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Abstract: Reelin is an extracellular matrix protein that is mainly produced in Cajal-Retzius cells and
controls neuronal migration, which is important for the proper formation of cortical layers in the
developmental stage of the brain. In the adult brain, Reelin plays a crucial role in the regulation of
N-methyl-D-aspartate receptor-dependent synaptic function, and its expression decreases postnatally.
Clinical studies showed reductions in Reelin protein and mRNA expression levels in patients with
psychiatric disorders; however, the causal relationship remains unclear. Reelin-deficient mice exhibit
an abnormal neuronal morphology and behavior, while Reelin supplementation ameliorates learning
deficits, synaptic dysfunctions, and spine loss in animal models with Reelin deficiency. These
findings suggest that the neuronal deficits and brain dysfunctions associated with the down-regulated
expression of Reelin are attenuated by enhancements in its expression and functions in the brain. In
this review, we summarize findings on the role of Reelin in neuropsychiatric disorders and discuss
potential therapeutic approaches for neuropsychiatric disorders associated with Reelin dysfunctions.

Keywords: reelin; neuropsychiatric disorders; development; ADAMTS-3

1. Introduction

Reelin is an extracellularly secreted glycoprotein that is necessary for brain devel-
opment and neuronal function. In the developing brain, Reelin is produced by Cajal-
Retzius cells, which are mainly present on the surface of the neocortex [1,2]. After birth,
Cajal-Retzius cell numbers markedly decrease, and Reelin is mainly synthesized in γ-
aminobutyric acid (GABA)-ergic neurons in the hippocampus and cortex [3,4]. Reelin
consists of an N-terminal region containing a secretory signal, an eight Reelin repeats
(Reelin repeats), and a C-terminal region rich in basic amino acids [5]. Secreted Reelin
binds to apolipoprotein E receptor 2 (ApoER2) and very low-density lipoprotein receptors
(VLDLR) expressed on neuronal membranes via the fifth and sixth Reelin repeats [6,7],
stimulates Src family tyrosine kinases (SFKs), such as Fyn and Src, and promotes the
tyrosine phosphorylation of intracellular Dab1 [8,9]. Phosphorylated Dab1 activates the
downstream pathway and promotes neurite growth, dendritic spine growth, and neuronal
migration [10–12]. The down-regulated expression of Reelin is clinically associated with
neuropsychiatric disorders, such as schizophrenia, autism spectrum disorder (ASD), and
Alzheimer’s disease (AD) [13]. In this review, we introduce the molecular functions of
Reelin in neurons. We also summarize research on the involvement of Reelin in neu-
ropsychiatric disorders and discuss potential therapeutic approaches for neuropsychiatric
disorders associated with Reelin dysfunctions.
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2. Roles of Reelin in Neural Functions
2.1. Neuronal Migration and Cortical Development

The cerebral cortex in the early developmental stage consists of a layer called the
preplate and the ventricular zone at which new neurons are produced. Neurons generated
in the ventricular zone enter the preplate, which separates into marginal zones and sub-
plates, and then migrate radially throughout the subplate, but stop just before the marginal
zone. In the cerebral cortex, early-born neurons are placed on the ventricular side and
late-born neurons on the superficial side, resulting in a proper cortical layer [14]. Previous
studies reported that Reelin signaling plays a role in the correct migration of neurons
during the developmental formation of the cerebral cortex [5,15–17]. A decrease in the
secretion of the Reelin protein from Cajal-Retzius cells causes a major reversal of the layered
structure of the cerebral cortex [5]. Several proteins have been identified as key molecules
for Reelin-dependent neuronal migration. The activation of integrin α5β1 through the
intracellular Dab1-Crk/CrkL-C3G-Rap1 pathway after Reelin binds to its receptors is
required for cell body translocation at the end of the migration of cortical neurons [18].
Cofilin, an actin-binding protein, and Reelin cooperate to regulate cytoskeletal dynamics
during neuronal migration [19]. ApoER2 and VLDLR are well known to be major receptors
involved in neuronal migration via Reelin signaling [20,21]. ApoER2, a Reelin-binding
receptor, controls several processes in neuronal migration during cortical development,
such as the early stage of radial migration and the termination of migration [20]. In neonatal
ApoER2 knockout (KO) mice, cortical neurons overmigrate into the marginal zone [20]. A
major role for VLDLR is its suppression of neuronal invasion within the marginal zone
during neocortical development [21]. Therefore, Reelin and its downstream signals play
important roles in cerebral cortex formation by regulating neuronal migration during the
development stage.

2.2. Neurite Outgrowth

Previous studies reported that dendrite complexity was significantly reduced in
reeler mice carrying a homozygous Reln gene deletion, as well as in heterozygous reeler
mice [10,22]. The levels of the dendrite-specific microtubule-associated protein (MAP2)
were significantly reduced in the hippocampus of homozygous reeler mice and, to a slightly
lesser extent, in that of heterozygous reeler mice. A treatment with a CR50 antibody, which
blocks the biological functions of Reelin, significantly reduced dendrite length and the com-
plexity of cultures from heterozygous reeler mice [10]. Reelin may accelerate hippocampal
dendrite development through the VLDLR/ApoER2-Dab1 pathway [10]. Kupferman et al.
reported that Reelin exerted its functions through downstream intracellular Dab1 and Src
family tyrosine kinase (SFK) signaling cascades and regulated dendritic outgrowth [23].
The phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTor)-S6
kinase 1 pathway, which is downstream of Reelin, is associated with the regulation of den-
dritic growth and cortical development [24]. Reelin-Dab1 signaling and serine/threonine
kinase 25 (STK25) competitively regulate Golgi morphology and neuronal polarity, which
is important for dendrite formation [25]. Recent findings suggested that similar to STK25,
mammalian sterile 20-like kinase-3 (MST3), a member of the germinal center kinase III
(GCKIII) subfamily, regulates neuronal migration and polarization in a mutually compen-
satory manner [26]. Chondroitin sulfate proteoglycans inhibit axonal elongation; however,
this is canceled by the activation of the Reelin signaling pathway [27]. Cytoplasmic linker-
associated protein 2 (CLASP2) is a plus-end tracking protein that specifically accumulates
at the growth cone and is a cytoskeletal effector of the Reelin signaling pathway [28]. A
treatment with Reelin increased the axon length of primary cultured hippocampal neu-
rons, whereas CLASP2 small hairpin RNA decreased axon length. The treatment with
Reelin did not affect axon length in neurons with the knockdown of CLASP2. Furthermore,
the phosphorylation of CLASP2 may be necessary for Dab1 interactions and neurite out-
growth [28]. These findings suggest that Reelin promotes neurite development and also
that the disruption of Reelin signaling may result in an abnormal neurite morphology.
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2.3. Spine Formation

A treatment with Reelin has been shown to significantly increase dendritic spine
density in primary cultured hippocampal neurons [29]. In addition, Reelin may increase the
puncta numbers of synaptophysin and postsynaptic density protein 95 (PSD95). Moreover,
the Ca2+/calmodulin-dependent protein kinase II β subunit may be necessary for the effects
of Reelin on dendritic spine density [29]. Spine density on layer II/III in the prelimbic
area of the prefrontal cortex (PFC) was lower in juvenile heterozygous reeler mice than in
their wild-type littermates, and this decrease was attributed to the selective loss of spines
with a small head diameter [30]. A reduction in dendritic spine density was also observed
in the hippocampal pyramidal neurons of heterozygous and homozygous reeler mice. In
hippocampal slice cultures of homozygous reeler mice, reduced spine density was restored
by a treatment with Reelin [11]. Reelin supplementation may increase the spine density of
hippocampal CA1 pyramidal neurons in wild-type mice, but not in ApoER2 KO mice [31].
ApoER2 and VLDLR are required for Reelin-induced dendritic spine formation [10,32].
Moreover, Dab1 and SFK activities may be necessary for the development of a normal
dendritic spine density in organotypic hippocampal cultures [11].

2.4. Synaptic Function

A stimulation with Reelin was found to activate ApoER2 and VLDLR at excitatory
synapses, and this was followed by increases in Dab1 phosphorylation and the activation
of Src. This process promoted the linking of Src to PSD95. As a consequence, the tyrosine
phosphorylation of the N-methyl-D-aspartate receptor (NMDAR) subunit physically associ-
ated with PSD95 increased, thereby promoting the activation of NMDARs [13,33,34]. Reelin
organizes the regulation of the subunit composition of synaptic NMDARs and controls the
surface mobility of the NR2B subunits of NMDARs. A previous study demonstrated that
blocking the function of Reelin prevented maturation-dependent reductions in NR1/NR2B-
mediated synaptic currents [35]. In heterozygous reeler mice, the expression levels of
PSD95, NR2A, and NR2B were reduced in a postsynaptic density fraction [36]. Reelin
increased the tyrosine phosphorylation of the NR2B subunit and enhanced glutamate-
stimulated Ca2+ influx through NMDARs, suggesting that it physiologically regulates
NMDAR activity [22,37]. Furthermore, Reelin may enhance the activity of the α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) by PI3K-dependent surface
insertion [34]. A perfusion with Reelin was found to enhance long-term potentiation (LTP)
in the hippocampus of wild-type mice, but not in ApoER2 KO mice or VLDAR KO mice,
which indicates that ApoER2 and VLDLR are required to enhance synaptic transmission in
the hippocampus [38].

3. Reelin and Neuropsychiatric Disorders

As mentioned above, Reelin has many effects on brain formation as well as on mor-
phological changes in the neuronal network, and thus its dysfunction may cause various
brain-related diseases. In this paragraph, we discuss reports of mutations in the RELN gene
in humans with neuropsychiatric disorders.

3.1. Schizophrenia

Schizophrenia is a mental disorder that presents with various symptoms, such as
hallucinations, delusions, abnormal behavior, decreased motivation, and cognitive deficits.
The first study on Reelin abnormalities in schizophrenia revealed that RELN mRNA, which
encodes Reelin, and Reelin protein expression levels were significantly lower in the post-
mortem brains of patients with schizophrenia than in non-psychiatric subjects [39]. Further-
more, the expression levels of RELN mRNA in the whole blood of untreated schizophrenia
patients were significantly lower than those in healthy controls [40]. RELN mRNA ex-
pression levels were elevated in patients with schizophrenia by a 12-week treatment with
olanzapine, an antipsychotic, suggesting that alterations in RELN mRNA expression levels
are associated with the effects of antipsychotic treatment [40]. In recent years, genome-
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wide association studies and meta-analyses indicated that rs7341475 and rs262355 genetic
polymorphisms in the RELN gene correlated with the onset of schizophrenia [41–43]. The
missense variation c.9575 C > G (p.T3192S) in RELN was identified by whole-exome se-
quencing with samples from three affected individuals and one unaffected individual in a
Chinese family with schizophrenia [44]. A de novo copy number variant (CNV) analysis
of Japanese schizophrenia patients recently revealed a new pathogenic deletion (12.6 kb)
in RELN (RELN-del) [45]. Taken together, these findings indicate that changes in Reelin
expression and genetic variations are risk factors for schizophrenia. In exon-targeted re-
sequencing using next-generation sequencing technology, rare variants of the DAB1 gene
(p.G382C and p.V129I) were detected in patients with schizophrenia. Furthermore, these
mutants of the Dab1 protein were more unstable than the wild-type protein, which may
diminish Reeln-Dab1 signaling and contribute to the pathology of schizophrenia [46].

3.2. ASD

ASD is a developmental disorder characterized by abnormalities in social interactions
and communication, localized patterns of interest, and repetitive behavior. Some muta-
tions in the RELN gene (p.R1742Q, p.R1742W, p.R2290C, p.R2290H, p.R2292C, p.R2639H,
and p.R2833S) have been identified in patients with ASD [47–50]. In a whole-genome
sequencing analysis, heterozygous variants of the RELN gene (p.S630R and p.V1153I) were
detected in three boys with ASD born to unrelated parents with a normal phenotype, and
were located within Reelin repeat 1 and 2, respectively [51]. Previous studies suggested
that the rs362691 (p.L997V) variant of the RELN gene is associated with an increased risk
of ASD [51,52]. Persico et al. reported that a polymorphic GGC repeat located in the 5’
untranslated region of the RELN gene was associated with ASD [53]. An ethnicity-based
subgroup analysis of a meta-analysis found that the single-nucleotide polymorphism (SNP)
rs736707 in the RELN gene correlated with psychiatric disorders, including ASD, in an
Asian group [54]. In an investigation on the relationship between the RELN gene and
symptoms in children and adolescents with ASD, SNP rs2229864 was linked to a genetic
predisposition to ASD, while negative relationships were detected between rs2229864
and symptom-based and developmental characteristics [55]. Previous studies focused on
the polymorphisms rs736707, rs362691, and rs2229864 and GGC repeats, but found no
correlations with ASD in a meta-analysis [56,57]. Since these findings may be influenced by
ethnic groups and sample sizes, further studies are needed to elucidate the relationship
between ASD and the RELN gene.

3.3. AD

AD is a dementia that develops with progressive cognitive impairment and severe
neurodegeneration. It is characterized by the extracellular deposition of the amyloid-beta
(Aβ) peptide, generated from the β-amyloid precursor protein (APP), and intracellular
abnormally hyperphosphorylated tau protein, forming neurofibrillary tangles [58]. The
majority of AD patients develop neuropsychiatric symptoms [59]. Previous studies sug-
gested a relationship between the pathophysiology of AD and Reelin signaling [60–62].
Reelin may rescue the suppression of LTP and NMDARs induced by the Aβ oligomer [60].
Furthermore, Reelin signaling may prevent the Aβ-induced endocytosis of NMDARs, and
SFK activation induced by Reelin has been shown to restore the activity of NMDARs [60].
Conversely, the reduced expression of Reelin enhanced APP processing and amyloid plaque
deposition as well as neurofibrillary tangle formation in the hippocampus of aged trans-
genic AD mice that express the human APP695 gene containing the Swedish (K670N and
M671L) and Arctic mutations (E693G) [61]. Reelin expression was found to be up-regulated
in the brains of AD patients, while the phosphorylation of Dab1 was decreased, indicat-
ing that Reelin signaling is diminished in AD patients. Although a treatment with Aβ

increased the expression of Reelin, secreted Reelin was trapped within Aβ aggregates [62].
Accordingly, Aβ may affect the pathological progression of AD by inhibiting the biological
activity of Reelin and, ultimately, impairing Reelin signaling [62].
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3.4. Lissencephaly

Lissencephaly is a severe developmental disorder that is characterized by the lack of
development of brain folds and grooves. Hong et al. reported that autosomal recessive
lissencephaly with severe abnormalities in the cerebellum, hippocampus, and brainstem
was associated with two independent RELN mutations identified from British and Saudi
Arabian pedigrees. Mutations interfered with the splicing of RELN cDNA, leading to low
or undetectable amounts of the Reelin protein [63]. Chang et al. identified a homozygous
chromosomal inversion, which interrupted the RELN gene, in a girl from Turkey who was
evaluated for growth and motor retardation. She also had developmental delay, severe
hypotonia, seizures, diffuse pachygyria, and severe cerebellar hypoplasia, with a negligible
amount of the Reelin protein in her serum [64]. In addition, biallelic splice variants of Dab1
were identified in a patient with mild lissencephaly and cerebellar hypoplasia, and these
variants were suggested to affect the highly conserved functional phosphotyrosine-binding
domain of Dab1 [65]. Collectively, these findings indicate that marked decreases in Reelin
protein expression and Reelin signaling cause lissencephaly.

3.5. Mood Disorders

Reelin deficiency has been implicated in the pathophysiology of mood disorders,
such as major depression and bipolar disorder. In an immunocytochemical analysis of
the hippocampal tissues of postmortem patients with major depression, the number of
Reelin-positive cells was consistently lower in subjects with major depression than in
controls [66]. Reelin protein expression in patients with major depression was found to be
slightly down-regulated in the molecular layer of the dentate gyrus of the hippocampus [67].
A postmortem brain study revealed a significant decrease in Reelin mRNA expression
levels in bipolar patients [68]. Furthermore, the number of Reelin-positive cells in the
hippocampus was lower in bipolar patients than in controls [66].

As mentioned above, Reelin is associated with several neuropsychiatric disorders.
However, future studies are needed to determine the molecular mechanisms of Reelin in
synaptic development and function related to these disorders.

4. Experimental Animal Models Based on Reelin Dysfunctions

Previous clinical studies reported reductions in Reelin protein and mRNA expression
levels in patients with psychiatric disorders. As shown in Table 1, experimental studies
on the mechanisms underlying neurological disorders and therapeutic development were
conducted using experimental animal models with reduced Reelin expression and functions.
In the following section, we review animal models based on Reelin dysfunctions.
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Table 1. Summary of animal models based on Reelin dysfunctions.

Animal Model Mutation/Treatment Abnormal Phenotypes Behavioral Changes Effects of Reelin
Supplementation References

Jackson reeler mice 150-kb genomic deletion in
the Reln gene

Brain malformation, decreased
Reelin protein levels, impaired

neurite development, fewer
dendritic spines

Impairments in contextual fear
conditioned learning, novel object

recognition, and prepulse inhibition
tests

Elongation of dendrites,
enhanced synaptic functions,

attenuation of impaired
contextual fear conditioned

learning and prepulse
inhibition

[5,10,30,69–73]

Orleans reeler mice 220-nucleotide deletion in
Reln mRNA

Expressing a truncated Reelin
protein that is not secreted

extracellularly

(Homozygous) Hyperlocomotion,
impairments in motor coordination

and spatial learning
(Heterozygous) Abnormal social

behavior and motor learning

Not available [72,74,75]

Maternal immune activation
model

The offspring of pregnant
mice administered polyI:C

Decreased number of
Reelin-expressing cells, impaired

hippocampal neurogenesis

Sensory gating deficits, suppression of
exploratory behavior, impaired novel

object recognition, increased
anxiety-like behavior

Rescue of impaired novel
object memory and

anxiety-like behavior
[76–80]

CORT-treated animal model Rats subcutaneously injected
with CORT

Reduction in Reelin-positive cells,
impaired hippocampal

neurogenesis, decreases in PSD95,
mTOR, phosphorylated mTOR,
GABAA β2/3 receptors, GluA1,

and GluN2B

Increased depressive-like behavior and
impaired memory

Attenuation of increased
depressive-like behavior and

impaired memory
[81–85]

Reln-del mice Mice mimicking RELN-del in
a schizophrenia patient

Brain malformation, decreased
Reelin protein levels, impaired

neurite development, fewer
dendritic spines

Abnormal social novelty, impaired
associative learning and behavioral

flexibility

Enhancement in Reelin-Dab1
signaling [86–88]

polyI:C, polyinosinic:polycytidylic acid; CORT, repeated corticosterone; GABA, γ-aminobutyric acid; mTOR, mammalian target of rapamycin; PSD95, postsynaptic density protein 95.
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4.1. Reeler Mice

Jackson reeler mice, carrying a 150-kb genomic deletion in the Reln gene, are spon-
taneous mutant mice exhibiting ataxia and are deficient in the Reelin protein [71,72]. In
homozygous reeler mice, cellular disorganization is observed in the cortical structures of
the brain [5]. Neuronal migration is inhibited in the depths of the cortex in the brains of
homozygous reeler mice in the developmental stage [73]. The levels of MAP2, a dendritic
marker, were diminished in the hippocampus of homozygous and heterozygous reeler mice.
In dissociated hippocampal cultures, the total lengths of the dendrites of homozygous
and heterozygous reeler mice were significantly shorter than that of wild-type mice. A
recombinant Reelin or brain-derived neurotrophic factor (BDNF) treatment ameliorated
impaired dendritic growth in the hippocampal neurons of reeler mice [10]. Dendritic
spine density was found to be reduced in the PFC of heterozygous reeler mice. In addi-
tion, NMDA-dependent LTP was not induced in the PFC synapses of heterozygous reeler
mice [30]. Methamphetamine-induced hyperlocomotion was significantly attenuated in
reeler mice. In addition, locomotor responses to the dopamine D1 receptor agonist SKF82958
and dopamine D2 receptor agonist quinpirole were decreased in reeler mice, suggesting
that Reelin plays important roles in dopaminergic functions in the brain [89]. Moreover,
GABAergic neurons and their synaptic transmission are altered in neuro-psychiatric disor-
ders; in fact, the expression level of glutamic acid decarboxylase 67, a marker of GABAergic
neurons, in the frontal cortex was lower in reeler mice than in wild-type mice [90]. The
density of parvalbumin neurons was shown to be selectively decreased in the dorsomedial
and ventromedial subregions of the intermediate striatum and in the caudal striatum of het-
erozygous reeler mice [91]. The maturation of GABAergic synaptic transmission was altered
at layer V/VI in the prelimbic area of the PFC, and the balance between synaptic excitation
and inhibition was impaired in reeler mice [92]. Some behavioral abnormalities in contex-
tual fear conditioned learning, novel object recognition, and prepulse inhibition tests have
been reported between heterozygous reeler mice and wild-type mice [30,69,70]. Reeler mice
have altered susceptibility to drug administration. Social interactions were diminished in
heterozygous reeler mice by the chronic administration of ∆9-tetrahydrocannabinol (THC),
the psychoactive component of cannabis. In addition, a treatment with THC increased
the anxiety-like response in female heterozygous reeler mice and increased reactivity to
aversive situations in male heterozygous reeler mice, suggesting that a Reelin deficiency
affects behavioral abnormalities caused by psychoactive drugs [93].

In Orleans reeler mice, a 220-nucleotide deletion is present in the 3’ region of Reln
mRNA, and a truncated Reelin protein that terminates within the eighth Reelin repeat is
produced. The truncated protein in Orleans reeler mice is not secreted extracellularly [72].
Homozygous Orleans reeler mice show hyperlocomotion and impaired motor coordination
and spatial learning [75]. On the other hand, heterozygous Orleans reeler mice exhibit
behavioral abnormalities in social behavior and motor learning [74]. Methamphetamine-
induced hyperlocomotion and dopamine release in the nucleus accumbens (NAc) were
significantly lower in Orleans reeler mice than in wild-type mice, suggesting that the
function of dopamine release is impaired in Orleans reeler mice. The expression levels of
GABAergic markers were decreased in the NAc and cerebellum of Orleans reeler mice [74].
The expression level of Dab1 in the cerebellum of Orleans reeler mice was significantly
higher than that in wild-type mice, indicating that Reelin signaling is decreased in Orleans
reeler mice [49]. Therefore, Orleans reeler mice exhibit signaling disorders and behavioral
abnormalities, mimicking some of the pathologies of neuropsychiatric disorders, such as
schizophrenia.

4.2. Maternal Immune Activation Model

Immune activation by maternal infection during pregnancy may increase the risk of
neurodevelopmental disorders in offspring [94]. An experimental model of maternal im-
mune activation is the maternal administration of polyinosinic:polycytidylic acid (polyI:C),
a synthetic double-stranded RNA analog that mimics viral RNA. An intraperitoneal in-
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jection of polyI:C into pregnant mice induced sensory gating deficits, the suppression of
exploratory behavior, novel object recognition impairments, and increased anxiety-like
behavior in the offspring at adolescence [76–80]. Reelin-expressing cells were reduced in
the hippocampus of the offspring by maternal immune activation, particularly in the den-
tate gyrus of the hippocampus [76,79]. Furthermore, offspring that had received maternal
immune activation during pregnancy exhibited a decrease in the immunoreactive area of
synaptoporin, a synaptic vesicle marker for hippocampal mossy fibers [79] and reduced
postnatal neurogenesis in the dentate gyrus of the hippocampus [76]. Impairments in novel
object memory and anxiety-like behavior in the offspring that received maternal immune
activation during pregnancy were ameliorated by a stereotaxic microinjection of recombi-
nant Reelin into the hippocampus [79]. Accordingly, Reelin supplementation may exert
therapeutic effects on the cognitive and emotional impairments of neurodevelopmental
disorders.

4.3. Repeated Corticosterone (CORT)-Treated Animal Model

Rats subcutaneously injected with CORT (40 mg/kg) are an experimental animal
model of depression, and exhibit depressive-like behavior, impaired memory, and reduced
numbers of Reelin-positive cells in the hippocampus [83–85,95]. In studies that focused on
neuropathological changes, a treatment with CORT impaired hippocampal neurogenesis
and reduced dendritic complexity [81–83]. The expression levels of GABAA β2/3 receptors
in the dentate gyrus subgranular zone of the hippocampus were decreased by the repeated
administration of CORT [81,82]. Previous studies investigated whether existing drugs and
Reelin replacement attenuated CORT-induced neurological dysfunction. CORT-treated rats
exhibited increased immobility and decreased climbing and swimming behaviors in the
forced swim test [84,85]. The co-administration of imipramine, a tricyclic antidepressant,
prevented these behavioral phenotypes, indicating that imipramine exerts protective effects
against CORT-induced depression-like behavior. Furthermore, imipramine also prevented
decreases in Reelin expression and dendritic complexity in the hippocampus of rats treated
with CORT [85]. In addition, the peripheral administration of the anti-inflammatory drug
etanercept, a TNF-α inhibitor, ameliorated CORT-induced impairments in the forced swim,
object-location memory, and object-in-place memory tests. Etanercept was shown to restore
reductions in hippocampal neurogenesis, Reelin expression, and GABAA β2/3 receptors in
CORT-treated rats [81]. Recombinant Reelin infusions into the rat hippocampus protected
against CORT-induced memory dysfunctions, increases in depression-like behavior, and
impaired hippocampal neurogenesis. These effects of Reelin were inhibited by an injection
of the AMPAR antagonist CNQX. Furthermore, Reelin rescued CORT-induced decreases in
PSD95, mTOR, phosphorylated mTOR, GABAA β2/3 receptors, GluA1, and GluN2B in the
rat brain [82].

4.4. Reln-Del

A recent CNV analysis of Japanese schizophrenia patients identified a novel pathogenic
deletion (12.6kb) in RELN encoding Reelin in RELN-del [45]. A male schizophrenia patient
with RELN-del exhibited positive and negative symptoms, cognitive impairment, and
repetitive behavior. He also displayed atrophy of the left cerebral hemisphere, particularly
in the frontal and parietal lobes. The amount of the NR6 fragment of Reelin was lower in his
serum than in the sera of other patients [74]. Reln-del mice, genetically modified C57BL/6J
mice that mimic RELN-del in the schizophrenia patient, were developed by genome edit-
ing with the CRISPR/Cas9 system. Reelin protein expression levels in the heterozygous
Reln-del mouse brain were reduced to approximately 50% of those in the wild-type mouse
brain and were barely detectable in the homozygous Reln-del mouse brain [88]. Moreover,
Reelin mRNA levels were significantly lower in the heterozygous Reln-del brain than in
the wild-type brain, suggesting that Reelin protein expression was down-regulated based
on lower mRNA levels in Reln-del mice [87]. Homozygous Reln-del mice show severe
brain malformations (cerebellar atrophy, enlarged cerebral ventricles, cerebral dysplasia,
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and disruption of the dentate gyrus and granule layer), while heterozygous Reln-del mice
have no major deficits in their brain structure. Reaggregation and neuronal migration
were severely altered in cerebellar granule neuronal cultures prepared from homozygous
Reln-del mice, which may be closely related to cerebellar hypoplasia [88]. In vitro analyses
using primary cultured cortical neurons indicated that intracellular Reelin protein levels
were lower in Reln-del neurons than in wild-type neurons. Reelin proteins secreted into the
conditioned medium of cortical neurons were also markedly reduced in Reln-del neurons.
In contrast, Dab1 expression levels were significantly higher in Reln-del neurons than in
wild-type neurons, suggesting that Reelin signaling was diminished in Reln-del neurons.
A shorter neurite length and fewer neurite branch points and dendritic spines in Reln-del
neurons than in wild-type neurons have also been reported, indicating that the defective
formation of neurons and dendrites during neurodevelopment is one of the reasons for
structural abnormalities in the brains of Reln-del mice [87]. Since the patient with RELN-del
was a heterozygote, heterozygous Reln-del mice were subjected to a comprehensive be-
havioral analysis. In the three-chamber social interaction test, heterozygous Reln-del mice
exhibited abnormalities in social novelty, suggesting that Reln-del mice partially mimicked
schizophrenia-like behavior. However, no impairments were noted in other behavioral
tests, including the general locomotor function, open field, elevated plus maze, pre-pulse
inhibition, Y-maze, and fear conditioning tests [88]. Cognitive function and flexibility
in Reln-del mice were evaluated using the touchscreen-based visual discrimination and
reversal learning tasks [86], which are highly sensitive for detecting cognitive dysfunc-
tion in mice [96]. In these tasks, Reln-del mice showed impaired associative learning and
behavioral flexibility [86].

Human isogenic induced pluripotent stem cells (hiPSCs) were generated by tar-
geted genome editing to establish the RELN-del hiPSCs, and separately differentiated
into dopaminergic, glutamatergic, and GABAergic neurons [97,98]. Reelin protein ex-
pression and the tyrosine phosphorylation of Dab1 were decreased in isogenic RELN-del
dopaminergic neurons, suggesting that Reelin signaling was diminished in RELN-del cells.
In addition, a single-cell trajectory analysis showed a wandering type of migration in RELN-
del neurons [97]. Gephyrin (postsynaptic marker) and Synapsin I puncta were significantly
decreased in isogenic RELN-del GABAergic neurons. These findings are similar to those
reported in the postmortem brains of schizophrenia patients [99,100], suggesting that the
synapse phenotypes of RELN-del neurons are general phenotypes of neuropsychiatric
disorders [98]. Neurons induced from hiPSC lines carrying congenital RELN-del had a
shorter dendrite length and decreased synapse number and also lost the directionality of
migration [97,98]. These in vitro models using hiPSCs with RELN-del are considered to be
useful for pathological analyses of neuropsychiatric disorders, such as schizophrenia.

5. Effects of Enhancements in Reelin Functions

Previous studies indicated that Reelin supplementation and enhancements in Reelin
signaling improve neurological functions. Therefore, Reelin may be a therapeutic target
for neuropsychiatric disorders. To investigate the direct effects of Reelin on behavior,
mice overexpressing Reelin in forebrain neurons (Reelin-OE) were generated [101]. Reelin-
OE mice showed a reduced floating time in the forced swim test in mice treated with
chronic CORT, and reduced hyperlocomotion induced by cocaine administration. In
addition, PPI deficits induced by a treatment with the NMDAR antagonist, MK-801, were
significantly attenuated in Reelin-OE mice [101]. A microinjection of Reelin into the medial
PFC prevented MK-801-induced impairments in recognition memory and increases in the
number of c-Fos-positive cells, suggesting that Reelin prevented MK-801-induced abnormal
neuronal activation [102].

The effects of Reelin overexpression on the pathology of tauopathy were investigated
using AD-related mice expressing human mutant Tau (G272V, P301L and R406W), which
are called VLW mice [103]. Increases in Tau phosphorylation levels in the hippocampus
of VLW mice were reduced by the overexpression of Reelin. In addition, LTP deficits and
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cognitive impairment in VLW mice were ameliorated by the overexpression of Reelin.
These findings suggest that enhancements in Reelin signaling protect against the symptoms
of Tau pathology. Therefore, Reelin may be a therapeutic target in AD [103].

6. Novel Druggable Targets for Reelin Supplementation Therapy in
Neuropsychiatric Disorders

Reelin degradation enzymes may be potential targets to enhance Reelin signaling. A
disintegrin and metalloproteinase with thrombospondin motifs-3 (ADAMTS-3) has been
identified as the protease that specifically cleaves Reelin at the N-t site in the cerebral cortex
and hippocampus (Figure 1) [104]. ADAMTS-3 is expressed in the excitatory neurons of
the embryonic and postnatal cerebral cortex and hippocampus, and down-regulates Reelin
in the embryonic and postnatal brain. The NR2 fragment, a degradation product of Reelin
at N-t, was found to be significantly decreased in the cerebral cortex of ADAMTS-3 KO
mice. Dab1 expression levels were also reduced in the cerebral cortex of ADAMTS-3 KO
mice, suggesting that Reelin signaling is activated by an ADAMTS-3 deficiency.
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We recently proposed a novel concept to enhance Reelin signaling by the inhibition
of ADAMTS-3 as a novel treatment for neuropsychiatric disorders [87]. To investigate
the effects of the inhibition of ADAMTS-3 on Reelin signaling, we generated a primary
culture of cortical neurons from wild-type and heterozygous Reln-del mice and performed
knockdown experiments on ADAMTS-3 using short hairpin RNAs. Reelin cleavage in
conditioned medium was significantly decreased, whereas Dab1 expression was reduced by
the knockdown of ADAMTS-3, indicating that Reelin signaling was enhanced in primary
cultured cortical neurons prepared from both wild-type and heterozygous Reln-del mice.
Therefore, the inhibition of ADAMTS-3 may be a candidate for the clinical treatment of
neuropsychiatric disorders, such as schizophrenia, by enhancing Reelin signaling in the
brain [87].

Tau phosphorylation, which is involved in the aggravation of AD, was found to be
decreased in the cerebral cortex of ADAMTS-3 KO mice. An ADAMTS-3 deficiency in exci-
tatory neurons increased the branching and elongation of dendrites in the somatosensory
cortex [104]. Moreover, reductions in ADAMTS-3 inhibited the deposition of Aβ in App
knock-in mice, an AD animal model [105,106], by enhancing Reelin activity, which suggests
the potential of an inhibitor of ADAMTS-3 to prevent the progression of AD [107].

ADAMTS-2, which has similar domain structures and substrate specificity to ADAMTS-
3, was also shown to contribute to the N-t cleavage and inactivation of Reelin in the post-
natal cerebral cortex and hippocampus [108]. At the mRNA level, ADAMTS-3 is highly
expressed in the embryonic cerebral cortex and hippocampus, while ADAMTS-2 and
ADAMTS-3 are expressed at similar levels in the postnatal cerebral cortex and hippocam-
pus. Therefore, the inhibition of ADAMTS-2 may also be a target for neuropsychiatric
disorders in the adult brain [108]. Further studies on ADAMTS-2 and ADAMTS-3 are
needed to elucidate their mechanisms of action in the treatment of neuropsychiatric and
neurodegenerative disorders.



Int. J. Mol. Sci. 2022, 23, 1829 11 of 15

7. Conclusions

In this review, we discussed the relationships between the neuronal functions of Reelin
and neuropsychiatric disorders. Furthermore, we introduced experimental animal models
based on Reelin dysfunctions. We showed that enhanced Reelin signaling may ameliorate
neurological dysfunctions. The down-regulated expression of Reelin and RELN mutations
have been reported in patients with neuropsychiatric disorders. Reelin supplementation
improved neurological functions and may be a candidate for novel treatments for neuropsy-
chiatric disorders. Since the amount of Reelin in serum fluctuates in psychiatric disorders,
it may be used as a marker of illness and an indicator of therapeutic efficacy. However,
clinical therapies based on Reelin functions have not yet been applied in practical settings.
Further studies are needed to develop treatments that target Reelin functions.
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