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Abstract

Human experience of time exhibits systematic, context-dependent deviations from clock

time; for example, time is experienced differently at work than on holiday. Here we test the

proposal that differences from clock time in subjective experience of time arise because

time estimates are constructed by accumulating the same quantity that guides perception:

salient events. Healthy human participants watched naturalistic, silent videos of up to 24

seconds in duration and estimated their duration while fMRI was acquired. We were able to

reconstruct trial-by-trial biases in participants’ duration reports, which reflect subjective

experience of duration, purely from salient events in their visual cortex BOLD activity. By

contrast, salient events in neither of two control regions–auditory and somatosensory cor-

tex–were predictive of duration biases. These results held despite being able to (trivially)

predict clock time from all three brain areas. Our results reveal that the information arising

during perceptual processing of a dynamic environment provides a sufficient basis for

reconstructing human subjective time duration.

Author summary

Our perception of time isn’t like a clock; it varies depending on other aspects of experi-

ence, such as what we see and hear in that moment. Previous studies have shown that dif-

ferences in simple features, such as an image being larger or smaller, or brighter or

dimmer, can change how we perceive time for those experiences. But in everyday life, the

properties of these simple features can change frequently, presenting a challenge to under-

standing real-world time perception based on simple lab experiments. To overcome this

problem, we developed a computational model of human time perception based on track-

ing changes in neural activity across brain regions involved in sensory processing (using

non-invasive brain imaging). By measuring changes in brain activity patterns across these

regions, our approach accommodates the different and changing feature combinations

present in natural scenarios, such as walking on a busy street. Our model reproduces
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people’s duration reports for natural videos (up to almost half a minute long) and, most

importantly, predicts whether a person reports a scene as relatively shorter or longer–the

biases in time perception that reflect how natural experience of time deviates from clock

time.

Introduction

How do we perceive time in the scale of seconds? We know that experience of time is charac-

terized by distortions from veridical “clock time” [1]. These distortions are reflected in com-

mon expressions like “time flies when you’re having fun” or “a watched pot never boils”. That

our experience of time varies so strongly in different situations illustrates that duration percep-

tion is influenced by the content of sensory experiences. This is true for low level stimulus

properties, such as motion speed or rate of change [2–4], mid-level properties like complexity

of task [5], and more complex natural scene properties such as scene type (e.g. walking around

a busy city, the green countryside, or sitting in a quiet office; [6,7]). It is also well-established

that perception of time differs if attending to time or not [7,8]. That disruptions in time experi-

ence (i) arise across these different levels of stimulus complexity and (ii) are based on internal

properties of the perceiver (such as what they are attending to) suggests that an approach is

required that considers what is common across the hierarchy of perceptual processing, not just

at a single level. By identifying a measure that captures what is common across these features

and levels of complexity and basing a model of subjective duration on it, our goal is to accom-

modate and bridge the many previously established relationships between content and time.

Further, while many studies have attempted to find a mapping (usually in the form of a corre-

lation or similar analyses) between single, simple stimulus features and time perception (e.g.

speed or temporal frequency [2–5]), natural scenes contain varying proportions of any single

feature and these proportions will vary over time. Therefore, modelling subjective time percep-

tion on the scale of natural stimulation will require an approach that jointly considers the con-

tributions of these different features.

We recently proposed [6,7,9] that the common currency of time perception across process-

ing hierarchies is change. In principle, this is not an entirely new idea, with similar notions

having been suggested in philosophy [10] and in the roots of cognitive psychology of time

[5,11,12]. However, in this more recent proposal, there is a strong distinction in that change is

not considered only as a function of changes in the physical nature of the stimulus being pre-

sented to the observer, but rather change is considered in terms of how the perceptual process-

ing hierarchy of the observer responds to the stimulation.

The advantage of taking an observer-, rather than experimenter-oriented approach is that

we can accommodate the critical distortions that distinguish subjective duration from veridical

‘clock’ time. The potential of such an approach was previously demonstrated by Roseboom

and colleagues [6], who used a deep convolutional neural network that had been trained to

classify different images as a proxy for human visual processing. In that study, it was reported

that simply by accumulating salient changes detected in network activity across network layers

it was possible to replicate biases in human reports of duration for the same naturalistic videos.

This finding supported the proposal that activity in human perceptual processing networks in

response to natural stimulation could provide a sufficient basis for human time perception.

The neural network used in the previous study provided a reasonable stand in for human

visual processing, demonstrating at least some of the useful functional properties of human

visual processing hierarchy, such as its hierarchical arrangement, specialization of layers for
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different features, and increasing complexity of representations at higher layers [13,14]. There

is ongoing debate about the degree and nature of similarities between such networks and bio-

logical vision, though relationships between classification performance and degree of represen-

tational similarity with primate visual processing can be found [15]. Nonetheless, a full

assessment of the above proposal requires neural as well as behavioral evidence from human

participants. Here, we put this proposal to a considerably stronger test, using a pre-registered,

model-based analysis of human functional neuroimaging (BOLD), collected while participants

estimated the duration of silent videos. In support of our proposal, we found that the model-

based analysis could produce trial-by-trial predictions of participants’ subjective duration esti-

mates based on the dynamics of their multi-layer visual cortex BOLD while they watched silent

videos. Control models applied to auditory or somatosensory cortex could produce reasonable

estimates of clock time, but these models did not predict participants’ subjective trial-by-trial

biases. Our model is, to our knowledge, the first that can predict trial-by-trial biases in subjec-

tive duration purely from measured human brain activity during ongoing naturalistic

stimulation.

Results

Using functional magnetic resonance imaging (fMRI) and a pre-registered preprocessing and

model-based analysis pipeline (osf.io/ce9tp), we measured BOLD activation while 40 human

participants watched silent videos of natural scenes (8–24 seconds each) and made duration

judgements on a visual analogue scale ranging from 0 to 40 seconds (see Fig 1A). Half of the

videos depicted busy city scenes with many things happening (e.g. cars or buses going past,

many people on a busy street), and the other half, office scenes with relatively few (e.g. occa-

sionally someone would leave or enter the office). While city versus office differed broadly in

how busy the content was by design, there was also substantial natural variation within the

scene types.

Fig 1. Trial sequence and human behavioral results. (A) Participants viewed naturalistic videos (8–24 seconds in duration, 1 video per trial) of walking

around a busy city or sitting in a quiet office while in the MRI scanner and reported the duration using a visual analogue scale. (B) Participant-wise relationship

between report and duration (colored lines), mean relationship (solid black line), and the line of unity (dashed line). (C) Relative under-/over-estimation of

duration by human participants for office/city videos. Error bars represent +/- within-subject SEM.

https://doi.org/10.1371/journal.pcbi.1010223.g001

PLOS COMPUTATIONAL BIOLOGY Predictions of subjective time from human BOLD

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010223 July 7, 2022 3 / 28

http://osf.io/ce9tp
https://doi.org/10.1371/journal.pcbi.1010223.g001
https://doi.org/10.1371/journal.pcbi.1010223


We reasoned that if subjective time is constructed from the accumulation of salient changes

in the perceptual processing hierarchy, then we should be able to predict human over- or

under-estimates of time from salient changes in visual cortex dynamics. We concentrated on

over- or under-estimates of time rather than correspondence with clock time because the latter

would be a particularly weak (and flawed) test of our hypothesis: the accumulation of any posi-

tive quantity–be it salient events in visual cortex dynamics while viewing a video or number of

births in Brazil while reading this paper–will increase with and therefore positively correlate

with elapsed time. Our hypothesis refers to visual cortex because our stimuli are silent videos.

Put simply, we predict a correlation between human behavioral biases on the one hand, and

biases constructed from salient changes in visual cortex dynamics on the other (i.e. model-pre-

dicted biases). At a coarse scale, according to previous neural network based results for this

video set [6], city scenes should generally produce more salient changes in perceptual process-

ing and be overestimated relative to office scenes.

For each trial, reported durations (in seconds) were transformed into our main behavioral

measure: participants’ bias towards under- or over-reporting of duration. This was quantified

using a (pre-registered) normalized bias measure that we have used previously [6]. Normalized

bias is a trial-by-trial measure that simply quantifies the percentage difference between each

duration report and the participant’s mean report for the video duration category. In this way,

it tells us whether any given report was high or low as compared to typical reports by the par-

ticipant made under comparable conditions. For each of the k trials in which the presented

video duration was t, the bias on trial k was the report on trial k, minus the mean report for

that duration, divided by the mean report for that duration:

biastk
¼

xtk
� �xt

�xt
ð1Þ

Positive/negative values mean that individual duration reports were over-/under-estimated

relative to the participant’s mean for a given presented video duration. For example, on a

given trial that is physically 8 seconds long, if normalized bias is -0.5, then the report on that

trial was 50% less than the average for 8 second videos. If normalized bias is 0 then the report

was equal to the mean, and if it is 0.5 then the report was 50% greater than the mean. Note that

normalized bias takes highly similar values when calculated using the median instead of mean

(for all participants r> 0.9). Because normalized bias does not take the true video duration as

an input it is a bias (not accuracy) measure that reflects participant specific response patterns

that are independent of clock time. This measure was then carried forward for subsequent

analysis.

All inferential tests reported were preregistered unless specified otherwise.

Behavioral reports are biased by scene type

Participants could estimate duration well, as indicated by a strong correlation between pre-

sented (veridical) and reported (subjective) durations for each subject both when computed

trial-by-trial (�r ¼ 0:76� 0:02), and when averaged within duration categories (�r ¼ 0:96, Fig

1B). As predicted, durations of city scenes were relatively over-estimated and office scenes

under-estimated, M±SEdiff = 5.23 ± 1.69 (normalized bias, %), 95% CI [1.81, 8.65], t39 = 3.09,

p = 0.004, d = 0.50, BFH(0,10.5) = 33.8, confirming that natural scenes containing a higher den-

sity of salient events do indeed feel longer (Fig 1C. Our pre-registered prior for the Bayes factor

came from the difference of 10.5 found in [6], see Fig 3G there). Note that this result shows

that the amount of experienced time was lower for office videos, not necessarily that time

passed faster for office videos.
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Estimates generated by an artificial network model are biased by scene type

It has previously been shown that estimates of duration based on changes in activation across

the hierarchy of an artificial image classification network can replicate human-like biases in

duration reports for naturalistic stimuli [6,7]. Following from this work, we tested whether the

effect of scene type for the stimuli used in our experiment and shown by our participants (Fig

1C) could be reproduced by this same artificial perceptual classification network approach.

As in the previous study [6], we fed the same video clips that participants had viewed to a

pre-trained (i.e. not trained on our stimulus set) hierarchical image classification network,

AlexNet [16]. For each network node, we computed frame-to-frame Euclidean distances in

network activity. Then, separately for each network layer, each distance–or change in activa-

tion–was categorized as salient or not. Note that a salient change is not necessarily psychologi-
cally salient, nor even a salient change in the environment; it is simply a relatively extreme

change in dynamics. Saliency categorization was achieved using an attention threshold with

exponential decay that simply determined whether the change in node activation (the Euclid-

ean distance) was sufficiently large to be deemed salient (see Methods). By decaying from the

starting point to its minimum point, the threshold can adapt to local periods with few extreme

changes. Following models of episodic memory [17] moments of threshold crossing are here-

after called ‘salient events’ (see also Discussion section “Surprise”, time perception, and episodic
memory and [7]).

Salient events were accumulated at each layer and converted to estimates of duration in sec-

onds via multiple linear regression, by mapping the number of accumulated salient events to

the presented (clock time), not reported durations. This placed network predictions and human

reports onto the same scale (seconds), and means that the model is attempting to reproduce

clock time duration based on the input, rather than the more trivial task of training the model

to directly reproduce human estimates. Therefore, any human-like biases in estimates can be

attributed to the behavior of the network in response to the input stimuli, and not simply to

the model being trained to specifically reproduce human biases.

As was the case with human behavior, and as expected, the artificial classification network-

based model produced duration reports that were significantly correlated with the video dura-

tion ρ(2329) = 0.73, p< 0.001 (Fig 2A). Like our human participants, the model underesti-

mated longer durations. As explained in Roseboom et al [6], this ‘regression to the mean’

effect is likely a product of mapping “sensation” (here, the accumulated salient events) onto a

scale for report (here, seconds).

More importantly, the model reproduced the pattern of subjective biases seen in human

participants, despite being trained on presented video duration (Fig 2B). Specifically, model-

produced estimates differed as a function of video type: estimation bias was greater (i.e. reports

relatively over-estimated) for busy city scenes than for office scenes, M±SEoffice = -5.00 ± 0.66,

M±SEcity = 4.99 ± 0.55, 95%CI = [8.31, 11.67], t2329 = 11.65, p< 0.001, d = 0.48. These results

demonstrate that simply tracking the dynamics of a network trained for perceptual classifica-

tion while it is exposed to natural scenes can produce the basis for human-like estimates of

duration.

Reconstructing human-like duration reports from visual cortex BOLD

Here we put our proposal to the key test. Our proposal is that tracking changes in perceptual

processing in the modality-specific human sensory hierarchy is sufficient to predict human

trial-by-trial biases in subjective duration. Perceptual processing of visual scenes is achieved

primarily in visual cortex, so to test our proposal we asked whether we could reproduce partic-

ipants’ estimation biases from salient events in visual cortex BOLD. In other words, instead of

PLOS COMPUTATIONAL BIOLOGY Predictions of subjective time from human BOLD

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010223 July 7, 2022 5 / 28

https://doi.org/10.1371/journal.pcbi.1010223


accumulating salient events in visual stimulation, we accumulated salient events in BOLD

responses to that stimulation.

Coarse-level regional differences in BOLD were seen for both office versus city videos, and

for videos (from either category) for which reports were strongly biased (GLM results, see S1

Fig and S4 Table). However, these results do not tell us about the relationship between dura-

tion biases and salient events in BOLD dynamics. If we can predict trial-by-trial subjective

duration only from participants’ BOLD responses in visual cortex (and not in other control

regions), then we will have shown that the basis for human subjective duration judgements

(when viewing natural visual scenes) can be constructed from brain activity associated with

perceptual processing.

To do this, we defined a three-layer visual hierarchy a priori predicted to be involved in pro-

cessing of the silent videos (see Fig 3 and S1 Table). We selected regions such that lower layers

Fig 2. Artificial network model results. The same naturalistic videos (8–24 seconds in duration) that human participants viewed were input to an image

classification network-based model to generate estimates of duration. (A) Relationship between presented and model-predicted video durations for this model,

trained on accumulated salient events in video frames (solid line). The dashed line is the line of unity. (B) Relative under-/over- estimation of duration for

office/city scenes for this model. Error bars represent SEM.

https://doi.org/10.1371/journal.pcbi.1010223.g002

Fig 3. Perceptual hierarchies used for fMRI-based model analysis. Three different three-layer perceptual hierarchies were defined: a visual hierarchy, an

auditory hierarchy and a somatosensory hierarchy. The visual hierarchy constitutes our model of interest, while the auditory and somatosensory hierarchies

constitute control models. The regions chosen for layers 1, 2 and 3 are colored in red, yellow and green respectively. Precise details of the regions are specified

in S1 Table.

https://doi.org/10.1371/journal.pcbi.1010223.g003
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reflect the processing of low-level features (e.g. edge detection in primary visual cortex; V1),

and higher layers, object-related processing (e.g. lateral occipital cortex; LOC). For control

analyses, analogous hierarchies were built for auditory cortex and somatosensory cortex (see

S1 Table). Because the stimuli we used were silent videos, we predicted that only the model

using the visual cortex hierarchy should reconstruct subjective human duration reports from

accumulated salient events (see pre-registration at osf.io/ce9tp).

We ran our key analysis in two ways: one was confirmatory (i.e. pre-registered) and one was

exploratory (i.e. not pre-registered). The analysis pipeline is illustrated in Fig 4. In both analyses, for

each participant voxel-wise patterns of BOLD were extracted from each TR (slice, or time point) in

each hierarchical layer. Voxel-wise changes between each TR were calculated and then summed

over all voxels in the layer, resulting in one value per TR and layer. These ‘change’ values were stan-

dardized (z-scored) within-participant and compared to a criterion with exponential decay (and

pre-registered parameters) to classify the change value as a salient event or not, giving us the num-

ber of salient events ‘detected’ by each layer for each video. Just as salient visual events would be

expected to correspond to large changes in (layer-wise) visual cortical activity, salient auditory

events would be expected to correspond to large changes in auditory cortex dynamics, and may be

trigged by, for example, hearing (or possibly imagining) a loud sound, and similarly for somatosen-

sory cortex. Note that psychologically salient events need not map to salient events in BOLD; see

Discussion section Predictive processing as a potential mechanistic basis for time perception.

For the pre-registered analysis, change was quantified as Euclidean distance (as for the arti-

ficial network model), i.e.

DTR ¼
X

v
jXTR;v � XTR� 1;vj ð2Þ

Fig 4. Schematic of modelling analysis pipeline. (1) Following data collection, (2a) voxel-wise BOLD amplitude was extracted and (2b) TR-by-TR (i.e. time point-by-

time point, TR = repetition time) changes (Euclidean distance or signed difference) computed. The example given here is for the visual hierarchy, where each shaded

matrix Xk illustratively represents voxel-wise BOLD amplitudes (shaded squares) at each slice. The same process was conducted for the auditory and somatosensory

hierarchies (see Fig 3 and S1 Table for different hierarchies). (3) Total change in the layer/ROI at each TR was compared to a dynamic attention threshold (red line) that

categorized events as salient (red dots) or not (grey dots). The black line represents 0. An event was classified as salient if it took an equal or higher value than the

threshold. (4) Accumulated salient events were regressed onto seconds, (5a) predictions from the model were converted into normalized bias (5b) and compared across

condition and with human behavior.

https://doi.org/10.1371/journal.pcbi.1010223.g004
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where XTR,v is activation in voxel v at slice TR. Note that (2) is mathematically equivalent to

the L1 norm of the difference between BOLD at two successive TRs. However, we refer to (2)

as Euclidean distances, summed over all voxels because we are proposing that the key compu-

tation here is |XTR,v−XTR−1,v| and not XTR,v−XTR−1,v.

For the exploratory analysis, we tested an alternative algorithm for quantifying change:

D
0

TR ¼
X

v
ðXTR;v � XTR� 1;vÞ ð3Þ

which we refer to as the signed difference. The attention threshold used in this analysis was the

same as that pre-registered for the confirmatory analysis. We chose this measure because, at

least in sensory cortices, BOLD may already reflect perceptual changes [18], potentially in the

form of “prediction errors”. Therefore, while the model using Euclidean distance (Eq 2) as the

change metric assumes that BOLD relates directly to neural activity (conceptually the same as

“activation” of nodes in the artificial classification network), signed difference (Eq 3) is more

closely aligned with the idea that BOLD (in early sensory networks in this case) indicates

(computational) prediction error. Euclidean distance can only be positive valued (0 or above),

while the signed difference can be positive or negative in value (above or below 0).

We then used support vector regression with 10-fold cross-validation to predict the pre-

sented (i.e., clock time, not subjective/reported) video durations from accumulated salient

events in layers 1, 2 and 3 for each perceptual hierarchy. This converted the accumulated

salient events in the three layers to a model-predicted duration “report” in seconds so that they

could be compared with human reports that were also made in seconds. Accordingly, the pre-

dicted durations in seconds by themselves are not the primary target of investigation. How-

ever, this regression step that involves an external metric of time was only necessary for

directly comparing model output with human reports made in these units–as can be seen in

Fig 5, accumulated salient events (defined according to Eq 3) in visual cortex already distin-

guish between video type prior to transformation into the units of this external metric of

seconds.

Finally, biases in model predictions were compared to participants’ duration estimation

biases. For our pre-registered analysis, we pooled human participants’ behavioral data together

to create one ‘super-subject’, by standardizing behavioral duration reports within-participant

and re-computing normalized bias using the combined behavioral dataset. For the exploratory

analysis, human estimation bias was computed separately for each of the 40 participants

because pooling participants’ data reduced the effect of video type on (human) normalized

bias (see S2B Fig). Model predictions were generated from pooled accumulated changes,

regardless of whether the behavioral data were pooled or not. We did this because the use of

long stimulus presentation intervals (up to 24 seconds) meant that for each participant we

could only obtain relatively few trials—insufficient to generate brain-based model predictions

on a purely participant-by-participant basis.

Using Euclidean distance, estimation bias but not effects of scene type can

be reconstructed from visual cortex BOLD

Following (pre-registered) pooling into a super-subject, the z-scored reports remained corre-

lated with video durations (S2A Fig) but did not significantly discriminate between office and

city scenes (S2B Fig). The presented (clock time) video duration could be predicted from accu-

mulated salient events in all three models (visual, auditory, and somatosensory) to a similar

degree (10-fold cross validation, �rvisual ¼ 0:93; �rauditory ¼ 0:95; �rsomatosensory ¼ 0:94, S2C–S2E

Fig). These results show that all models could reproduce clock time–the physical duration of

the presented video—and therefore that the support vector regression model successfully
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mapped accumulated events to durations in units of seconds. This means we could use the

regression model to further generate predictions of subjective duration biases from salient

events in BOLD. It is important to note that the reproduction of presented duration is trivial

because, all else being equal, longer intervals will have more salient events in the sensory cortex

BOLD dynamics. Indeed, longer intervals will, on average, have a greater number any event,

task-relevant or otherwise–heart beats, eye movements, planes taking off, etc—and so the

cumulative sum of events will trivially correlate with physical duration. Another way to think

about this is that taking any summary–the number of salient events, the length of a trajectory

through a state space, etc—between a start- and end-point is a temporal metric, and so will

correlate with clock time.

Because accumulated salient events will trivially correlate with clock time, testing our pro-

posal necessitates comparing the model of interest (visual cortex) with control models in other

modalities (auditory and somatosensory cortex). Contrasting against control models in other

modalities allows us to demonstrate that it is not simply the accumulation of any cortical

changes over time that predicts duration, but rather accumulation of specific changes in

Fig 5. Accumulated salient events over video types, perceptual hierarchies (rows) and layers (columns). The three leftmost columns plot the mean

(+/-SEM) number of accumulated salient events in each layer of each perceptual hierarchy as a function of city (blue lines) or office (yellow lines) scene. Only

salient events in visual cortex distinguish between office and city scenes, and this holds for all three layers. The three rightmost columns (green lines) plot the

difference lines, with shaded bounds depicting 95% CIs. These show that only accumulated salient events in visual cortex distinguish between scenes, because

only these lines are above the zero line. This means that accumulated salient events, even prior to regression into standard units (seconds), distinguish between

scene type in visual cortex, but not in auditory cortex or in somatosensory cortex.

https://doi.org/10.1371/journal.pcbi.1010223.g005
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cortical activity related to the presented content that can predict human subjective duration

judgements. To reinforce this point, it is because all of our models–visual cortex and the con-

trol models based on auditory or somatosensory cortex—do in fact provide reasonable esti-

mates of clock time that our key analyses focus on reproducing the subjective biases present in

the reports of human participants, since it is these biases that separate clock duration from

subjective duration.

Our primary pre-registered hypothesis was that only the visual cortex model would be able

to reproduce participants’ duration biases. Supporting this, only the model trained on visual

salient events significantly reproduced the duration biases (calculated from the pooled, human

“super-subject” data) trial-by-trial, β2328 = 1.51, p = 0.015; the models trained on salient events

in auditory cortex, β2328 = 0.87, p = 0.141, and somatosensory cortex, β2328 = 0.30, p = 0.339,

did not (S3 Fig). Using the visual cortex regression beta as our prior [19], evidence for these

control model results was insensitive (auditory: BFH(0,1.51) = 1.22, RR = [-1, 7.56], somatosen-

sory: BFH(0,1.51) = 0.60, RR = [-1, 3.14]).

Not only was the visual cortex regression coefficient a significant predictor of behavioral

biases, the visual cortex regression model was also a better fit to the trial-by-trial behavioral

biases than the auditory or somatosensory cortex models (S4 Fig). These results mean that

biases in subjective estimates of time can be predicted from neural activity associated with

modality-specific perceptual processing. The processing is modality-specific because the video

stimuli were silent, with no auditory or tactile stimulation.

While the visual model could reproduce participants’ trial-by-trial biases, it did not repro-

duce the effect of video type (overestimation of duration for city scenes) despite a numerical

trend in the predicted direction, M±SDdiff = 0.19 ±13.96, 95%CI = [-0.94, 1.33], t2329 = 0.33,

p = 0.739, d = 0.01 (S2F Fig). The control models did not reproduce the effect of video type

either (auditory: M±SDdiff = -0.33 ±12.29, 95%CI = [-1.32, 0.67], t2329 = -0.64, p = 0.522, d =

-0.03, somatosensory: M±SDdiff = -0.16 ±13.09, 95%CI = [-1.23, 0.90], t2329 = -0.30, p = 0.762,

d = -0.01, see S2G–S2H Fig). Setting a uniform prior between 0 and our behavioral effect of

scene type (5.23%), Bayes factor analysis found evidence for the null in all three t-tests (visual:

BFU(0,5.23) = 0.18, RR = [2.83,1]), auditory: BFU(0,5.23) = 0.22, RR = [3.30,1]), somatosen-

sory: BFU(0,5.23) = 0.17, RR = [2.55,1])). Note that neither these t-tests nor the priors were

pre-registered.

Using signed difference, estimation bias and effects of scene type can be

reconstructed from visual cortex BOLD

Next, we analyzed the biases predicted from the exploratory model, in which salient events

were determined from signed differences in voxel activity. Again, presented video duration

could be (trivially) predicted from salient events in all three exploratory models to a similar

degree (10-fold cross validation, �rvisual ¼ 0:95; �rauditory ¼ 0:97; �rsomatosensory ¼ 0:96, Fig 6A–6C).

However, using the revised (exploratory) definition of a salient event, linear mixed models

revealed the visual model biases did strongly discriminate between office and city scenes, M

±SDdiff = 4.22 ± 3.37, 95% CI = [3.14, 5.30], χ2(1) = 85.06, p< .001 (Fig 6D).

Visual model biases also remained correlated with participants’ trial-by-trial biases, β = 0.02

±0.008, χ2(1) = 5.62, p = 0.018. This association is visualized in Fig 7A by plotting mean model

bias as a function of 25 quantiles of human normalized bias. The association held under a wide

range of reasonable attention threshold parameters (Fig 7B), meaning that model performance

in reproducing participant duration reports was robust to how salient events were categorized.

Again, the visual model out-performed control models in predicting normalized bias (S5 Fig).

While the model trained on accumulated visual cortex salient events reproduced patterns in
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human biases, biases from exploratory models trained on auditory and somatosensory salient

events did not: they neither discriminated video type (auditory: M±SDdiff = 0.35 ± 2.65, 95%

CI = [-0.50, 1.19], χ2(1) = 0.43, p = 0.514, BFH(0,0.02) = 0.16, RR = [0.02,1], somatosensory: M

±SDdiff = -0.32 ± 2.56, 95% CI = [-1.13, 0.50], χ2(1) = 0.46, p = 0.499, BFH(0,0.02) = 0.06, RR =

[0.01,1] see Fig 6E and 6F), nor predicted trial-wise human normalized bias (auditory: β =

-0.003 ± 0.006, χ2(1) = 0.20, p = 0.652, BFH(0,0.04) = 0.24, RR = [0.01,1], somatosensory: β =

0.002 ± 0.007, χ2(1) = 0.11, p = 0.740, BFH(0,0.04) = 0.46, RR = [-1, 0.03] respectively, Fig 7C

and 7E). Note that priors for the Bayes factors were not pre-registered and were set as the

fixed-effect coefficients from the corresponding visual cortex LMMs.

The correlational results were also robust across a range of threshold parameters for the

visual model (Fig 7B). For the auditory model (Fig 7D), positive correlations between human

and model-predicted biases were found only at implausible parameter values (where the

threshold’s upper bound was the mean). For the somatosensory model (Fig 7F), positive corre-

lations were present in a small, localized region of the space indicating that those correlations

were not robust to changes in threshold parameters, and likely spurious or artefactual (e.g.,

driven by head motion or eye movements).

In none of the auditory or somatosensory layers were there more salient events when

watching city than office videos (Fig 5, middle and bottom rows). Further, our ability to pre-

dict subjective biases in duration does not trivially follow from differences in the videos

Fig 6. Computational neuroimaging analysis. (A-C) Trial-by-trial association between presented video duration and model-predicted duration reports

obtained from the visual, auditory, and somatosensory models. Different dot colors represent different participants, and each dot is data from one trial. (D-F)

Mean model-estimated normalized bias as a function of video type for the visual, auditory, and somatosensory models. Error bars represent +/- within-subject

SEM.

https://doi.org/10.1371/journal.pcbi.1010223.g006
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themselves (e.g. more changes in city than office videos), because frame-by-frame changes in

the videos are dissociable from both human and model-predicted biases (see S1 Text and S6

Fig). Taken together, these results underline the specificity of visual cortex activity in predict-

ing subjective time for silent videos.

Discussion

We have shown that the basis for subjective estimates of duration can be constructed on a

trial-by-trial basis from salient events in sensory cortex activity, where salient events are

defined as relatively large changes in the neural responses to sensory stimulation across a per-

ceptual hierarchy. Importantly, participants are not necessarily conscious of the events because

they are events in the perceptual processing dynamics rather than in the stimulus. Salient

events as we have defined them are not necessarily psychologically salient either.

In this study, for which stimuli were silent videos, successful prediction was obtained only

for models trained on salient events in visual cortex BOLD, and not for control models based

Fig 7. Predicting trial-by-trial subjective time from human BOLD. (A) Mean normalized bias for the model trained on visual cortex activity, as a function of

25 quantiles of human bias. Colors represent x-axis values. Results show a positive association between human biases and model-predicted biases. (B) Heat

map depicting p-values for the association between human bias and (visual cortex) model bias, as a function of minimum (x-axis) and maximum (y-axis)

criterion values. Dark colors represent regions where the association was non-significant at α0.05 or negative. Consistent results are found under a wide range of

reasonable parameter values. (C,E). As for panel A, but for auditory and somatosensory cortex respectively. There is no association between human bias and

model biases. (D,F). As for panel B, but for auditory and somatosensory cortex respectively. No significant positive correlation is found under alternative

reasonable parameter values.

https://doi.org/10.1371/journal.pcbi.1010223.g007
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on somatosensory or auditory cortex BOLD. While we could trivially reconstruct clock time

from activity in all three sensory regions (because those regions exhibited dynamic neural

activity that trivially reflects video duration), only the information extracted by the stimulus-

relevant sensory model—the visual model—was related to subjective duration estimates (as

reflected in relative over- or under-estimates of duration). Our results were robust under a

wide range of model parameter values (Fig 7B), and, in combination with previous findings

[7,9], support the idea that human time perception is based in the neural processes associated

with processing the sensory content from which time is being judged.

The reconstruction of clock time in all brain-based models was strong (correlations

between model estimates and veridical video duration r> .92), and better than our human

participants’ performance (correlation between participant estimates and veridical video dura-

tion r ~ = .8). There are several reasons for this. First, as previously stated, the model predic-

tions will trivially correlate with clock time because more salient events will be accumulated as

epoch length increases. Second, we specifically trained these models to transform the number

of salient events into clock time (by mapping them to the video durations), and accordingly

they do so very well. With feedback, humans can reproduce clock time well also–indeed, even

without training participants in this study exhibited a correlation of ~.8 with clock time. Out-

side of the lab, in more natural cases duration estimation may often be worse: the task is

harder, mappings from experience to standard units of report are contextual, feedback may be

sparse (and not necessarily even incorporated), and is received over long time scales. In short,

by virtue of simultaneous access to all information about the relationships between time sensa-

tion (salient events) and clock time, our models (in this case) have an unfair advantage versus

humans, who could be doing similar computations (regression), but typically with less com-

plete information.

Our visual cortex ROIs were chosen in such a way that our hierarchy was a highly simpli-

fied, “toy model” of human ventral vision. Of course, we by no means assert that other regions

in visual cortex are unimportant for duration perception of visual stimuli [20]. Correspon-

dences between stimulus features and neural responses have been shown in regions we have

not included, and work that attempts to map the neural responses to temporal properties of

visual stimuli has revealed a broad range of temporally responsive regions across the percep-

tual processing hierarchy, including dorsal visual stream and frontoparietal areas (see e.g.

[21]). The present study suggests that for the specific stimulus content we utilized (silent vid-

eos) the ROIs we selected were sufficient to predict subjective time, but of course future work

could test whether model performance would substantially improve by expanding the set of

regions included.

We compared two different metrics for determining change in processing dynamics–

Euclidean distance and signed difference, and used dynamic thresholds to classify changes as

salient events, with these thresholds allowed to vary across layers of the perceptual hierarchy.

We could predict human biases in duration judgements when using both metrics, but could

only predict the video class (office scene vs. city scene) from the signed difference. It is notable

that even these crude measures are sufficient for mapping processing dynamics within percep-

tual hierarchies to subjective time. Future work could attempt to optimise the metrics and

thresholds according to differences in the known response properties of different visual areas

[22,23].

A novel approach to modelling subjective time

Our model is the first which is able to predict trial-by-trial subjective reports of duration based

on neural (BOLD) activity during naturalistic stimulation, and in so doing, advances our
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understanding of the neural basis of time perception. Our approach is conceptually related to

a study by Ahrens and Sahani [24], who proposed that subjective time perception is con-

structed from estimates of input dynamics (akin to sensory input) and knowledge of the tem-

poral structure of the input (second order input statistics), and presented an inference model

that could account for several behavioural results. An important difference between their work

and ours is that statistical “knowledge” in our model relates to knowledge of the perceptual

processing network state. By contrast, knowledge in Ahrens and Sahani’s model relates to

prior temporal structure. This means that while Ahrens and Sahani propose a model depen-

dent on processes dedicated to tracking temporal properties, we do not. Our results demon-

strate that such knowledge is not strictly necessary for generating human-like duration

estimates for natural stimuli.

Linking sensory content and subjective duration

In our approach, the neural processes that are engaged in the processing of sensory content

(putatively ventral stream vision in our human participants and for our stimuli) are the same

as those used to build the basis for estimates of time. In this way we provide an intuitive link

between sensory content and subjective duration. Our conclusion is in support of the idea that

time perception depends on distributed mechanisms [25], but that in each case subjective time

is naturally linked to sensory content by virtue of being determined by those content-related

processes.

It is common for studies in the time perception field to use highly constrained stimuli such

as luminance contrast discs, Gabors, or random dot fields. The high level of control over stim-

ulation permitted by such stimuli allows these studies to identify one-to-one mappings

between a specific stimulus feature (e.g. contrast intensity, temporal frequency, or even stimu-

lus size) and time perception. For example, a presented stimulus is reported as longer in dura-

tion in a condition where it is larger in size than in a condition where it is smaller [26]–a

simple mapping between the feature of stimulus size and the corresponding duration judge-

ments. A large literature exists showing how recent visual exposure [27,28] or adaptation to

temporal properties of a stimulus can influence subjective time judgements [29–31]; that eye

movements nearby brief stimuli can change the content of vision, and consequently perception

of time [32–34]; how eye movements during stimulation change time estimates [35]; and how

the precise temporal properties of a visual stimulus–temporal frequency or speed–relate to

subjective duration reports [2,3,36]. Previous work has also shown how different parts of the

processing hierarchy respond differently to temporal properties of stimuli, such as whether sti-

muli were composed of transient or persistent stimulation [23]. Further, recent work using

direct mapping methods with simple, brief stimuli (intervals up to ~ 2 seconds) has made sub-

stantial progress in describing the complex hierarchy of neural responses to temporal proper-

ties of visual stimulation [21,37].

The existing time perception literature, as described above, has been successful in character-

ising the relationship between visual response properties and subjective time. Our study

extends this work by taking two key differences in approach. First, we did not directly look for

a correspondence between temporal properties of stimulation and neural responses reflecting

those temporal properties (i.e. we didn’t look for neural regions that represent the temporal

properties of the stimulation–‘chronotopy’). Instead, we attempted to build a model that

extracts relevant temporal properties from the neural activity associated with processing of

perceptual content and produces estimates of duration based on that information–an indirect

rather than direct mapping between the stimulus and neural response to stimulus on the one

hand, and subjective duration on the other. The second key difference in our approach comes
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from our use of naturalistic scenes versus the simple, highly-controlled stimuli frequently

used. Natural scenes contain a wide variety and combination of simple and complex features,

some of which will be coded for in overlapping neural populations. These features vary in their

combinations moment to moment, and so to build a successful model of time perception for

natural stimulation it is necessary to consider their joint contributions. By using a measure

based on extracted salient events across the perceptual processing hierarchy, our approach

accomplishes this task without needing to fully characterise those joint contributions. We note

that to do so would be a very difficult task indeed. While a complete understanding of how

these features are identified, tracked and combined in cortex remains an important challenge

for visual neuroscience, and progress has been made (as we review above), our approach is

able to jointly accommodate the many stimulus features that vary during natural stimulation

in a simple fashion, without needing to identify and track each pertinent feature indepen-

dently, and then combine them in such a way that respects their interdependence (e.g. contrast

drifts during configural changes).

There are interesting opportunities for future work at a greater level of specificity, which

could attempt to fully specify the correspondences between all simple features and subjective

duration, as well as their combinations. If successful, this detailed approach would allow very

strong predictions about the precise, moment-to-moment contribution of some specific stim-

ulus feature (and neural response to that specific feature) to subjective time perception. How-

ever, as our model demonstrates, having this complete understanding is not necessary for

successfully modelling human distortions in subjective time.

Attention, emotion and time

In the time perception literature there are often appeals to the influence of factors like atten-

tion [38] or emotion [39,40]–sometimes used as the basis for rejecting the proposals of earlier

cognitive psychologists such as Ornstein [5]. Our model provides a general basis on which to

test any claims about any such influences by specifying a baseline hypothesis in each case–

namely that the dynamics of the relevant sensory cortex (e.g. visual, auditory, interoceptive,

etc) are sufficient to construct subjective duration estimates for that context. For example,

regarding the potential influence of emotion on time perception [39,40], the degree to which

stimulus-driven differences in network activation underlie any differences in duration esti-

mates remains to be established. However, even if influences of emotion on time perception

arise from internally generated sources (rather than processing of external stimulation), this

influence may still be reflected in differences in measurable activity of perceptual processing

networks (via e.g. BOLD) and therefore our model would reproduce differences in human

duration reports. These possibilities are testable hypotheses, made available by our modelling

approach.

Time perception for non-visual or multisensory cases

While we only tested whether subjective duration for visual stimuli could be constructed from

salient events in visual cortex, we expect that salient events from auditory cortex would predict

subjective time in auditory-only contexts, and similarly for other modalities [41]. Outside the

laboratory we judge time in multisensory contexts and can estimate duration when our eyes

are closed or even if clinically deaf. These observations do not expose a weakness of our

approach, but generate specific and testable claims that require additional study to fully evalu-

ate: does our model approach work equally well in other (combinations of) modalities? We see

no reason why our proposal should fail for other modalities, and the success of similar network

architectures for interpreting sensory processing in the auditory domain [42] supports this
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position. Furthermore, because we define ‘salient events’ as events in the dynamics of percep-

tual processing rather than in the external world, non-external stimulation like visual imagery

could also contribute to experience of time. The model we present here is based on unimodal

inputs, but for multisensory inputs we would predict that duration biases would be combined

through some integration of accumulated salient events in modality-specific sensory cortices

(e.g. for videos with sound, an integration of accumulated salient events in visual and auditory

cortices). This may broadly follow what is understood about combination in other multisen-

sory cases and may be consistent with Bayesian rules of combination [43,44].

It could be suggested that our approach only reproduces stimulus-driven biases rather than

providing a general basis for time estimation because without stimulus input our model would

have no “activity”. This critique would be valid for the artificial network-based model in sec-

tion Estimates generated by an artificial network model are biased by scene type but cannot be

applied to the BOLD-based model because visual cortex activity remains present even when

there is no sensory input (see also above point about imagery).

Biological plausibility

Our data do not speak to the question of how perceptual processing is achieved by the brain,

and our results do not depend on the answer, beyond some key, uncontroversial assumptions

(e.g. hierarchical processing). Whether the classification network used here (AlexNet) is closely

matched to biological vision in how it processes information is not relevant here (see [13–15])

because the algorithmic approach to estimating duration from network activity (in either Alex-

Net or estimated from BOLD in humans) produces outcomes consistent with the patterns

seen in human subjective reports of time. Accordingly, we did not directly compare the predic-

tions from the classification network and brain-based models. The crucial assumption is sim-

ply the existence of a hierarchical, specialized system for perceptual processing—the common

interpretation of primate ventral visual stream [45–47]. Given this assumption, our model is

compatible with a range of prominent theories on the specific computational processes that

may contribute to how perception is achieved (predictive coding [48], population coding [49],

Gibsonian affordances [50] etc.), and the mechanisms underlying how feature extraction/pro-

cessing occurs (population receptive fields [51], feedback connections [52], surround suppres-

sion [53] etc). Our claim is simply that the dynamics of perceptual systems can be used to

construct subjective duration, but is theory-neutral as to precisely which processes are most

important for perception. This conclusion is best demonstrated by the fact that our model pro-

duced estimates consistent with subjective biases in human reports regardless of whether

applied to activation patterns of AlexNet or to BOLD patterns recorded from human

participants.

Predictive processing as a potential mechanistic basis for time perception

While we are theory-neutral regarding the specific neural basis of perceptual processing, our

results may provide some evidence in favour of one potential mechanistic basis for time per-

ception. We tested two metrics that could be used by the brain to link sensory content and

time on a moment-to-moment basis: Euclidean distance (pre-registered) and signed difference

(exploratory). Whereas the former assumes that BOLD activity indexes some raw quantity

associated with sensory inputs, the latter assumes that BOLD already indexes change in sen-

sory input, for example as perceptual prediction error. In our data, subjective duration was

best reconstructed using signed difference: although both metrics generated duration estimates

that correlated with human reports, only signed difference differentiated video type. The supe-

riority of signed difference in predicting subjective time is consistent with (but not evidence

PLOS COMPUTATIONAL BIOLOGY Predictions of subjective time from human BOLD

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010223 July 7, 2022 16 / 28

https://doi.org/10.1371/journal.pcbi.1010223


for) the view that BOLD already indexes detected environmental changes. This is in line with

literature evidencing “surprise” or “prediction error” responses in sensory [18,54,55] and even

frontal [56,57] cortices, usually interpreted in the context of predictive processing [58] or pre-

dictive coding [42] theories of cortical function. Of course, this superiority of signed difference

is not itself evidence for a role for prediction error in time perception, nor are the theories of

predictive processing [58] or predictive coding [48] necessary for understanding or interpret-

ing our results.

We also emphasize that the way in which we use “salience” and “surprise” is only tangen-

tially, if at all, related to the psychological phenomena of something being salient or surprising.

Here, salience is defined in terms of difference between successive network states (see Eqs 2

and 3). This means our notion of salience is close to a naïve prediction error [6]; naïve because

the “prediction” is simply the previous network state rather than part of a prediction-update

cycle (see [7]). While previous studies have suggested that predictability [59] or apparent

salience [60] can affect subjective time perception [61], descriptions of “salience” and related

terms at this cognitive level are not necessarily related to descriptions at the mechanistic level

at which our model is articulated. Future work may wish to test whether “prediction error” as

defined in a mechanistic sense maps onto psychological salience or surprise, but the question

is outside the scope of the present study, and is certainly not restricted to investigations of time

perception.

“Surprise”, time perception, and episodic memory

The idea that our model may be based on an index of perceptual “surprise” is intriguing as it

provides a natural link to the closely related topic of episodic memory (see [7]). In the episodic

memory literature, prediction error, i.e. the difference between current sensory stimulation

and expected stimulation, has been proposed as the basis for the construction of event bound-

aries [7,17,62]–transitions that segment some content (e.g. a cow) from some other content

(e.g. a car) in continuous experience [63,64]. By emphasizing the importance of sensory con-

tent in time perception, our approach may provide a link between time perception and epi-

sodic memory that has been lost by content-free “clock” approaches. By providing a simple

algorithm for how the stream of sensory processing is segmented into salient events, our

approach may afford some insight into how low-level sensory information is transformed into

the temporally sequenced form of memory associated with the activity of so-called “time cells”,

potentially linking the content of sensory processing with temporal properties of episodic

memory within the powerful predictive coding approach [7,48,65].

Conclusions

In summary, we provide evidence for an algorithmic account of duration perception, in

which information sufficient for the basis of subjective time estimation can be obtained sim-

ply by tracking the dynamics of the relevant perceptual processing hierarchy. In this view,

the processes underlying subjective time have their neural substrates in perceptual and

memory systems, not in systems specialized for time itself. We have taken a model-based

approach to describe how sensory information arriving in primary sensory areas is trans-

formed into subjective time, and tested this approach against human neuroimaging data.

Our model provides a computational basis from which we can unravel how human subjec-

tive time is generated, encompassing every step from sensory processing to the detection of

salient perceptual events, and potentially further on to the construction and ordering of epi-

sodic memory.
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Materials and methods

Ethics statement

The study was approved by the Brighton and Sussex Medical School Research Governance and

Ethics Committee (reference number ERA/MS547/17/1). All participants gave informed, writ-

ten consent and were reimbursed £15 for their time.

Participants

Forty healthy, English speaking and right-handed participants were tested (18–43 years old,

mean age = 22y 10mo, 26 females). Sample size was determined according to funding

availability.

Procedure

The experiment was conducted in one sixty-minute session. Participants were placed in the

scanner and viewed a computer visual display via a head-mounted eyetracker, placed over a

64-channel head coil. Eyetracker calibration lasted approximately five minutes and involved

participants tracking a black, shrinking dot across nine locations: in the center, corners and

sides of the visual display. Eyetracking data are not used in this manuscript due to technical

failure.

Following calibration, we acquired six images reflecting distortions in the magnetic field

(three in each of the posterior-to-anterior and anterior-to-posterior directions) and one

T1-weighted structural scan.

Finally, functional echoplanar images (EPIs) were acquired while participants performed

two to four blocks (time-permitting) of twenty trials, in which participants viewed silent videos

of variable length and reported the duration of each video using a visual analogue scale extend-

ing from 0 to 40 seconds (see Fig 1A). A key grip was placed in each hand, and participants

moved a slider left and right using a key press with the corresponding hand. The initial posi-

tion of the slider was randomised trial-by-trial. Participants were not trained on the task prior

to the experimental session.

Experimental design and trial sequence

Each experimental block consisted of 20 trials. On each trial a video of duration 8, 12, 16, 20 or

24 seconds was presented. For each participant, videos of the appropriate duration and scene

category were constructed by randomly sampling continuous frames from the stimuli built for

[6]. These videos depicted either an office scene or a city scene. Two videos for each duration

and content condition were presented per block in randomized order. For one participant and

one block, only 11/20 trials were completed giving a total of 2331 trials across the entire

dataset.

MRI acquisition and pre-processing (confirmatory)

Functional T2� sensitive multi-band echoplanar images (EPIs) were acquired on a Siemens

PRISMA 3T scanner (2mm slices with 2mm gaps, TR = 800ms, multiband factor = 8,

TE = 37ms, Flip angle = 52˚). To minimize signal dropout from parietal, motor and occipital

cortices, axial slices were tilted. Full brain T1-weighted structural scans were acquired on the

same scanner using the MPRAGE protocol and consisting of 176 1mm thick sagittal slices

(TR = 2730ms, TE = 3.57ms, FOV = 224mm x 256mm, Flip angle = 52˚). Finally, we collected

reverse-phase spin echo field maps, with three volumes for each of the posterior to anterior

and anterior to posterior directions (TR = 8000ms, TE = 66ms, Flip Angle = 90˚). Corrections
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for field distortions were applied by building fieldmaps from the two phase-encoded image

sets using FSL’s TOPUP function. All other image pre-processing was conducted using SPM12

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12).

The first four functional volumes of each run were treated as dummy scans and discarded.

A standard image pre-processing pipeline was used: anatomical and functional images were

reoriented to the anterior commissure; EPIs were aligned to each other, unwarped using the

fieldmaps, and co-registered to the structural scan by minimizing normalized mutual informa-

tion. Note that in accordance with HCP guidelines for multiband fMRI we did not perform

slice-time correction [66]. After co-registration, EPIs were spatially normalized to MNI space

using parameters obtained from the segmentation of T1 images into grey and white matter,

then smoothed with a 4mm FWHM Gaussian smoothing kernel. Smoothed data were used for

the GLM on BOLD only; unsmoothed data were used for the brain-based modelling.

Statistical analyses

All fMRI pre-processing, participant exclusion criteria, behavioral, imaging and computational

analyses were comprehensively pre-registered while data collection was ongoing (osf.io/ce9tp/

) but before it was completed. This analysis plan was determined based on pilot data from four

participants, and was written blind to the data included in this manuscript. Analyses that devi-

ate from the pre-registered analysis plan are marked as “exploratory”. Pre-registered analyses

are described as “confirmatory”. Data are freely available to download at https://osf.io/2zqfu.

fMRI statistical analysis (confirmatory)

At the participant level, BOLD responses obtained from the smoothed images were time-

locked to video onset. BOLD responses were modelled by convolving the canonical hemody-

namic response function with a boxcar function (representing video presentation) with width

equal to video duration. Videos of office and city scenes were modelled using one dummy-

coded regressor each. Each was parametrically modulated by normalized bias.

Data from each run was entered separately. No band-pass filter was applied. Instead, low-

frequency drifts were regressed out by entering white matter drift (averaged over the brain) as

a nuisance regressor [57,67]. Nuisance regressors representing the experimental run and six

head motion parameters were also included in the first level models. Because of the fast TR,

models were estimated using the ‘FAST’ method implemented in SPM.

Comparisons of interest were tested by running four one-sample t-tests against zero at the

participant level for each variable of interest (video scenes, office scenes, and their normalized

bias parametric modulator). Next, group-level F tests were run on those one-sample contrast

images to test for effects of video type and the interaction between video type and normalized

bias slope. A one-sample t-test against zero at the group level tested the slope of the normalized

bias-BOLD relationship. All group-level contrasts were run with peak thresholds of p< .001

(uncorrected) and corrected for multiple comparisons at the cluster level using the FWE

method. Clusters were labelled using WFU PickAtlas software [68,69].

Model-based fMRI (confirmatory)

Our key prediction was that subjective duration estimates (for these silent videos) arise from

the accumulation of salient (perceptual) events detected by the visual system, particularly

within higher-level regions related to object processing. We tested this by defining a (pre-regis-

tered) three-layer hierarchy of regions to represent core features of the visual system:

Layer 1 was defined as bilateral V1, V2v and V3v, Layer 2 was defined as bilateral hV4, LO1

and LO2, and Layer 3 as bilateral VO1, VO2, PHC1 and PHC2 (clusters are depicted in Fig 3).
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For each layer, masks were constructed by combining voxels from each area, using the atlas

presented in [70].

To determine events detected by the visual system over the course of each video, we

extracted raw voxel activity for each TR in each layer from unsmoothed, normalized EPIs.

Then, for each voxel v, change was defined as the Euclidean distance between BOLD activation

xv at volume TR and TR-1. The amount of change detected by the layer at any time point,

denoted ΔTR, was then given by summing the Euclidean distances over all voxels such that:

DTR ¼
X

v
jXTR;v � XTR� 1;vj ð2Þ

This process furnishes one value per layer for each TR of each trial for each participant. The

next step was to categorize each value as a “salient” event or not and convert it to an estimate

of duration using an event detection, accumulation and regression model, as presented in

Roseboom et al. [6]. Before converting accumulated salient changes to units of seconds, we

first pooled participants’ data by z-scoring the summed events ΔTR within each participant and

layer. Pooling was performed to increase statistical power of subsequent regression analyses.

Then, for each trial, TR-by-TR categorization of ΔTR was achieved by comparing against a cri-

terion with exponential decay, corrupted by Gaussian noise ε:

WTR ¼ ae� TR þ ε; ε � N ð0; 0:05Þ ð4Þ

We chose the same criterion function used in [6]: while they found that constant (not

decaying) thresholds can also produce human-like biases in duration estimates, the decaying

threshold reflects the intuitive notion that classification of what is salient should adjust with

fluctuations in the environment.

Only the parameter a took different values in each layer (see S2 Table): it took larger values

at higher layers. In this way, the thresholds could accommodate different types of scene, e.g.

scenes with more high-level configural changes, or scenes with more low-level changes. The

criterion decayed with each TR until either an event was classified as salient or until the video

finished, after each of which the criterion reset to its starting (i.e. maximal) point. Importantly,

because the summed Euclidean distances ΔTR were z-scored, the criterion has meaningful

units corresponding to SDs above or below the mean. The parameter a corresponds to the

largest z-score above which a change was classified as salient, that is, the criterion’s most con-

servative point. To account for potential head-motion artefacts, criterion updating ignored

volumes where ΔTR was greater than 2.5 (i.e. more than 2.5 SDs from the mean).

The final modelling step was to convert the BOLD-determined accumulation of salient

events into raw duration judgements (in seconds). This was achieved via Epsilon-support vec-

tor regression (SVR), implemented on python 3.0 using sklearn [71], to regress accumulated

events in each of the three layers onto the duration of the presented video.

To evaluate whether the model could reproduce subjective reports of time from partici-

pants’ BOLD activation, we converted the trial-by-trial model predictions (raw duration judge-

ments in seconds) to normalized bias. These were then compared to a human “super-subject”:

participants’ duration judgements were z-scored within participants, then all participant data

were pooled and converted to normalized bias. We created a super-subject to mirror the data

pooling performed before training our SVR.

Trial-by-trial normalized bias values were compared across model and human using linear

regression, fitting the model:

behaviourt ¼ b0 þ b1modelt ð5Þ
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To test our a priori hypothesis that the model trained on visual cortex salient events posi-

tively correlates with subjective time, a (one-tailed) p-value for β1 was calculated via bootstrap-

ping, shuffling the behavioural data and refitting the regression line 10,000 times.

Control models (confirmatory)

To distinguish our proposal from the more trivial suggestion that the neural dynamics of any

cortical hierarchy (or any neural ensemble) can be used to approximate elapsed clock time,

simply because they are dynamic, we created two control models. While these models should

all approximately reproduce clock time, the reproduced estimates should not be predictive of

the specifically subjective aspects human participants’ duration estimates (i.e., their biases).

Analyses for these control hierarchies followed the steps above for the primary model, though

based on different sensory regions.

The first control hierarchy was auditory cortex, which has previously been implicated in

time perception but whose involvement in duration judgements should not be driven by visual

stimuli, as in our study. Layers 1 and 2 were defined as Brodmann Area (BA) 41 and 42 respec-

tively, both of which are located in primary auditory cortex. Layer 3 was posterior BA22 (supe-

rior temporal gyrus/Wernicke’s Area).

The second control hierarchy was somatosensory cortex, which on our model should not

be involved in duration judgements based on visual stimuli. Layer 1 was set as posterior and

anterior BA 3, and layers 2 and 3 were set as BA 1 and BA 2 respectively. These Brodmann

areas correspond to the primary somatosensory cortex.

Masks for these two control analyses were constructed using WFU PickAtlas atlases

[68,69]. As for our empirical analyses using visual cortex, for each of the two controls we esti-

mated the relationship between the trial-by-trial normalized bias based on the model’s predic-

tions and based on z-scored participant data by fitting a linear regression line.

To test whether the visual cortex model out-performed the somatosensory and auditory

cortex models we compared their log-likelihoods, obtained from the Matlab function fitlm (see

S4 Fig). This evaluation of model performance was not pre-registered.

Exploratory modelling

We also ran an exploratory (i.e. not pre-registered) set of models. This was identical to the pre-

registered analysis plan, apart from the following differences:

First, we transformed voxel-wise BOLD activation X to signed (i.e. raw) rather than

unsigned changes:

D
0

TR ¼
X

v
ðXTR;v � XTR� 1;vÞ ð3Þ

Using SVR as before, for each hierarchy we obtained model-predicted duration estimates in

seconds. To avoid pooling participants’ reports together, human judgements were not standard-

ized. Instead, for each of our 40 participants we computed human and model normalized biases

from the human reports and model predictions associated with the set of videos associated with

each participant. In other words, normalized bias was computed ‘within-participant’.

To test the association between video-by-video human and model bias while accounting

within-participant variability we used a linear mixed model approach. Using R with the lmer
and car packages, we fit the following random-intercept model:

biashuman � 1þ biasmodel þ ð1jparticipantÞ ð6Þ
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To determine whether model (biasmodel) and human (biashuman) biases correlate, we used a

chi-squared test (from the car function Anova) to compare Eq 5 to a reduced model without

the fixed effect:

biashuman � 1þ ð1jparticipantÞ ð7Þ

To test the effect of video type (or scene) on model normalized bias, we fit the model:

biashuman � 1þ sceneþ ð1jparticipantÞ ð8Þ

Again, we used a chi-squared test to compare Eq 8 to the reduced model that did not

include scene (Eq 7)

To test whether the model trained on visual cortex events outperformed the somatosensory

and auditory models, we compared the difference in AIC between the main (Eq 6 and Eq 8)

and control (Eq 7) models for each hierarchy (see S5 Fig).

Robustness analysis (exploratory)

To examine the robustness of our exploratory analysis to criterion parameters we reran the

above analysis pipeline under varying values of ϑmin and ϑmax. For layer 1 (where there should

be most salient changes), ϑmin took 50 linearly-spaced values between 3 SD and 0 SD below the

mean. ϑmax independently took 50 linearly-spaced values between 0 SD and 2.5 SD above the

mean. We chose 2.5 SD because this was the highest value z-scored BOLD could take before

being discarded as a head motion artefact. For each pair of ϑmin and ϑmax values for layer 1, the

lower/upper bounds for layer 2 were ϑmin + 0.5 and ϑmax = 0.5 respectively. For layer 3, they

were ϑmin + 1 and ϑmax + 1 respectively.

With these criteria, we obtained 250 datasets for each ROI. For each ROI and dataset, we

tested the association between model-predicted bias and human bias by fitting the regression

model:

biashuman � b0 þ b1 � biasmodel ð9Þ

Heat maps depicted in Fig 7 correspond to one-tailed p-values for β1. This robustness analy-

sis was not pre-registered.

Artificial classification network-based modelling

Frames from each video presented during the experiment were fed into the model presented

in Roseboom et al [6]. Instead of accumulating events based on changes in BOLD amplitude,

salient events in the video frames themselves were detected by analyzing activity in an artificial

image classification network (AlexNet)[16]. We used nine network layers (input, conv1,

conv2, conv3, conv4, conv5, fc6, fc7, and output, where fc corresponds to a fully connected

layer and conv to the combination of a convolutional and a max pooling layer). Node-wise

Euclidean distances for each node were computed, then summed over all nodes in the layer

giving one value per video frame and layer. Each value was classified as a salient event or not

using the same exponentially decaying criterion as before (see S3 Table for criterion values).

Finally, accumulated salient events were mapped onto units of seconds using multiple linear

regression.

Supporting information

S1 Fig. Results from confirmatory GLM on BOLD (significant clusters only). A Higher

BOLD for city than office scenes: R lingual gyrus; bilateral midcingulate area; R insula; bilateral
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SFG. B Higher BOLD for office than city scenes: R precuneus; bilateral precentral gyrus; L

MFG; bilateral cerebellum; L paracentral lobule; R SFG. C Positive correlation with normalized

estimation bias: bilateral precentral gyrus; L SMA; R superior occipital gyrus. D Negative cor-

relation with normalized estimation bias: L angular frontal gyrus; L MFG; L posterior cingu-

late. See also S2 Table.

(TIF)

S2 Fig. Brain-based modelling on the pre-registered pipeline. (A) Strong positive associa-

tion between presented video durations and the z-scored reports we used to build the super-

subject. (B) Normalized estimation bias computed on pooled (‘super-subject’) behavioral data,

as a function of video scene. (C-E) Association between presented video duration and model-

predicted durations separately for visual, auditory and somatosensory Euclidean Distance

models respectively. (F-H) Mean normalized bias of the visual, auditory and somatosensory

models respectively, for office versus city scenes. Dot colors in the scatterplots represent differ-

ent participants. Error bars in the bar charts represent SEM.

(TIF)

S3 Fig. Normalized bias predicted by models trained on salient events (Euclidean distance) in
(A) visual, (B) auditory and (C) somatosensory hierarchies. On the x-axis is the 25 bins repre-

senting 25 quantiles of human super-subject bias, and on the y-axis is mean model bias for the

trials that fell within in the respective bins. Error bars represent +/- SEM.

(TIF)

S4 Fig. Model fits for the regression of predicted durations onto presented durations

(Euclidean Distance models), expressed as log-likelihood ratios. For each of the visual,

auditory and somatosensory models, we regressed the model-predicted biases onto the

human super-subject’s biases. To compare the performance of the three regressions we com-

pared their log-likelihoods to the null (intercept) model (higher values indicate better model

fits). The visual cortex regression outperforms the other two, as indicated by its higher log-like-

lihood ratio.

(TIF)

S5 Fig. Model fits for the linear mixed models (Signed Difference analyses). Left. To test

whether the visual, auditory or somatosensory models generated predicted durations that dis-

criminated video type, we ran linear mixed models (LMMs) predicting model biases from the

fixed effect video scene (city vs office). These were compared to control LMMs that did not

have this fixed effect, using the log-likelihood ratio (LLR). The visual cortex LMM outper-

formed the auditory and somatosensory cortex LMMs as indicated by the greater LLR. Right.

For each of the visual, auditory and somatosensory models, we constructed an LMM with

human bias as the outcome and the model-predicted biases as a fixed effect. These LMMs

tested the video-by-video correlations between predicted and human bias. These LMMs were

compared to control models that did not have the model-predicted bias as a fixed effect, using

LLR. The visual cortex LMM outperformed the auditory and somatosensory cortex LMMs, as

indicated by the greater LLR.

(TIF)

S6 Fig. Dissociation between human/fMRI-model duration estimates and stimulus proper-

ties. We identified pairs of trials from the same participant, but from different video categories

for which (A) human reports were very similar (the log ratio did not exceed 0.025) or (B) the

reports predicted by the visual cortex model were very similar (the log ratio did not exceed

0.025). In both panels A and B, a dot represents a pair of trials. Dot colour represents the

PLOS COMPUTATIONAL BIOLOGY Predictions of subjective time from human BOLD

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010223 July 7, 2022 23 / 28

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010223.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010223.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010223.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010223.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010223.s006
https://doi.org/10.1371/journal.pcbi.1010223


participant. For each pair, differences in report (human in panel A or model-predicted in

panel B) are plotted against differences in the physical video differences, here quantified as the

frame-to-frame Euclidean distance averaged over pixels. The difference in report/Euclidean

distance between the two trials in a pair is expressed as log(city/office). These figures show that

there were many trials pairs in our data where, despite being very different in terms of the

pixel differences (up to 100s of times), human duration estimations (A) and visual cortex-

based model predictions (B) were almost identical.

(TIF)

S1 Text. Supplementary results. Pixel-wise changes in stimulation are dissociable from both

human and model-predicted report.

(DOC)

S1 Table. Definition of hierarchies for each sensory cortex model.

(PDF)

S2 Table. Criterion parameters for each hierarchical layer of the sensory cortex models.

(PDF)

S3 Table. Criterion parameters for the artificial network model.

(PDF)

S4 Table. Significant clusters revealed by confirmatory GLM on BOLD.

(PDF)
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