed during the early
steps of breast cancer development, and that has been reported to be associated with higher grade
breast tumors in patients [18], we mined The Cancer Genome Atlas (TCGA) breast cancer data to study
its association with DSS and OS. The rationale for these studies is based on the logic that an early
molecular change may be sufficient to trigger significant changes in downstream molecules (such as
DICER change in here, which is sustained later in the breast cancer development) that eventually affects
breast cancer patient prognosis. These analyses showed high levels of let-7b-5p to be significantly
associated with better DSS and OS (log rank p = 0.00126 and p = 0.0081) in all breast cancer cases
(irrespective of the subtype) (Figure 5). Specifically, we found the median overall survival in patients
expressing low levels of let-7b-5p to be 121 months, compared to 212 months in patients expressing
high levels of let-7b-5p. For DSS, the median survival in patients with low expression of let-7b-5p
was 217 months, and in the group of patients that expressed high levels of let-7b-5p, the DSS was
prolonged and never reached the median survival (Figure 5A).
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Figure 5. Low levels of let-7b-5p predict poor prognosis in breast cancer patients. Kaplan-Meier curves
showing (A) disease-specific survival and (B) overall survival (in months) in breast cancer patients
expressing high vs low levels of let-7b-5p.

Within the basal like breast cancer subset, a similar trend was observed with low let-7b-5p
associated with poor overall survival, but due to a relatively smaller sample size (n = 179 in basal
subtype compared to n = 980 in all subtypes of breast cancer) these trends did not reach statistical
significance (Figure S6).

In order to establish if let-7b-5p independently predicts patient survival, we performed a
multivariate Cox regression analysis with miRNA let-7b-5p, age, and stage as variables within the
model. The results indicate that the low expression of let-7b-5p is significantly associated with poor
prognosis of both DSS and OS even after controlling for age and stage of disease (Table 1). Our data
are thus consistent with the reported role of let-7b, where its low levels are associated with a higher
grade and more aggressive TP53 mutated breast tumors and poorer outcomes [18].

Table 1. Multivariate Cox model of factors associated with survival outcome.

Variable HR 95%CI p-Value

Disease specific survival

Let 7b-5p High Ref
Low 2.19 1.25–3.85 < 0.01

Age Per yr increase 1.01 0.99–1.03 0.3
Stage I Ref

II 1.97 0.64–6.07 0.2
III 6.61 2.29–19.05 < 0.01
IV 41.62 13.49–128.41 < 0.01

Overall Survival

Let 7b-5p High Ref
Low 1.91 1.26–2.87 < 0.01

Age Per yr increase 1.03 1.02–1.05 < 0.01
Stage I Ref

II 1.86 0.97–3.56 0.06
III 4.05 2.15–7.63 < 0.01
IV 15.59 7.27–33.45 < 0.01

2.4. Characterization of Global Gene Expression Changes

To study the global gene expression, RNA-seq was performed (Figure 1B). Outputs were processed
by alignment and assembly of RNA fragments to obtain 17,708 genes; gene expression data were
then normalized using the quantile normalization method. Next, we performed variation analysis to
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remove the low-expression noise genes. Briefly, for each gene, we calculated the standard deviation
(SD) of expression levels across samples that were run in triplicate and used at least the 25% quantile of
the SDs as cutoffs to select genes. This data-cleaning procedure allowed us to select 13,281 genes that
had reliable expression data for downstream analysis. In the second step, we applied an ANOVA to
the RNA-seq data and used an FDR of q < 0.05 as a cutoff to identify the significantly changing genes.
This analysis allowed us to identify 10,558 genes that were significantly deregulated in at least one of
the progression transitions (Figure S7). Next, we applied the Tukey post-hoc pairwise test to identify
significant differences. Using a log fold change of at least 2 and Tukey’s HSD (honestly significant
difference) adjusted p value of 0.01 as cutoffs, we found that a majority of 6497 genes (61%) were
significantly deregulated in the earliest transition of normal MCF10.P to MCF10.AT1 cells, consistent
with the early deregulation of miRNA. A total of 4022 genes, constituting 38% of the genes, changed in
the transition of MCF10.AT1 to MCF10.DCIS cells, and the remaining one fourth of the genes (2,604
genes, 25%) were altered in the transition of MCF10.DCIS to invasive MCF10.CA1D cells (Figure S7).
A total of 1102 genes significantly changed during all three comparisons. We used qPCR as a second
method of testing gene expression analysis for 19 randomly selected genes from this list, and for 18 we
were able to validate the RNA-seq results (Figures S8–S11). We have previously validated an additional
eight genes [16,19].

2.5. Integration of Multi-Level Omics Data Reveals Regulatory Networks that Define the Progression of
Basal-Like Breast Cancer

2.5.1. Identification of Target Genes

To integrate these gene-level changes with upstream miRNA alterations, a two-step approach was
used (as described in Figure 1B). First, the genes were mapped into eight groups based on expression
pattern, similar to the groups defined for the miRNA characterization, except reversed. This is because
gene expression is expected to increase correspondingly to a miRNA decrease. Thus, genes mapped
in the G1 group represented a continuous decrease across the spectrum, in G8 a continuous increase,
and so on (Figure 1C). Again, K-means clustering was used to profile the significantly changing genes
(10,558) (Figure S12). Of these 10,558 genes, 5401 genes mapped to the eight expression patterns of
interest, specifically, 946 genes in group G1, 1751 genes in group G2, 452 genes in group G3, 166 genes
in group G4, 248 genes in group G5, 299 genes in group G6, 1126 genes in group G7, and 413 genes in
group G8. Next, these 5401 genes were compared to the predicted gene targets for the 213 miRNAs
identified through miRNA sequencing. Of the total 5401 genes from the RNA sequencing that fell into
the eight patterns of interest, 1299 genes were also identified, using TargetScan, as predicted targets
for the miRNAs of interest, and these formed our miRNA-mRNA integrated list. The number of
genes/miRNAs per group ranged from 1 target gene (in G5) to 483 target genes (in G2) (Figure 6).

Interestingly, similar to early miRNA changes, most of the target mRNA alterations also started
to occur early; expression of more than 96% of genes changed (of which ~50% genes [648 of 1299]
decreased) during the MCF10A.P to MCF10.AT1 transition. In contrast, only ~3% (38 of 1299) and ~1%
(11 of 1299) of new gene alterations occurred in the transitions from MCF10.AT1 to MCF10.DCIS and
MCF10.DCIS to MCF10.CA1D, respectively.

2.5.2. Identification of Target Pathways

The list of 1299 integrated miRNAs and mRNAs was then used to identify and integrate target
pathways. We first downloaded 3195 annotated gene sets/pathways from four major collections (C2,
C3, C4, and C6) of the MSigDB database that are of well-known relevance to regulatory motifs and
cancers. We applied parametric analysis of gene set enrichment analysis (PAGE) to the RNA-seq
data to calculate pathway scores, then took a two-pronged approach to identify miRNA-driven target
pathways. In brief, as illustrated in Figure 1B, we first used K-means clustering to group the pathways
and applied silhouette analysis to study the separation distance between the resulting clusters. Then,
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we used a silhouette coefficient of 0.5 as a strict cutoff to remove the pathways that were improperly
clustered or very close to the decision boundary (Figure S13). As a result, we were able to assign 1597
pathways into the eight expression patterns of interest for miRNAs. Next, within each pathway group,
we cross-referenced the gene members of the pathways with the 1299 genes that formed the integrated
miRNA-mRNA list to see if there were overlapping genes. For 691 pathways, we found overlapping
genes between their gene members and the miRNA-mRNA integrated list, and these were selected
as the target pathways. This approach allowed us to narrow down target pathways from a long list
of pathways and, furthermore, to integrate the genomic changes of mRNA target genes driven by
miRNAs and the target pathways associated with the mRNA genes in the network analysis.
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The pathway scores of the 691 target pathways show distinctive patterns between normal
MCF10A.P cells and other subsequent stages of histologic progression, and two major patterns were
observed (Figure 7). First, most of the pathway alterations occurred in the earliest steps in tumorigenesis
(> 99%), with few de novo alterations noted in the transition from preneoplastic to DCIS and from DCIS
to invasive cancer. Second, the majority (63%, 438 of 691) of pathways appeared to be downregulated
early in the progression from the normal-like to preneoplastic state. This global downregulation
of pathways is consistent with the global upregulation in miRNAs we observed (Figure 2) and the
well-established repressive role of miRNAs in gene regulation. Figure 8A,B shows the miRNAs and
their corresponding target genes and pathways that were deregulated in the normal-to-preneoplastic
transition in the MCF10A breast cancer progression model (Table S1). Pathways that were deregulated
in the untransformed MCF10A.P-to-MCF10.AT1 preneoplastic transition include EGF, PDGF, MAPK,
the JAK/STAT pathway, the IGF-mTOR pathway, the Myc activation pathway, apoptotic cleavage of
cell adhesion proteins, cell cycle checkpoints, deadenylation-dependent mRNA decay, G1/S transition,
insulin receptor signaling, and the miRNA-mRNA biogenesis pathway (Table S2). These pathways
have been widely known to play a role in breast cancer, and our analysis now suggests their role very
early in the molecular and histologic progression to invasive breast cancer. miRNAs and their target
genes and pathways, which were implicated in later stages (preneoplastic [MCF10.AT1] to preinvasive
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[MCF10.DCIS] and preinvasive [MCF10.DCIS] to invasive [MCF10.CA1D]) in the progression model,
are shown in Supplementary Figure S14–S18 and listed in Table S1. Interestingly, using Tukey’s HSD
adjusted p value of 0.01 and log fold change of 2 as cutoffs, we found 64 target pathways significantly
deregulated in the transition from untransformed cells (MCF10A.P) to preneoplastic cells (MCF10.AT1),
but only three pathways (GGCAGTG_MIR3243P, GNF2_NPM1, and MORF_CCNI) changed in the
preneoplastic (MCF10.AT1) to DCIS (MCF10.DCIS) transition, and none of the pathways appeared to be
de novo deregulated in the DCIS to invasive (MCF10.CA1D) transition based on these statistical criteria.
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2.6. Integromics Identifies Top Functional Networks Underlying Transitions in Breast Cancer Progression

We next sought to create a network model to globally capture the regulation of the functional
target pathways via their gene mediators and upstream miRNA regulators, and characterize how
these networks may differ during tumorigenic progression. For these comparisons, out of 691 target
pathways that contain gene targets of the miRNA studied, we focused on the top two pathways that
were most altered (based on fold change and adjusted p values obtained from a linear model using
LIMMA package in R) within each of the three key histologic transition points.

Within the first transition (MCF10A.P to MCF10.AT1), MODULE_83 and REACTOME
_TRANSLATION were identified as the top two pathways that were activated (Figure 8C). Interestingly,
the gene mediators of both of these pathways are key components of mRNA processing and translation
machinery. This is in line with the increased cell growth and proliferation that are the hallmarks of the
transition of untransformed cells to atypical hyperplastic cells; such growth would require additional
building blocks, and therefore our finding of increased mRNA processing and translation in the very
early transition of breast cancer progression is plausible. MODULE_83, containing 320 cancer-relevant
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genes (284 of which occur in our RNA-seq data set), is composed of 27 gene sets, including nucleic
acid binding, nuclease activity, protein biosynthesis, and ribosome gene sets, as described in MSigDB
(http://www.broadinstitute.org/gsea/msigdb/cards/MODULE_83). This module has been clinically
associated with several cancers, including breast cancer. Four (EIF5A, SRP19, SRSF7, and SRPR) of
the 284 genes from this network that were identified as the predicted target genes of the indicated
miRNAs (Figure 8C) were upregulated in this first transition in breast cancer progression. Most of their
upstream miRNAs (miR-181a-5p, miR-204-5p, miR-424-3p, miR-497-5p, miR-195-5p, and miR-424-5p)
are known as tumor suppressor miRNAs and were found to be lost in this first transition, causing an
upregulation in the gene targets. The gene target EIF5A is a translation initiation factor that is involved
in cell cycle progression and functions as a regulator of TP53-dependent apoptosis [20]. Overexpression
of EIF5A is required for expression of TP53 to induce apoptosis [20]. SRP19 is potentially involved in
RNA binding [21], and SRSF7 is required for pre-mRNA splicing, promoting the nucleocytoplasmic
export of mRNA [22]. SRPR is an endoplasmic reticulum signal recognition particle receptor involved
in the targeting and translocation of signal-sequence-tagged secretory and membrane proteins across
the endoplasmic reticulum [23].
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Figure 8. miRNAs and their target genes and target pathways that changed across histological
progression. (A and B) Heat maps showing the miRNAs and their target genes and pathways that
mapped to (A) Group 2 or (B) Group 7 and represent early changes across the preneoplastic transition
of breast cancer progression. The color key shows blue as the lowest expression and red as the
highest expression. (C) Network diagrams for the top two pathways derived from the transitions of
normal MCF10A.P to preneoplastic MCF10.AT1 cells and MCF10.AT1 to MCF10.DCIS cells. The large
central sphere represents the core pathway, with more peripheral circles representing genes that
regulate the pathway. The sizes of these peripheral circles are scaled to show their relative impact
on the pathway. Selected miRNAs are shown in triangles, with their gene targets represented within
squares. Magenta nodes represent activation of the pathway/gene/miRNA, while blue nodes represent
suppressed pathways/genes/miRNAs. Green lines between green nodes represent upregulation; green
lines between a green and red node represent repression. Similarly, red lines between red nodes
represent upregulation, and red lines between a green and red node represent inhibition.

The second top pathway network that was upregulated in the transition of untransformed
mammary cells to preneoplastic cells was REACTOME_TRANSLATION, which contains 222 genes; 124
of these genes existed in the RNA-seq dataset, and four of these genes (EIF4E, SRPR, SRP19, and SSR1)
were identified as target genes in our analyses (Figure 8C). SRPR and SRP19 are shared gene mediators
of the top two pathways, as these also had common miRNA regulators (miR-204-5p, miR-497-5p,
miR-195-5p, and miR-424-5p). The other two target genes, SSR1 and EIF4E, were upregulated through
downregulation of miR-483-5p (which plays a tumor promoter or tumor suppressor role, based
on cellular context [24]). SSR1 is an endoplasmic reticulum membrane receptor that is involved in
protein translocation across the endoplasmic reticulum membrane. EIF4E, another gene mediator of
the REACTOME_ TRANSLATION network, is an mRNA 5’ cap-binding protein that is involved in
translation initiation, and its upregulation is involved in cancer development and progression [25].

For the preneoplastic (MCF10.AT1) to DCIS (MCF10.DCIS) transition in breast cancer development,
GNF2_NPM1 and GGCAGTG_MIR3243P were the top two pathway networks that were found to be
significantly dysregulated (by at least twofold; Figure 8C). GGCAGTG_MIR3243P (genes that have a
binding site of miR-324-3p in their 3’UTR) is a pathway that was found to be downregulated through
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its gene target MEIS1 (Meis homeobox 1) in the preneoplastic-to-DCIS transition. Not much is known
about the role of MEIS1 in cancer (Figure 8C). Downregulation of the GNF2_NPM1 module occurs
through downregulation of target gene CPSF6 (Figure 8C). CPSF6 (cleavage and polyadenylation
specificity factor subunit 6) activates pre-mRNA 3’-end processing and the maturation and export of
mRNAs. Interestingly, its upstream regulator, miR-30e-5p, switched from being downregulated in
the early transition (MCF10A.P to MCF10.AT1) to upregulated in this mid transition (MCF10.AT1 to
MCF10.DCIS); its upregulation could lead to inhibition of CPSF6, a gene modulator of translation, and
eventually cause a decrease in translation. This would suggest the context-specific switch in the role of
a miRNA and the context-specific preferential use of a gene target to achieve inhibition in translation,
an outcome that is required for a given developmental step in cancer.

Lastly, none of the pathways were found to be significantly dysregulated in the transition from
the MCF10.DCIS to invasive (MCF10.CA1D) stage.

2.7. Targeting of Functional Networks Inhibits Cell Proliferation and Colonizing Ability of Preneoplastic Cells

In order to validate the biologic relevance of the miRNA-driven pathways that were predicted
to be deregulated in the early transition (MCF10.AP to MCF10.AT1), we performed loss of function
studies. Our integromic analyses showed an activation of Module 83 and Reactome translation
networks through increased expression of six gene mediators- SRSF7, SRP19, EIF5A, SRPR, SSR1, and
EIF4E. Using Mission siRNA, we knocked-down expression of all of these six genes individually and
studied their functional role in cell proliferation and colonizing ability of preneoplastic MCF10.AT1
cells. Up to two different siRNA constructs per indicated genes were tested (Assay IDs provided in
Table S3). Depletion of four (SRP19, SRPR, EI5FA, and EIF4E) of the six genes significantly inhibited
the cellular proliferation of MCF10.AT1 cells (that ranged from 28% to 64% inhibition) compared to
scramble control siRNA (Figure 9A). Depletion of all four of these genes (SRPR, EIF5A, EIF4E, and
SRP19) also significantly inhibited the colonizing ability (ranging from 40% to 80% inhibition) of
preneoplastic MCF10.AT1 Cells (Figure 9B,C). In order to assure the efficiency of gene knock down
in the MTT and colony formation assays, a parallel set of cells were treated with siRNA constructs
and qPCR was performed. The amount of average depletion ranged from 2-fold to 17.78-fold (Table
S3) for these transcripts. These proof of principle studies validate the functional relevance of miRNA
driven pathway networks that are generated by multilevel integromic studies, thus, their importance
as central mediators in breast cancer progression and the importance of their targeting for breast
cancer prevention.

3. Discussion

While much of the genomic analysis of breast cancer is focused on the characterization of invasive
disease, and more recently of in situ carcinoma, the extent of genomic alterations earlier in the
progression spectrum has remained largely unexamined. Our findings demonstrate that the majority
of molecular changes leading up to invasive cancer have already occurred prior to any histologic
evidence of carcinoma. These results extend the latest reports that genetic aberrations are present in
histologically normal tissues surrounding tumor tissue by showing the comprehensive and complex
degree of such early molecular change during breast tumorigenesis and support the premise of a change
in the molecular field that precedes the development of breast cancer. Further, we note substantial
upregulation of the miRNA network, which we show is driven at least in part let7b-5p mediated
by upregulation of DICER, and that the resulting downstream changes are functionally relevant,
conferring important biologic advantage.
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Figure 9. Depletion of key gene mediators of miRNAs driven target pathways/ networks inhibits cellular
proliferation and colonizing ability of preneoplastic MCF10.AT1 cells. (A and B) Bar diagram showing
% cell proliferation (A) and quantification of colonizing ability (B) of MCF10.AT1 cells transfected with
either scramble negative control siRNA or siRNA of the indicated genes. The graphs represent mean
values + SEM. P values were calculated using students’ unpaired t test. * indicates p < 0.05. (C) Crystal
violet stained colonies formed by MCF10.AT1 cells transfected with siRNAs of indicated genes or
scramble negative control siRNA.

let-7 is a well-known tumor suppressor miRNA relevant to several cancers, including breast
cancer, and it has previously been shown to regulate DICER1 expression through direct binding within
coding regions or the 3’UTR [26] and to establish an autoregulatory negative feedback loop to regulate
DICER in the context of oral cancer cells [27]. While let- 7, miRNA-103/107 and miRNA-192 have
been reported to target DICER [28], in our analyses, miRNAs other than let-7 did not make it to the
list of potential targets based on the 5% context score cut off filter applied in our study and were not
tested further.

The relevance of let-7b to the biology of breast cancer is further supported by studies that show low
levels of let-7b to be associated with higher grade breast tumors, and more aggressive TP53 mutated
tumors [18]- factors associated with poorer outcome. Similarly, we found poorer disease-specific
survival and overall survival in the TCGA breast cancer dataset in patients with low let-7b.

Our studies extend the relevance of let-7b to early steps of breast tumorigenesis. We show the
presence of a let-7-mediated autoregulatory negative feedback loop resulting in early, sustained loss
of let-7b-5p which causes an increase in DICER mRNA and protein, eventually resulting in a global
upregulation in miRNAs in preneoplastic cells. Interestingly, in our multi-step progression model,
we note that expression of let-7b-5p, while low in the preneoplastic and precancerous states, are
restored in later stages representative of invasive cancer within the MCF10A panel-based breast cancer
progression model. This finding is supported by clinical data demonstrating heterogeneity of let- 7b
expression in breast tumors, with relatively higher levels in a subset of patients. These findings suggest
the dynamic nature of molecular change during tumorigenesis, such that early changes may, with
additional accumulation of genomic instability, result in heterogenous patterns of expression during
later stages of tumorigenesis, as also indicated by the Kaplan-Meier survival curves where low levels
of let7b-5p predict worse survival in breast cancer cases.

Our finding that the majority of miRNA and gene alterations that defined the DCIS (MCF10.
DCIS) to invasive (MCF10.CA1D) transition are already present in the initial transition of normal,
untransformed cells (MCF10A.P) to preneoplastic cells (MCF10.AT1) in breast cancer builds on similar
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studies reported in the literature. Using micro-dissected cells from atypical ductal hyperplasia, DCIS,
and invasive cancer lesions and matched controls obtained from healthy normal women, Ma et al [29]
performed gene expression profiling and reported that a significant number of transcriptional changes
are already present in atypical ductal hyperplasia lesions and persist through DCIS and invasive cancer.
Similarly, using MMTV-PyMT (a mouse model of luminal B-type breast cancer), Cai et al [30] also
found that for genes differentially expressed in the late carcinoma stage, the expression alteration was
initiated at the hyperplasia stage. Lastly, in a gene expression profiling study using the MCF10A-based
breast cancer progression model, Rhee et al [31] also found about 75% of the gene expression changes
defined the untransformed MCF10A.P-to-benign transition and only 25% of gene expression changes
occurred in the benign-to-DCIS transition. The present manuscript strengthens the concept of early
gene-level changes in the preneoplastic breast. Most importantly, it also significantly adds to the
understanding of the molecular basis of basal-like breast cancer progression by revealing the timing and
nature of miRNA-, gene-, and pathway-level alterations. By integrating these multilevel omics data,
we identified the functional networks of miRNA-driven genes and pathways at each transition in the
development of basal-like breast cancer, which further established that most molecular deregulations
had its roots in the preneoplastic cells. By using a model system that recapitulates the complete
spectrum of breast cancer progression, we believe that we have captured a complete multilevel omics
landscape of all the major steps of progression.

Understanding the kinetics of the molecular deregulations is especially important for identifying
effective and novel targets for prevention that are driven from a preneoplastic state, rather than invasive
cancer, and also in the selection of appropriate controls for identifying and validating molecular
deregulations that are driven from the invasive or DCIS step of breast cancer progression. For such
analyses, it is common practice to compare cancer tissues to adjacent normal tissues [32]; however,
numerous studies, including a previous study of ours [33], suggest that histologically normal-looking
tissue adjacent to tumor tissue is not molecularly normal [2–5]. Therefore, using preneoplastic/adjacent
normal tissue samples would not be an appropriate control for identification of any meaningful
molecular changes in DCIS/cancer tissue. One such potential problem is evident from the reports of a
global downregulation of miRNAs in cancers, including breast cancer [34], where adjacent normal
tissue was used as a control. The reported global downregulation of miRNAs in breast cancer may
seem contrary to our findings, where we find an initial global upregulation in mature miRNAs
and DICER, the enzyme that is involved in miRNA processing during breast cancer progression.
By comprehensively studying the miRNA levels across the entire spectrum of breast cancer progression,
our results specifically suggest that there is a global upregulation in DICER and mature miRNAs
from untransformed cells to preneoplastic cells (MCF10.AT1) that stays high through DCIS, and that
there is an eventual global downregulation of DICER and miRNAs in invasive cancer (MCF10.CA1D)
compared to atypia. Therefore, characterizing cancers by using comparisons to atypia samples—or
adjacent normal tissue, which also bear many molecular hallmarks of the cancer state—would skew
the findings, and in this particular instance, suggest a global miRNA decrease in cancer tissues, rather
than the global increase in miRNA shown in our report.

The early global miRNA deregulations that we observed in our study also correlate with
deregulations in gene and pathways. Interestingly, we found a lesser proportion of genes to be
downregulated (~50% of genes compared to about 70% of miRNAs being upregulated) during
the normal-to-preneoplastic transition, which suggests the complexity of gene regulation involving
mechanisms other than miRNAs. This would also suggest that a proportion of miRNAs may even
activate expression of genes, a regulation that is occasionally reported in the literature [35].

Integrated analysis of this miRNAomics and transcriptomics dataset has allowed us to fully
capitalize on the data generated by the multilevel omics platforms in order to identify functionally
relevant gene targets of miRNAs and biologically meaningful networks. In particular, integrating
these datasets has strengthened our analyses and allowed us to (i) identify functional target genes and
pathways (of an miRNA), (ii) exclude any false-positive gene alterations, (iii) focus on biologically
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relevant pathways where several gene mediators are targets of an miRNA that also changes, and (iv)
identify miRNA-driven functional gene and pathway networks that are specific to a given transition
in the development of breast cancer. The networks created by this multilevel functional integration
revealed the upregulation of mRNA translation in the early progression to a preneoplastic state, which
is in line with the well-established role of cell growth and proliferation in the early steps of breast cancer
development, clinically represented by hyperplasia and atypia. Once the cell growth and proliferation
have occurred, the preneoplastic cells gain the ability to acquire additional characteristics that are
needed to become neoplastic. In agreement with this concept, the increased mRNA processing and
translation would no longer be needed, and that is exactly what we found in the preneoplastic-to-DCIS
transition. Lastly, the fact that no novel miRNA-driven pathway-level changes occurred in the late
transition from DCIS to invasive breast cancer suggests the role of microenvironment alterations,
particularly the presence of a protumor immune-suppressive microenvironment to drive breast cancer
progression from DCIS to invasive breast cancer, as has been suggested [36].

4. Materials and Methods

4.1. MCF10A Model System of Breast Cancer Progression and Cell Transfections

We used the MCF10A cell line-based isogenic cell model system, which comprises the entire range
of human breast cancer progression [6–9]. As described previously [16], MCF10A.P is an untransformed,
immortalized human mammary epithelial cell line and does not develop tumors when injected in mice.
The MCF10.AT1 cell line was generated by HRAS transformation of MCF10A.P cells and forms atypical
preneoplasia in mice [7]. MCF10.DCIS cells form comedo DCIS lesions in immune-deficient mice [37].
The MCF10.CA1D and MCF10.CA1H cell lines were derived from MCF10.AT1 xenografts and form
malignant tumors in xenograft mouse models. We purchased the MCF10A.P cell line from American
type culture collection (ATCC) and obtained the MCF10.AT1, MCF10.CA1D, and MCF10.CA1H cell
lines from Karmanos Cancer Center, Detroit, MI, under a Materials Transfer Agreement. MCF10.DCIS
cells were purchased from Wayne State University, Detroit, MI. All the cell lines used in the study
were authenticated by the selling agency and used within the first ten passages. We have previously
tested [19] and found these cell lines to be estrogen receptor, progesterone receptor, and HER2 negative
using immunohistochemistry, consistent with the clinical assays used to define the basal-like subtype
of breast cancer.

To test miRNA let-7b-5p or miRNA-29c-3p’s effect on DICER expression, subconfluently growing
MCF10.AT1 cells (about 175,000 cells/ well) that were plated in 6-well dishes were transfected with
mirVana let-7b-5p miRNA mimic (MC11050) or random scramble miRNA mimic using Lipofectamine
2000 (ThermoFisher Scientific, Waltham, MA) according to the manufacturer’s instructions.

4.2. RNA Extraction and qPCR

As described previously [16], total RNA, including miRNA, was extracted from cells by using
the miRNeasy Mini Kit (Qiagen, Germantown, MD), an extraction method that efficiently preserves
the small RNA (10-200 nucleotides) fraction. cDNA was prepared from RNA by using the iScript
cDNA Synthesis Kit (Bio-Rad, Hercules, CA). The target mRNA levels were measured with respect to
a loading control (ribosomal protein L19) by using the SYBR green-based qPCR method, as described
previously [19]. The primer sequences used for all gene targets tested are in Table S3. Levels of mature
miRNAs were quantified by qPCR using the TaqMan miRNA assay (ThermoFisher Scientific) following
the manufacturer’s instructions.

4.3. RNA Sequencing and Data Analysis

Total RNA was also processed for RNA sequencing using the HiSeq 2000 platform, as described
earlier [16]. RNA sequencing yielded 30–40 million read pairs for each sample. The data were first
mapped to the human genome (UCSC Genome Browser assembly hg19) using TopHat2 [38], then the
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abundant transcripts were estimated by Cufflinks [39]. Gene expression values were normalized by
quantile normalization methods. The significant RNAs were identified by ANOVA and the Tukey
post-hoc test, as described above.

4.4. Small RNA Sequencing

Integrity of the extracted total RNA was measured using the Agilent 2100 Bioanalyzer (Santa Clara,
CA, https://www.agilent.com/en/product/automated-electrophoresis/bioanalyzer-systems/bioanalyzer-
instrument/2100-bioanalyzer-instrument-228250), and only samples that passed strict quality-control
standards were processed for next-generation sequencing performed by the Sequencing Core at
Baylor College of Medicine, Houston, TX. For small RNA library construction, which yields 25–30
million reads per library, RNA samples were prepared using the DGE-Small RNA Sample Prep Kit
(Illumina, San Diego, CA), as described previously, and were analyzed on the Illumina HiSeq 2000
(https://www.illumina.com/documents/products/datasheets/datasheet_hiseq2000.pdf) platform [16].

4.5. Analysis of Small RNA Sequencing

The small RNA-seq data generated in this study was submitted to the GEO database under
accession number GSE93740. Curated RNA-seq data are shown in Table S4. A total of 1983 miRNAs
were annotated, but 1533 of them were expressed constantly at the same levels across all the samples
and thus removed. The remaining 450 mature miRNAs were used for downstream analysis. miRNAs
that had significantly increased or decreased expression in any tumor progression step were identified
by ANOVA. Furthermore, the Tukey post-hoc pairwise test was used to determine where the significant
differences lie. The p values were adjusted for the type I error rate due to the multiple comparisons.
A false discovery rate (FDR) of < 0.05 was considered statistically significant.

4.6. Target Gene Prediction

Targets of the significant miRNAs were identified through the database TargetScanHuman (release
7.1; http://www.targetscan.org/vert_71) based on their context score. For miRNAs that had multiple
hits, we used the lower 5% quantile of the total context scores as a strict cutoff to choose the most
reliable gene targets. As described previously [40], for each predicted target of each miRNA, the sum
of the context scores for the miRNA sites was calculated as the total context score. Predicted targets
of each miRNA family were sorted by total context score, and the miRNA with the most favorable
(lowest) total context score in the family was selected as its representative miRNA.

4.7. TCGA Data Mining

We studied the association between let-7b-5p levels and disease-specific survival (DSS) and overall
survival (OS) in the breast cancer dataset (TCGA, https://tcgadata.nci.nih.gov/tcga/). All subtypes of
primary breast cancer samples (n = 1013) described within the TCGA consortium were used for this
analysis. As described previously, for these analyses, only the DSS and OS outcomes were used to
find the correlation with let-7b-5p expression levels. Other clinical or demographic variables were
not considered or adjusted for. Briefly, we used the median expression value of let-7b-5p to split the
patients into two groups that expressed a high level of let-7b-5p (High) and a low level of let-7b-5p
(Low), then performed Kaplan-Meier survival curve analysis and log-rank testing to estimate the
significance of DSS and OS differences between the two patient groups. A log-rank test p value of
<0.05 was considered as statistically significant.

4.8. Integrative Analysis of Biological Pathways

Genomic pathways: To assess genomic pathways, we downloaded 3195 gene sets/biological
pathways from the Molecular Signatures Database (MSigDB, http://software.broadinstitute.org/gsea/

msigdb) and applied parametric analysis of gene set enrichment (PAGE) to the RNA-seq gene expression

https://www.agilent.com/en/product/automated-electrophoresis/bioanalyzer-systems/bioanalyzer-instrument/2100-bioanalyzer-instrument-228250
https://www.agilent.com/en/product/automated-electrophoresis/bioanalyzer-systems/bioanalyzer-instrument/2100-bioanalyzer-instrument-228250
https://www.illumina.com/documents/products/datasheets/datasheet_hiseq2000.pdf
http://www.targetscan.org/vert_71
https://tcgadata.nci.nih.gov/tcga/
http://software.broadinstitute.org/gsea/msigdb
http://software.broadinstitute.org/gsea/msigdb
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data to calculate pathway scores [41], which are derived from the statistic Z score for a given dataset.
To identify target pathways, the K-means clustering algorithm [42] was first used to group miRNAs,
mRNAs, and pathways, and interesting groups of molecules and pathways were selected according
to the eight predefined tumor progression profiles based on our biological hypothesis. The miRNA
target genes of an interesting group were then used to determine the target pathways of that group.
Figure 1B represents the workflow to identify the miRNAs and their target genes and pathways that
define breast cancer progression.

4.9. Visualization of Gene Expression and Biological Networks

Heat maps with one-way or two-way unsupervised hierarchical clustering analysis were drawn
to visualize gene/protein expression patterns. Ward linkage was used as the agglomeration rule and
Pearson’s correlation coefficients were used as the dissimilarity metric in the hierarchical clustering
analysis. The biological networks between miRNAs, target mRNAs, and pathways were created on
the basis of Pearson’s correlation coefficients.

4.10. Western Blotting

Endogenous DICER and vinculin protein levels were measured in subconfluently growing MCF10A
panel cells and MCF10.AT1 cells that were transfected with scramble or let-7b-5p/ miRNA-29c-3p
mimic by performing Western blotting, as described previously, using DICER antibody (CST# 5362,
dilution 1:1000) and vinculin (ab# 130007, 1:2000).

4.11. Functional Assays

Cellular proliferation was measured by MTT assay, as described [19] previously. Briefly,
MCF10.AT1 cells (3000–3500 cells/ well) were plated in a 96-well dish and transfected with either
negative control siRNA or siRNA of interest at the final concentration of 50 µM using lipofectamine 2000.
Forty-eight hours after the transfection, media was replaced with fresh complete media. Twenty-four
to forty-eight hours after the media change, MTT reagent was added and incubated with cells for 3 h.
The formazan precipitates that were formed in living cells were dissolved in DMSO and the color was
measured at 570 nM.

The ability of single cells to form colonies was measured by plating scramble control/ siRNA of
interest transfected MCF10.AT1 cells. The cells were transfected in 6-well dishes that were about 70%
confluent (175,000 cells/well) using lipofectamine 2000. Forty-eight hours after the transfection, cells
were trypsinized and 70 cells/well were plated in 6-well dishes in complete media. The number of
clones (a cluster of more than 50 cells) that were formed nine days later were stained with crystal violet
stain and manually counted.

4.12. Statistical Analysis

Both miRNA and RNA-seq experiments were performed in triplicate, allowing for statistical
significance analysis by ANOVA and the Tukey post-hoc pairwise test. All bioinformatics and statistical
analyses were performed using R 3.5.1 (https://www.r-project.org/) and R packages in Bioconductor
(https://www.bioconductor.org/).

5. Conclusions

In conclusion, our miRNA-seq, RNA-seq, and integromics analyses suggest that a majority of
miRNA-, gene-, and pathway-level deregulation occurs at the very earliest stages in the histologic
progression to basal-like breast cancer. Although our integromics analysis is based on a cell model
system, the basic principles of early molecular change in the breast parenchyma have also been
documented in small studies of patient samples. Collectively, the data emerging from these studies

https://www.r-project.org/
https://www.bioconductor.org/
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suggest significant opportunities to use the early molecular changes to better understand breast cancer
risk and develop novel targeted chemoprevention strategies for breast cancer.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/3/722/s1,
Figure S1: Heat map showing the expression pattern of all miRNAs (n = 450) that changed across the spectrum of
breast cancer progression, Figure S2: Line diagrams showing the K-means clustering to group miRNAs, Figure S3:
qPCR validation of significantly changing miRNAs in the MCF10A-based breast cancer progression panel, Figure
S4: Heat maps showing the expression pattern of mRNAs that change significantly across the MCF10A model of
breast cancer development and are predicted regulators of DICER by miRTarBase and TargetScan algorithms,
Figure S5: miRNA-29c-3p does not regulate DICER, Figure S6: let-7b-5p and prognosis in basal like breast cancer
subtype patients, Figure S7: Heat map showing the expression pattern of mRNAs that change significantly across
the MCF10A model of breast cancer development, Figure S8-S11: qPCR validation of significantly changing genes
in the MCF10A-based breast cancer progression panel, Figure S12: Line diagrams showing the K-means clustering
to group mRNAs in one of the 8 predefined patterns, Figure S13: Line diagrams showing the K-means clustering
to group pathways in one of the 8 predefined patterns, Figure S14: miRNAs that increased continuously and
their target genes and target pathways that decreased continuously during breast cancer progression (Group
1), Figure S15: miRNAs that increased and their target genes that decreased during preneoplastic to invasive
transition in breast cancer progression (Group 3), Figure S16: miRNA that increased, and their target genes &
target pathways that decreased during DCIS to invasive transition in breast cancer progression (Group 4), Figure
S17: miRNA that decreased, and their target genes that increased during preneoplastic to invasive transition in
breast cancer progression (Group 6), Figure S18: miRNA that decreased, and their target genes that increased
continuously in breast cancer progression (Group 8), Table S1: miRNA driven gene mediators and pathways per
group that are deregulated in breast cancer progression, Table S2: Networks-target pathways that are deregulated
per group, Table S3: Primer sequence, assay ID and extent of gene knock down, Table S4: Curated RNA seq data
from MCF10A progression panel.
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