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Heart rate variability: are there complex patterns?
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Common wisdom dictates that the vari-
ability in biological systems contributes
to their adaptability in the face of uncer-
tainty in the environment, and that it is
only the lifeless that do not express at least
some form of variability. In fact, rhythmic
oscillations at various time-scales, rang-
ing from minutes to days, are ubiquitous
in biological systems (Rapp, 1987). Thus,
in biological sciences, variability is usually
regarded as a reflection of a fundamen-
tal aspect of the system, and has always
attracted a great deal of scientific inquiry.
The extent of this inquiry is perhaps best
exemplified by the studies of heart rate
variability.

Though investigations of the variabil-
ity of intervals between successive heart
beats (i.e., the variability of beat-by-beat
R–R intervals) can be traced back to
the 1920 s (Glaser, 1925), the first study
that alluded to its potential physiologi-
cal and clinical relevance was published
in the 1960 s, when Hon and Lee (1963)
reported an increase in R–R interval vari-
ability that precede tachycardia during
fetal distress. Later, physiology has seen
a dramatic increase in the number of
studies focused on heart rate variabil-
ity as a tool to probe overall cardiovas-
cular control. In fact, over the last two
decades, the number of studies that deploy
heart rate variability has grown exponen-
tially to over 10,000 articles. The primary
premise of these studies is that beat-by-
beat R–R interval variability reflects car-
diac autonomic control (Task Force of The
European Society of Cardiology and The
North American Society of Pacing and
Electrophysiology, 1996). If this premise
is valid, assessment of R–R interval vari-
ability represents a very attractive method.
Direct measurement of sympathetic ner-
vous outflow (via microneurography) is
tedious, and direct assessment of vagal
tone or cardiovagal modulation is not
practical in humans. Thus, a causative link

between cardiac autonomic control and
R–R interval variability would provide an
indispensable tool in the arsenal of physi-
ologists and clinicians alike. Nevertheless,
as noted in the highly influential publica-
tion by Task Force of The European Society
of Cardiology and The North American
Society of Pacing and Electrophysiology
(1996) the almost two decades ago “the
use of markers of autonomic activity is
very attractive. However, unless a tenable
mechanistic link between (R–R interval
variability) and cardiac events is found,
there is an inherent danger of concentrat-
ing therapeutic efforts on the modification
of these markers.”

Data from humans show two pre-
dominant rhythmic oscillations in R–R
interval at slow (0.04–0.15 Hz) and faster
(>0.15 Hz) frequencies (Katona and Jih,
1975; Fouad et al., 1984), and data from
animals show that electrical stimulation of
stellate ganglion and the vagus nerve mod-
ulates oscillations in R–R interval, respec-
tively, below and above 0.15 Hz (Berger
et al., 1989). So, this data naturally lends
itself to the hypothesis that slow and faster
oscillations in consecutive R–R intervals
reflect autonomic modulation of the heart.
However, this hypothesis has later been
challenged. The low frequency component
of R–R interval oscillations is not related
to absolute sympathetic nervous outflow
measured via microneurography (Pagani
et al., 1997) or to cardiac norepinephrine
spillover (Kingwell et al., 1994), though
it may relate to a combination of sym-
pathetic and vagal inputs (Task Force of
The European Society of Cardiology and
The North American Society of Pacing
and Electrophysiology, 1996). Moreover,
high frequency component of R–R interval
oscillations is too inconsistent to provide
a reliable quantitative index of cardiova-
gal control (Picard et al., 2009). It should
also be noted that normalizing low and
high frequency components of spectral

power to the total power presents a seri-
ous problem: a change in the total power
(the denominator), unavoidably leads to
an artifactual change of the normalized
power. This is simply because the denom-
inator changes. In fact, there are cases
where the use of normalized spectral pow-
ers completely dissociates the presumed
physiologic marker from the known phys-
iology. For example, while cholinergic
blockade almost completely eliminates
R–R interval variability, normalized units
may show substantial changes in spec-
tral powers in low and high frequencies
(−32% and +74%, respectively) despite
an almost monotonic heart rate (only a
9% change) and a lack of change in mus-
cle sympathetic nerve activity (Montano
et al., 1998). Thus, normalizing the spec-
tral powers risks deceptive conclusions
about the physiology of cardiac autonomic
control.

This lack of a reliable link between R–
R interval oscillations and cardiac auto-
nomic control led some to suggest that car-
diac autonomic control may be reflected
in some structure of the variability that is
not captured by spectral (and other tradi-
tional, linear) indices, and that measures of
complexity of variability may prove to be
a better marker for alterations in cardiac
autonomic control (Kaplan et al., 1991).
The conception of cardiac autonomic con-
trol as a complex dynamical system was
further reinforced by anecdotal reports
that the “trajectory” of the R–R interval
time series seems “more like a strange
attractor than like the periodic attractor
characteristic of truly regular processes”
(Goldberger et al., 1990). An “attractor”
is an algebraic description of the temporal
pattern (i.e., the “trajectory”) of a system’s
behavior. A periodic attractor represents
a system with regular oscillatory behavior
(e.g., a sinusoid), whereas a strange attrac-
tor represents a system with fractal behav-
ior (Wiggins, 1990). And, the dynamics
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of systems that exhibit fractal behavior
are typically self-similar; the time series
that the system generates are “the same
from near as from far” (Gouyet, 1996). In
other words, fast oscillations exhibit char-
acteristics similar to those of slow oscilla-
tions, while the system, viewed as a whole,
may not have a characteristic time scale.
Many physical as well as biological sys-
tems are composed of components that
interact in a nonlinear fashion at differ-
ent time scales (Rocha, 1999), and it is
conceivable that such interactions between
sympathetic and vagal control (perhaps
among other factors) may give rise to the
observed R–R interval variability. In fact, it
was noted that the power spectrum of R–R
interval time series display long-range cor-
relations with so-called “power-law (1/f )
scaling” (Stanley et al., 1992), which sug-
gests lack of a characteristic time scale, and
it is a signature of self-similarity. And, it
is well known that power-law scaling and
self-similarity can be indicative of a fractal
structure (Wiggins, 1990; Gouyet, 1996).
Thus, taking power-law scaling as evidence
for fractal behavior and complexity, and
using some measure of complexity as a
surrogate for cardiac autonomic control
would seem reasonable.

Various measures have been proposed
to quantify complexity of R–R interval
fluctuations, ranging from fractal dimen-
sion (Nakamura et al., 1993) and power-
law scaling exponent (Peng et al., 1995)
to multi-fractal scaling exponents (Sassi
et al., 2009) and asymmetric Weierstrass
function for multi-scale time irreversibility
(Burykin et al., 2011). However, it is criti-
cal to note that while all of these measures
assume fractal behavior, power-law scal-
ing and self-similarity are not sufficient to
define truly fractal behavior (Avnir et al.,
1998). For example, a straight Euclidean
line is technically self-similar, but obvi-
ously not fractal. And, describing a non-
fractal time series via a measure that
assumes fractal behavior is analogous to
measuring the length of a straight line with
a protractor; it provides a value, albeit
a nonsensical one. Therefore, it is essen-
tial that the conformity of the data (R–R
interval time series) to the presumed sta-
tistical model (fractal behavior) is estab-
lished.

Yet, until recently, adequate mathemat-
ical testing has not been employed to

determine the actual presence of complex,
fractal patterns in R–R interval time series.
When this assumption was finally put to
the test, it was found that despite power-
law scaling and self-similarity, R–R interval
time series are fractal only in a minority of
cases (Tan et al., 2009). Given this lack of
conformity, it should not come as a sur-
prise if measures based on fractal behavior
do not provide meaningful results. Indeed,
though population averages would seem
to suggest day-to-day consistency in esti-
mated fractal indices across subjects, these
indices provide inconsistent results when
examined within subjects. For example,
a very high scaling exponent measured
on one day can be markedly lower on
another day. Moreover, if a measure is to
be a reliable marker of cardiac autonomic
control, it should reflect changes in alter-
ations in autonomic state within individ-
uals. Yet, indices of complexity based on
presumed fractal behavior of R–R interval
time series fail to reflect profound changes
in autonomic state (e.g., complete sym-
pathetic and cholinergic blockade) at the
individual level (Tan et al., 2009). Thus,
it seems that the indices based on pre-
sumed fractal behavior of R–R intervals do
not reflect cardiac autonomic control. In
fact, power-law scaling exponent of R–R
interval time series does not even have
an identifiable value that could be consid-
ered “normal.” For example, the literature
reports values ranging from ∼0.5 to 1.4
for healthy individuals during supine rest
(Heffernan et al., 2008). These are simi-
lar to values reported to represent cardiac
autonomic control in cyclists during heavy
exercise (∼0.5; Casties et al., 2006) and the
complete absence of autonomic control
in heart failure (∼1.3; Goldberger et al.,
2002).

There are other measures to quantify
the complexity of R–R interval variabil-
ity without any assumptions about the
structure of the underlying dynamical sys-
tem. Best known among these are approx-
imate entropy and its closely related vari-
ant, sample entropy. Fundamentally, these
(as well as other) measures of entropy
are markers of irregularity and unpre-
dictability of the system under investi-
gation (Pincus et al., 1991). Yet, these
measures also appear to lack consistency
(Richman and Moorman, 2000). As a
result, their physiological counterparts are

limited. For example, neither cholinergic
blockade via intravenous atropine admin-
istration nor cardiac sympathetic block-
ade via oral beta-blocker administration
appears to have a reproducible effect on
approximate entropy (Tulppo et al., 1996;
Lin et al., 2001; Perkiomaki et al., 2002),
despite the fact that both blockades result
in profound changes in cardiac autonomic
control. Therefore, it is not clear what
these measures may represent in terms of
physiologic control.

At a teleological level, it is not
always clear how self-similarity, time-
irreversibility, or unpredictability of the
R–R intervals may relate to cardiac auto-
nomic control or cardiovascular health. In
fact, given the conception that variability
is regarded as a fundamental aspect of the
system, it might be worthwhile to con-
sider the potential etiology of complexity
in R–R intervals. It has been suggested that
complexity facilitates functional adaptive
capacity of the cardiovascular system by
helping to prevent “excessive mode lock-
ing” (e.g., similar to pervasive oscillations
present in some pathological conditions)
(Peng et al., 1993). Improved adaptive
capacity via complex patterns of fluctu-
ations is, in fact, a plausible theory, and
could well be true. However, the presence
of random noise (which also abounds in
biological systems) can serve exactly the
same purpose; the contribution of a com-
plex mechanism is not crucial. Therefore,
it is incumbent upon the theorizer to
unambiguously define the presence of
a complex pattern, before deploying
sophisticated measures to quantify it.

It was suggested that physiology may
prove to be a rich source for the study
of fractals as well as other types of com-
plex dynamics (Goldberger et al., 1990),
and that exploration of complex dynamics
may be a fruitful area for future research
to expand our knowledge of cardiovascu-
lar oscillations (Perkiomaki et al., 2005).
However, exploration of complex fluctu-
ations should avoid being self-referential,
generating “pictures to learn more about
the pictures” (Krantz, 1989). Although
application of sophisticated analyses, bor-
rowed from dynamical systems and sta-
tistical physics, to cardiovascular data can
lead to deeper understanding, it also has
the potential to cloud our view of the
physiology.
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