',\' frontiers

in Aging Neuroscience

REVIEW
published: 09 March 2022
doi: 10.3389/fnagi.2022.831807

OPEN ACCESS

Edited by:
Patrizia Giannoni,
University of Nimes, France

Reviewed by:

Toni R. Pak,

Loyola University Chicago,
United States

Michael Garratt,

University of Otago, New Zealand

*Correspondence:
Lisa Mosconi
lim2035@med.cornell.edu

T These authors have contributed
equally to this work

Specialty section:

This article was submitted to
Alzheimer’s Disease and Related
Dementias,

a section of the journal

Frontiers in Aging Neuroscience

Received: 08 December 2021
Accepted: 07 February 2022
Published: 09 March 2022

Citation:

Jett S, Malviya N, Schelbaum E,
Jang G, Jahan E, Clancy K, Hristov H,
Pahlajani S, Niotis K, Loeb-Zeitlin S,
Havryliuk Y, Isaacson R, Brinton RD
and Mosconi L (2022) Endogenous
and Exogenous Estrogen Exposures:
How Women'’s Reproductive Health
Can Drive Brain Aging and Inform
Alzheimer’s Prevention.

Front. Aging Neurosci. 14:831807.
doi: 10.3389/fnagi.2022.831807

Check for
updates

Endogenous and Exogenous
Estrogen Exposures: How Women’s
Reproductive Health Can Drive Brain
Aging and Inform Alzheimer’s
Prevention

Steven Jett't, Niharika Malviya't, Eva Schelbaum?, Grace Jang', Eva Jahan’,
Katherine Clancy’, Hollie Hristov', Silky Pahlajani’?, Kellyann Niotis’,

Susan Loeb-Zeitlin3, Yelena Havryliuk?, Richard Isaacson’, Roberta Diaz Brinton*® and
Lisa Mosconi®2*

! Department of Neurology, Weill Cornell Medical College, New York, NY, United States, ? Department of Radiology, Weill
Cornell Medical College, New York, NY, United States, ° Department of Obstetrics and Gynecology, Weill Cornell Medical
College, New York, NY, United States, * Department of Pharmacology, University of Arizona, Tucson, AZ, United States,

> Department of Neurology, University of Arizona, Tucson, AZ, United States

After advanced age, female sex is the major risk factor for late-onset Alzheimer’s
disease (AD), the most common cause of dementia affecting over 24 million people
worldwide. The prevalence of AD is higher in women than in men, with postmenopausal
women accounting for over 60% of all those affected. While most research has
focused on gender-combined risk, emerging data indicate sex and gender differences
in AD pathophysiology, onset, and progression, which may help account for the higher
prevalence in women. Notably, AD-related brain changes develop during a 10-20 year
prodromal phase originating in midlife, thus proximate with the hormonal transitions
of endocrine aging characteristic of the menopause transition in women. Preclinical
evidence for neuroprotective effects of gonadal sex steroid hormones, especially
17p-estradiol, strongly argue for associations between female fertility, reproductive
history, and AD risk. The level of gonadal hormones to which the female brain
is exposed changes considerably across the lifespan, with relevance to AD risk.
However, the neurobiological consequences of hormonal fluctuations, as well as that of
hormone therapies, are yet to be fully understood. Epidemiological studies have yielded
contrasting results of protective, deleterious and null effects of estrogen exposure
on dementia risk. In contrast, brain imaging studies provide encouraging evidence
for positive associations between greater cumulative lifetime estrogen exposure and
lower AD risk in women, whereas estrogen deprivation is associated with negative
consequences on brain structure, function, and biochemistry. Herein, we review the
existing literature and evaluate the strength of observed associations between female-
specific reproductive health factors and AD risk in women, with a focus on the role of
endogenous and exogenous estrogen exposures as a key underlying mechanism. Chief
among these variables are reproductive lifespan, menopause status, type of menopause
(spontaneous vs. induced), number of pregnancies, and exposure to hormonal therapy,
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including hormonal contraceptives, hormonal therapy for menopause, and anti-estrogen
treatment. As aging is the greatest risk factor for AD followed by female sex,
understanding sex-specific biological pathways through which reproductive history
modulates brain aging is crucial to inform preventative and therapeutic strategies for

AD.
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INTRODUCTION

Alzheimer’s Disease and the Importance

of Being Female

Alzheimer’s disease (AD) is the most common cause of dementia
and the sixth leading cause of death in Western societies, affecting
over 24 million patients worldwide (Alzheimer’s Association,
2021). Today, AD remains the only major cause of mortality
without an effective disease-modifying treatment. Given lack
of therapeutics to prevent, delay or reverse late-onset AD, the
number of persons living with AD dementia is projected to
nearly triple by 2050 (Alzheimer’s Association, 2021), placing
a considerable burden on public health systems. The limited
success of disease-modifying trials is likely due to testing of
potential therapeutic agents too late in disease course, and to
an incomplete understanding of the complex pathophysiological
mechanisms underlying AD (Andrieu et al., 2015).

These shortcomings are attributable, at least in part, to the
fact that most research has ignored the existence of biological
sex differences in AD and focused on sex-aggregated risk. Given
increasing evidence that AD prevalence, symptomatology, and
risk profiles vary by sex (Mielke et al., 2014; Snyder et al., 2016;
Ferretti et al.,, 2018; Rahman et al, 2019), a possible strategy
to stem the AD epidemic is earlier intervention coupled with
sex-specific interventions.

Female sex is the second most significant risk factor for AD
after advanced age (Farrer et al., 1997). AD affects more women
than men, with a nearly 2:1 ratio in many countries (Alzheimer’s
Association, 2021), and with postmenopausal women accounting
for over 60% of all those affected (Brookmeyer et al., 1998). This
disparity may be a consequence of women’s relatively longer life
expectancy (Nebel et al., 2018), coupled with selective survival
of men with higher cardiovascular health (Chéne et al., 2015).
However, evidence against this hypothesis stems from multiple
sources indicating a greater age-adjusted risk of AD in women
independent of survival rates (Gao et al., 1998; Andersen et al.,
1999; Lobo et al., 2000; Carter et al., 2012), as well as faster
rates of conversion from mild cognitive impairment (MCI) to AD
irrespective of age and educational level (Holland et al., 2013; Lin
and Doraiswamy, 2014; Tifratene et al., 2015; Gamberger et al,,
2017). Women are also more likely to develop amnestic MCI,
often a prodromal stage to AD dementia (Petersen, 2004), while
men exhibit a higher incidence of non-amnestic MCI, which
is more closely associated with non-AD dementias (Caracciolo
et al., 2008; Roberts et al., 2012).

Sex differences in cognitive functions affected by AD have
also been documented, as men tend to have higher visuospatial

and motor coordination scores than women (McCarrey et al.,
2016), while women exhibit higher verbal memory scores
than men even after a diagnosis of early AD (Sundermann
et al., 2016a,b; Rentz et al., 2017). There is concern that the
female advantage on memory testing might mask AD-related
brain changes, resulting in women being diagnosed at a later
stage than their male counterparts. Support to this hypothesis
comes from AD biomarker studies, including biomarkers of AD
pathology, such as AB accumulation on PET imaging and in
CSF; biomarkers of neurodegeneration, including biomarkers of
neuronal injury and degeneration such as increased CSF tau
levels and structural MRI measures of cerebral atrophy and gray
matter (GM) volume; and biomarkers of synaptic dysfunction,
such as lower cerebral glucose metabolism (CMRglc) on 2-deoxy-
2-[18F]fluoro-d-glucose positron emission tomography (FDG
PET) (Jack et al., 2013). Generally, Ap biomarkers are regarded
as providing the highest specificity for AD, whereas biomarkers
of neurodegeneration are not specific to AD but show higher
sensitivity to AD-related changes, while also correlating with
cognitive declines (Jack et al, 2013). Where AB biomarkers
are specific to AD, CMRglc and GM volume are indirect
measurements of synaptic and neuronal loss (Bobinski et al.,
2000). Nonetheless, combined imaging and autopsy studies show
good correlation between ante-mortem FDG-PET diagnosis and
post-mortem confirmation of AD (Hoffman et al., 2000), and
between the degree of GM volume loss and Braak staging (Jack
et al., 2002; Silbert et al, 2003). Additionally, reductions in
CMRglc and GM volume were shown to precede and correlate
with declines in cognitive performance along the continuum
from normal cognition to MCI to AD dementia, and predict
conversion to dementia with high accuracy (de Leon et al., 2001;
Drzezga et al., 2003; Mosconi et al., 2004, 2008, 2009; Jack et al.,
2013). Biomarker studies, especially by means of brain imaging
techniques, indicate that female AD patients exhibit greater
rates of neurodegenerative decline, as evidenced by increased
hippocampal atrophy and greater neurofibrillary tangle burden,
relative to male AD patients with the same level of brain amyloid-
B (AB) load, with no difference in lifetime AD risk (Barnes
et al., 2005; Buckley et al., 2018). Non-demented elderly women
with biomarker-determined AP positivity also show more rapid
hippocampal volume loss than men with similar pathological
burden (Hua et al., 2010; Skup et al., 2011; Ardekani et al., 2016;
Koran etal., 2017). As reviewed below, cognitively normal midlife
women at risk for AD (e.g., family history of late-onset AD
and/or heterozygous or homozygous for APOE-4 allele) exhibit
increased indicators of AD risk as compared to age-controlled
men, including higher A load, lower CMRglc, and lower GM
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and white matter (WM) volume (Mosconi et al., 2017a,b, 2018,
2021; Rahman et al., 2020).

Sex differences in the effects of apolipoprotein E (APOE)
epsilon 4 allele, the strongest genetic risk factor for late-onset
AD, have also been documented. The APOE-4 allele has been
associated with a younger age at AD onset, and increased Af
deposition, with greatest risk observed in those carrying two
alleles (for recent review, see Yamazaki et al., 2019; Husain
et al., 2021). Female APOE-4 carriers are more likely than male
carriers to develop AD, with a nearly 4- and 10-fold in women
with one and two APOE-4 alleles, respectively, whereas men
exhibit essentially little increased risk with one APOE-4 allele
and a fourfold increased risk with two APOE-4 alleles (Farrer
et al., 1997; Altmann et al,, 2014; Ungar et al., 2014). Women
carrying the APOE-4 genotype also exhibit higher A deposition
(Mosconi et al., 2017b), reduced brain connectivity (Fleisher
et al.,, 2005; Damoiseaux et al., 2012; Mosconi et al., 2017b),
greater brain hypometabolism, hippocampal atrophy and cortical
thinning (Fleisher et al., 2005; Altmann et al., 2014; Sampedro
et al., 2015), and greater levels of tau protein in CSF (Altmann
et al., 2014; Hohman et al., 2018) as compared to genotype-
controlled men.

Overall, while age and lifespan certainly play a role, there
is increasing recognition that female sex, along with additional
genetic, social, and lifestyle factors, is an important risk factor
for AD (Mielke et al., 2014; Ferretti et al., 2018; Rahman
et al., 2019). These observations have spurred renewed interest
in investigating sex differences in the biological mechanisms
underlying AD. Identifying endophenotypes of AD risk that
emerge early in the course of the disease and that differ by sex
is vital to clarify the mechanistic pathways linking female-specific
physiological processes to AD, and to identify sex-specific targets
for risk reduction and therapeutic development.

From Bedside to Bench

The pathophysiological process of AD, including accumulation
of AP plaques, neurofibrillary tangles, neuronal and synaptic
loss, begins 10-20 years prior to clinically detectable symptoms
(Sperling et al., 2011). Therefore, the prodromal period starts as
early as midlife, which coincides with the hormonal transitions
of endocrine aging characteristic of the menopause transition in
women (Brinton et al., 2015).

The menopause transition is a complex neuro-endocrine
transitional state marked by changes in gonadal sex steroid
hormones, especially 17p-estradiol, following progressive
oocyte depletion. While menopause is primarily associated with
reproductive senescence, it has wide ranging neurological
consequences  including changes in  thermoregulation
manifesting as hot flashes, circadian rhythm disruption
manifesting as sleep disturbances, mood changes, as well as
memory and attention complaints (Brinton et al., 2015). Many of
these symptoms are risk factors for AD in turn (Livingston et al.,
2020). The emergence of multiple AD risks in midlife, both at the
neurophysiological level and at the clinical symptomatic level,
are consistent with menopause being a tipping point for AD risk
in later life (Brinton etal., 2015; Scheyer et al., 2018; Rahman
etal., 2019).

A burgeoning array of preclinical studies has provided
evidence for neuroprotective effects of estrogens, and identified
life-time estrogen exposure as a modulator of cognitive aging
in females (Morrison et al., 2006; Brinton, 2008; Brinton
et al, 2015). Translational neuroimaging studies of midlife
women revealed emergence of AD endophenotypes, including
greater AP burden, glucose hypometabolism, and gray (GM)
and white matter (WM) volume loss, during the menopause
transition (Mosconi et al., 2017a,b, 2018, 2021; Rahman et al.,
2020). Women undergoing surgically induced menopause due to
salpingo-oophorectomies also exhibit increased neuropathology
and imaging biomarker indicators of AD (Bove et al., 2014)
at an even younger age (Zeydan et al., 2019). This suggests
that estrogen deprivation following menopause may trigger or
exacerbate a pre-existing disposition for AD (Morrison et al.,
2006; Brinton, 2008; Brinton et al., 2015; Rahman et al., 2019).

Even before menopause, the level of gonadal hormones
to which the female brain is exposed changes considerably
across the lifespan. Estrogen levels in women can fluctuate
widely during reproductive events, and in response to both
endogenous and exogenous estrogen exposures (Davis et al.,
2015). Endogenous levels of estrogen vary based on several
factors, including menopause status, age at menarche, age at
menopause, the reproductive window, number of pregnancies
and children, and gynecological surgeries. Exogenous levels of
estrogen vary chiefly due to use of hormonal contraceptives (HC),
menopause hormonal therapy (HT), and anti-estrogen therapies
for neoplastic conditions such as ovarian and breast cancers.
Gender-affirming therapy can also include hormone treatment
(Winter et al., 2016).

Brain modifications resulting from reproductive health
history events as related to estrogen exposure and their
implications for cognitive aging and AD risk are the focus of this
review. Herein, we evaluate the existing literature and assess the
strength of observed associations between reproductive history
factors and AD, with a focus on the role of estrogen exposure as
an underlying mechanism. We conducted a literature search on
the PubMed Medline and Web of Science databases for papers
(excluding case-reports) published between the years 1985 and
2021, in English language, using search terms for exposures
[“estrogen”, “hormones”, “menopause”, “perimenopause’,
“menopause transition”, “reproductive history”, “reproductive
span”, “menarche”, “parity”, “children”, “pregnancies’] and
for outcomes [“Alzheimer’s disease”, “dementia”, “cognition”,
“cognitive performance”] in the title or abstract. We also
provided a general overview of hormonal treatments’ effects on
AD risk. Knowledge of reproductive history effects on AD risk
is critical to informing clinicians on management of modifiable
factors for cognitive decline and for development of therapeutic
targets that modify estrogenic risk factors.

ESTROGEN FUNCTION IN BRAIN

Besides their obvious role in reproduction, sex hormones
are known regulators of neuronal morphology, number, and
function, which makes endocrine aging an important contributor
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to brain aging (McEwen, 1981; Behl, 2002; Arevalo et al., 2015).
The transition to menopause is marked by radical changes in
the production and activity of sex steroid hormones in the body
and brain (McEwen et al.,, 1997). As such, changes in gonadal
hormones, primarily 17fB-estradiol, the most potent form of
estrogen and the primary circulating hormone during a woman’s
reproductive years, have been proposed as major contributors to
the higher risk of AD in women (Morrison et al., 2006; Brinton,
2008; Brinton et al., 2015; Rahman et al., 2019).

Estrogen is synthesized primarily in the ovaries, where it
regulates the menstrual cycle. However, it is also synthesized
in several non-reproductive tissues, including brain, liver, and
adipose fat (Cui et al, 2013). While peripheral estrogen can
cross the blood brain barrier and act on central estrogen
receptors located on neurons and glia, much of the estrogen
present in brain is synthesized locally (Cui et al., 2013).
During development, adult life, and aging, estradiol exerts
multiple regulatory actions in the central nervous system (CNS),
which are mediated by direct effects on neurons and glial
cells. Estrogenic input on neurons influences higher cognitive
function, pain, fine motor skills, mood, susceptibility to seizures,
and neuroprotection in response to brain damage (McEwen
et al., 2001; Behl, 2002; McEwen, 2002; Cui et al., 2013; Arevalo
et al,, 2015). On glial cells, including oligodendroglia, astroglia,
and microglia, estrogen is crucial for regulation of neuronal
metabolism and activity as well as synaptic transmission and
plasticity (Micevych et al., 2010).

Estrogen signaling in the brain activates multiple functions
through a network of receptors expressed in select cellular
populations (Li et al, 2014). There are two broad classes
of estrogen receptors: classical nuclear receptors, composed
of alpha and beta subtypes (ERa and ERP), and G-protein
coupled estrogen receptors (GPER). ERa and ERf are ligand-
activated transcription factors that dimerize and translocate
to the nucleus after ligand binding (Mannella and Brinton,
2006; Rettberg et al., 2014). Once in the nucleus, they bind to
estrogen response elements (EREs) in the promoters of target
genes to regulate transcription and gene expression (Bjornstrom
and Sjoberg, 2005). Membrane receptor GPERs also regulate
transcription of target genes, but through indirect means via
MAPK and PI3K activation and cAMP production (Li et al,
2014). The chief distinction is that ERa and ERP lead to
transcription of late response genes while GPER mediate many
of the rapid responses of estradiol by means of fast signaling
transcriptional activation. All types of estrogen receptors are
selectively distributed throughout the brain and occur in
specific nuclei and cell types. ERa and ERp are co-expressed
in the hypothalamus, amygdala, and hippocampus (Osterlund
and Hurd, 2001; Hedges et al., 2012; Barth et al, 2015).
However, ERa is predominant in hypothalamic nuclei that
control reproduction, sexual behavior, and appetite (Osterlund
and Hurd, 2001; Hedges et al., 2012; Barth et al., 2015), while
ERP is predominant in non-reproductive hypothalamic nuclei as
well as in dorsal raphe nuclei, basal forebrain, prefrontal cortex,
various temporal and parietal regions, posterior cingulate, and
cerebellum (Mitra et al., 2003; Sugiyama et al., 2010). While
ERa and ERP both contribute to the neuroprotective effects

of estrogen, ERP plays a larger role than ERa in supporting
cognition by mediating neural plasticity, regulating brain-
derived neurotrophic factor (BDNF), and promoting learning
and memory (Zhao et al, 2015), whereas ERa is the primary
mediator of steroid induced neuroprotection, with known effects
on neurovascular function and myelin repair (Dubal et al., 2001;
Duncan, 2020). GPER receptors are also widely distributed in
brain, and most concentrated in hippocampus and amygdala
(Hadjimarkou and Vasudevan, 2018).

There is vast preclinical literature documenting that estradiol
is neuroprotective and neurotrophic, with anti-inflammatory
and vasodilating effects, especially in brain regions responsible
for higher-order cognitive functions, including hippocampus,
cerebral cortex and striatum (Brann et al., 2007). Estrogen is
a “systems biology regulator” (e.g., a factor that regulates the
frequency, rate or extent of interrelated biological processes) of
neuronal function and survival, supporting neuronal plasticity
through genomic and non-genomic actions (McEwen et al.,
1997; Brinton et al, 2015; Lai et al., 2017), increases in
spinogenesis and synaptogenesis (Hara et al, 2015), cell
proliferation (Goodman et al., 1996), and gene expression
(Woolley and McEwen, 1992; Brinton, 2008; Yin et al., 2015).
In adult female rats, synaptic density of hippocampal neurons
in the CAl region were correlated with estradiol during
the 5-day estrous cycle, demonstrating that fluctuations in
estradiol levels directly mediate short-term synaptic density
(Woolley and McEwen, 1992).

Further, mechanistic analyses led to the discovery that
estrogen functions as a master regulator of the brain bioenergetic
system, acting as a critical signaling molecule involved in glucose
uptake and metabolism, mitochondrial respiration, and ATP
generation (Rettberg et al., 2014; Brinton et al., 2015). Since
glucose is the primary physiological substrate for ATP generation
in the brain, energy production is at risk if reduction in
glucose metabolism occurs. Several lines of research show that
estrogen plays a major role in regulating several mitochondrial
pathways, and that loss of estrogen precipitates mitochondrial
dysfunction (Brinton et al., 2015). Further, estrogen promotes
aerobic glycolysis and the citric acid cycle (TCA) by increasing
the activity of glycolytic and TCA enzymes (Rettberg et al., 2014),
pyruvate dehydrogenase (PDH), and ATP synthase (Nilsen et al.,
2007). As a result, the menopausal transition in female animals is
marked by a bioenergetic deficit characterized by downregulation
of glucose metabolic pathways, in particular glucose transporter
3 (GLUT3), pyruvate dehydrogenase 1 (PDHI1), and oxidative
phosphorylation (Yao et al., 2011, 2012; Ding et al., 2013; Yin
et al., 2015). Concomitant reductions in CMRglc as detected by
FDG-PET are apparent in clinical analyses of oophorectomized
women as well as those undergoing spontaneous menopause
(Mosconi et al., 2017a,b, 2018, 2021; Rahman et al., 2020).
Glucose metabolic decline in brain is also found during the
prodromal phase of AD (Mosconi, 2005) and can activate
inflammatory processes involved in AD pathophysiology (Mishra
and Brinton, 2018; Mishra et al., 2020; Wang et al., 2020a,b).
Collectively, these studies implicate a shift in the bioenergetic
system of the brain during the menopause transition as a trigger
for AB deposition, along with increased fatty acid catabolism, and
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declines in mitochondrial activity and synaptic plasticity (Liu F.
et al., 2008; Brinton, 2009; Yao and Brinton, 2012), which could
serve as early initiating mechanisms for AD.

These data are consistent with evidence that 17f-estradiol
promotes non-amyloidogenic processing by increasing secretion
of amyloid precursor protein (APP) and decreasing AP
production (Xu et al, 1998; Manthey et al, 2001; Nord
et al, 2010). Estrogen has been shown to upregulate AP
-degradation enzymes such as metalloproteinases-2 and
-9 (Merlo and Sortino, 2012), neprilysin (Liang et al,
2010), and insulin-degrading enzyme (IDE) (Zhao et al,
2011). Further, 17B-estradiol reduces levels of both induced
and naturally occurring hyperphosphorylated tau protein
(Alvarez-de-la-Rosa et al., 2005; Liu X. A. et al., 2008). On the
other hand, estrogen loss following oophorectomy increases
inflammation, tau hyperphosphorylation, accumulation of AP
plaques and Ap-induced neurotoxicity in transgenic mouse
models of AD (Li et al., 2000; Levin-Allerhand et al., 2002; Yue
et al., 2005; Nilsen et al., 2006).

ENDOGENOUS ESTROGEN EXPOSURES

Menopause

Physiologically, menopause represents the permanent cessation
of ovulation and menstrual cycles. It is defined retrospectively,
after 12 months of amenorrhea without obvious pathologic
cause. Menopause occurs in stages (Santoro, 2005). The
early menopause transition is associated with lower ovarian
inhibin secretion, which in turn, reduces the restraint on
both the hypothalamus and pituitary, resulting in elevated
follicle-stimulating hormone (FSH) and luteinizing hormone
(LH) secretion, while ovarian estradiol secretion is normal
or at times, elevated (Santoro, 2005). The late menopause
transition (perimenopause) is characterized by periods of
estrogen withdrawal, with fewer ovulatory cycles and prolonged
hypogonadism, which ultimately lead to the final menstrual
period (FMP) and a menopause diagnosis (Santoro, 2005).
Production of other hormones such as androgens and growth
factors also decline during perimenopause (Harlow et al., 2012).
Five to 10 years after the FMP, hormonal levels become more
stable with elevated gonadotropin secretion (Hall and Gill, 2001).

All women go through menopause in their lives, either
through a natural midlife aging process or via surgical or
pharmacological intervention. While the average lifespan has
been steadily increasing over the past century, the average age
at which reproductive senescence occurs has remained relatively
constant between 45 and 55 years of age. Therefore, including the
prepubescent years, women live at least a third of their lives in a
hypogonadism state, and that number increases to up to half for
women with surgical menopause.

One in every eight women in the U.S. undergo surgical
menopause in their lives (Huo et al, 2021). In most cases,
premature menopause results from the removal of both ovaries
(bilateral oophorectomy with or without hysterectomy) or the
removal of ovaries and fallopian tubes (salpingo-oophorectomy)
before menopause, which lead to an abrupt cessation of ovarian

estrogen production. Removal of only one ovary (unilateral
oophorectomy) does not cause menopause, though several
studies indicate a younger age at menopause compared to women
who retain both ovaries (Rosendahl et al., 2017). Removal of the
uterus alone (hysterectomy without oophorectomy) can reduce
ovarian estrogen release by disturbing blood flow to the ovaries,
thus indirectly influencing the onset of menopause. Certain
drugs and radiation therapies can also damage the ovaries and
prompt menopause.

Spontaneous menopause is a normal physiological event
without long-term adverse effects for the majority of women
(Monteleone et al., 2018). However, as high as 80% of women
are vulnerable to the neurological shifts that can occur during
the transition, experiencing an increased risk of neurological and
psychiatric disorders including depression, anxiety, and dementia
later in life (Brinton et al., 2015).

Surgical Menopause and Alzheimer’s Disease Risk
Oophorectomies are frequently performed for benign (non-
cancerous) diseases, most commonly for recurrent ovarian cysts,
endometriosis, chronic pelvic pain and also at the time of
hysterectomy for fibroids and heavy vaginal bleeding (Hickey
et al, 2010). Other common indications include removal of
gynecological cancers or risk reduction treatment in women with
an inherited increased chance of ovarian cancer as due to gene
mutations such as BRCA1, BRCA2 or HNPCC (Rebbeck et al.,
2009), or those with a strong family history of ovarian cancer
(Parker et al., 2007).

These procedures are considered low-risk surgeries. However,
abrupt discontinuation of ovarian function in premenopausal
women is associated with more severe health consequences
than spontaneous menopause, including a sudden and more
severe onset of menopausal symptoms, especially hot flashes and
vaginal dryness, and an increased risk of coronary artery disease,
stroke, osteoporosis, and sexual dysfunction (Harlow et al., 2012).
Surgical menopause has also been linked to a higher risk of
depression and Parkinson’s disease (Rocca et al., 2008a,b). There
is also evidence that sudden estrogen depletion following surgical
menopause affects cognition and AD risk, as reviewed below and
in Table 1.

Since the late 1980s, several reports indicated memory declines
in women undergoing oophorectomy before menopause, which
were later substantiated by large-scale studies indicating an
almost doubled long-term risk of dementia in oophorectomized
women (Rocca et al., 2007, 2014; Phung et al., 2010; Bove
et al, 2014). Dementia risk is generally highest in the
presence of bilateral oophorectomy, intermediate with unilateral
oophorectomy, and lowest but significant in the presence
of hysterectomy without oophorectomy (Yaffe et al., 1998;
Hogervorst et al., 2000; LeBlanc et al., 2001; Rocca et al., 2007;
Phung et al.,, 2010; Bove et al., 2014; Gilsanz et al., 2019). Bilateral
oophorectomy also results in an abrupt drop in circulating
levels of progesterone and testosterone, and in the disruption
of the hypothalamic-pituitary-gonadal (HPG) axis (Morrison
et al., 2006), which causes a sudden increased release of LH and
FSH in turn (Rocca et al,, 2018). Additionally, pre-menopausal
oophorectomies have been linked to alterations in nervous
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TABLE 1 | Effects of surgical menopause on cognitive function and AD risk.

References Location Type of study Surgical Surgical Controls, N Age at menopause, Follow up Hormone therapy Endpoints Primary and secondary outcomes
menopause procedure type mean (SD) (HT) use
cases, N
Sherwin, Canada Randomized placebo 40 Hysterectomy 10 Surgical menopause group 4-, 5-, and Climacteron, Change in cognitive e Oophorectomized women exhibited
1988 controlled trial with bilateral 45 (n.a.) years; control 8-month Delestrogen, performance lower performance on all cognitive
oophorectomy group: 37 (n.a.) years postoperative  Delatestryl, or placebo measures vs. non-oophorectomized
follow-up women.
o All HT formulations mitigated the
decline in global cognition
Sherwin and Canada Randomized placebo 12 Bilateral n.a. 47 (n.a.) years 2 months 10 mg intramuscular ~ Change in cognitive e Oophorectomized women not taking
Phillips, 1990 controlled trial oophorectomy estradiol valerate or performance HT exhibited lower performance on a
placebo paired-associates test vs.
oophorectomized women taking HT.
e HT use improved immediate and
delayed logical memory scores over
time
Phillips and Canada Randomized placebo 19 Bilateral n.a. 48(5) years 2-month 10 mg intramuscular Change in cognitive  Oophorectomized women not taking
Sherwin, controlled trial oophorectomy postoperative estradiol valerate performance HT exhibited lower performance on
1992 follow-up injections or placebo delayed paired-associates test vs.
oophorectomized women taking HT.
HT use improved immediate logical
memory scores over time
Szklo et al., United States Observational, 1,088 Bilateral 5,022 Current HT users: 44(0.20) 3 years Conjugated estrogen,  Change in cognitive e Oophorectomized women aged
1996 longitudinal oophorectomy years; or conjugated performance 48-57 taking HT exhibited higher
Past HT users: 45(0.20) estrogen plus Controlled Oral Word Association
years; medroxyprogesterone scores vs. oophorectomized
Never users: 46(0.10) non-users.
years; controls (n.a.) o No effects were observed in
oophorectomized women aged 58-67
Nappi et al., Italy Observational, 27 Hysterectomy 76 Surgical menopause: 45(5) N/A Women taking HT Cognitive e Oophorectomized women recalled
1999 cross-sectional with bilateral years; spontaneous were excluded performance fewer words during the serial learning
oophorectomy menopause: 49(3) years test vs. spontaneous menopause.
e Age at surgery was positively
associated with verbal memory
performance
Verghese United States Observational, 35 Bilateral n.a. HT users: 42(5) years; N/A Conjugated estrogen, Cognitive Oophorectomized women taking HT
et al., 2000 cross-sectional oophorectomy Non-users: 46(6) years or conjugated performance exhibited higher scores on memory
estrogen plus (BIMC), clock and block design tests
medroxyprogesterone than non-users
Farrag et al., Egypt Observational, 35 Hysterectomy 18 41(5) years 3- and 6- month Women taking HT Change in cognitive e Oophorectomized women showed
2002 longitudinal and bilateral post-operation were excluded performance cognitive decline in MMSE and
salpingo- Wechsler Memory Scale subtests at
oophorectomy follow-up visits.
o Patients exhibiting >50% decline in
estradiol had the most significant
cognitive decline
MclLay et al., United States Observational, 161 Not specified 200 43(9) years Median Women taking HT Change in cognitive No significant association between
2003 longitudinal 12.8 years were excluded performance surgical menopause and cognitive
performance
Rocca et al., United States Observational, 1,489 Unilateral or 1,472 Not reported Median Not specified Cognitive impairment o Unilateral and bilateral
2007 longitudinal bilateral 25-30 years and dementia oophorectomy before age 49
oophorectomy incidence increased risk of cognitive impairment
with or without or dementia. Risk increased with
hysterectomy surgery at younger age.

o HT mitigated this effect in women
with bilateral oophorectomy

(Continued)
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TABLE 1 | (Continued)

References Location Type of study Surgical Surgical Controls, N Age at menopause, Follow up Hormone therapy Endpoints Primary and secondary
menopause procedure type mean (SD) (HT) use outcomes
cases, N
Ryan et al., France Observational, 186 Not specified 810 50(5) years 2-and 4- years Transdermal estradiol Change in cognitive  No significant association between
2009 longitudinal with or without performance surgical menopause and cognitive
progesterone performance
Phung et al., Denmark Observational, 215,444 Hysterectomy, 2,097,944  Hysterectomy: 48 (n.a.) 16.6 years Not specified Dementia incidence e Younger age at oophorectomy
2010 longitudinal Unilateral or years; Unilateral and hysterectomy was associated
Bilateral oophorectomy: 45 (n.a.) with early dementia.
Qophorectomy years; Bilateral o Hysterectomy with bilateral
oophorectomy: 57 (n.a.) oophorectomy had greatest
years incidence of dementia among
50-59 years old
Zhou et al., China Observational, cross 50 Unilateral 50 43(3) years N/A Women taking HT Cognitive Oophorectomized women exhibited
2011 sectional oophorectomy were excluded performance lower performance on immediate
with or without and delayed word recall vs.
hysterectomy spontaneous menopause
Bove et al., United States Observational, 603 Not specified 1,281 Surgical menopause: Annually, up to Not specified Change in cognitive e Surgical menopause at a younger
2014 longitudinal 43(7) years; Spontaneous 18 years performance; AD age was associated with steeper
menopause: 49(5) years incidence; brain global cognitive decline.
autopsy samples e Surgical menopause was
associated with increased amyloid
plague burden but not with AD
incidence.
e HT initiated within 5 years of
menopause was associated with
decrease in global cognitive decline
but not with AD pathology
Ryan et al., France Observational, 487 Bilateral 4,381 Surgical menopause: 2-,4-,and 7- Current and past Change in cognitive o Oophorectomized women with
2014 longitudinal oophorectomy n =136 age < 40; years users of transdermal performance and  younger age at surgical menopausal
n =115 age 41-45; estradiol, or dementia incidence exhibited a 35% increased risk of
n =152 age 46-50; unopposed estradiol global cognitive decline.
n =96 age > 50; o HT had negative effects on verbal
Spontaneous fluency performance in this cohort.
menopause: n = 100 o No association with dementia risk
age < 40; n = 366 age at the 7-year follow up
41-45; n = 1,556 age
46-50; n = 1,820
age > 50
Kurita et al., United States Observational, 123 Bilateral 803 Surgical menopause: 3(1) years Women taking HT ~ Change in cognitive ~ Oophorectomy before menopause
2016 longitudinal oophorectomy 45(5) years; Spontaneous were excluded performance was associated with visual and
menopause: 50(6) years semantic memory decline vs.
spontaneous menopause
Zeydan United States Observational, 23 Bilateral 20 Surgical menopause: N/A Conjugated equine Cognitive o No differences in cognitive scores
etal, 2019 cross-sectional salpingo- median 46 years; estrogen, conjugated performance; between surgical and spontaneous
oophorectomy controls n.a. equine estrogen with MRI and PiB PET menopause groups.
progestin biomarkers e Oophorectomized women

exhibited smaller amygdala volume
and parahippocampal-entorhinal
cortex thickness, and lower
fractional anisotropy vs.

spontaneous menopause.
e There were no effects on

hippocampal volume and PiB

uptake
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system innervation with wide-ranging effects on the function of
the vagus nerve, autonomic nervous system, and cardiovascular
system, among others (Mercuro et al., 2000; Rocca et al., 2018).
Dementia risk increases with younger age at time of surgery
(Rocca et al., 2008b; Phung et al., 2010), which has also been
associated with increased global AD burden at post-mortem,
especially the load of neuritic amyloid plaques (Bove et al., 2014;
Agca et al, 2020).

Surgical menopause has been linked to more severe
consequences on cognitive function than spontaneous
menopause, including lower performance in verbal learning,
visual memory (Rocca et al., 2007), and delayed word recall tasks
(Zhou et al,, 2011). Decline in short-term verbal memory was
more severe in women who had greater than 50% decline in
serum estradiol levels following surgery (Nappi et al., 1999; Farrag
et al., 2002). However, as discussed below, estrogen replacement
therapy following surgery appears to mitigate cognitive changes
when compared to placebo (Sherwin and Phillips, 1990;
Henderson et al., 2005; Rocca et al., 2007, 2010; Whitmer et al,,
2011; Shao et al., 2012), suggesting that post-operative estrogen
therapy may have a neuroprotective effect.

Spontaneous Menopause and Alzheimer’s Disease
Risk

Given the importance of estrogen for brain function, it is not
surprising that complaints of a decline in memory, attention
and concentration are common during the menopause transition
(Gold et al., 2000). These complaints are, however, self-reported
and unlikely to result in objective, measurable impairment, thus
often falling under the diagnostic category of subjective cognitive
decline (SCD). Although SCD is observed in normal aging and
in some psychiatric, neurological, and medical conditions other
than AD, current evidence suggests that people ages 60 and older
experiencing SCD may be at higher risk for MCI and dementia
(Jessen et al., 2014). Notably, SCD is more common, and may be
more predictive of later cognitive dysfunction, in women ages 65
and above (Pérés et al., 2011).

Whether menopause-related cognitive complaints can be
confirmed objectively is a topic of debate (Mitchell and Woods,
2011; Weber et al., 2012). Some studies indicate measurable, yet
modest declines in verbal episodic memory on delayed recall
tests, or lack of improvement in verbal memory and processing
speed with repeated testing (Fuh et al., 2006; Greendale et al,
2009, 2011; Bromberger et al, 2010; Berent-Spillson et al,
2012; Epperson et al., 2013; Weber et al., 2013). These findings
were more likely restricted to the perimenopausal and early
postmenopausal stages, and were independent of non-cognitive
menopausal symptoms such as anxiety, disturbed sleep, and
mood symptoms (Greendale et al., 2010).

In some studies, SCD in perimenopausal women was
associated with changes in working memory and complex
attention rather than verbal episodic learning or memory
(Weber et al, 2012), suggesting that cognitive operations
demanding higher effort may lead to women’s perception
of cognitive difficulties. Importantly, memory declines during
perimenopause range from moderate to subtle, and performance
tends to rebound to premenopausal levels after the menopause

diagnosis (Greendale et al., 2009; Weber et al., 2013). Overall,
clinical data suggest that negative effects of menopause on
cognitive performance are transient and generally limited to the
perimenopausal stage. It is unknown whether these memory
fluctuations are predictive of cognitive impairment in later life.

Novel research using AD biomarkers provides important
insight into the neurological effects of menopause and its effects
on cognition and AD risk. While the preponderance of biomarker
studies has been carried out in women who had already
transitioned through the menopause, recent investigations
targeting women of perimenopausal age demonstrated significant
associations between menopause and biomarker indicators of
increased AD risk. For instance, smaller medial temporal lobe
volume was reported in surgical menopausal cases as compared
to spontaneous menopause (Zeydan et al., 2019) and in recently
postmenopausal women with SCD (Conley et al., 2020). Presence
of night sweats was associated with a higher burden of WM
hyperintensities (Thurston et al., 2016), indicating a link between
vasomotor symptoms and cerebral small vessel disease, a risk
factor for stroke and dementia (Debette and Markus, 2010).

More direct evidence that the menopause transition is
associated with AD risk comes from multi-modality brain
imaging studies reporting emergence of AD endophenotypes in
midlife women carrying risk factors for AD, such as APOE-
4 genotype and a family history of late-onset AD (Figure 1).
In these studies, perimenopausal and postmenopausal women
exhibited higher AP load, lower CMRglc, and lower GM and
WM volume as compared to premenopausal women and to age-
controlled men, independent of age and midlife health indicators
(Mosconi et al., 2017a,b, 2018, 2021; Rahman et al., 2020;
Figures 1A-C). AD biomarker effects involved brain regions
vulnerable to AD, such as posterior cingulate, precuneus, parieto-
temporal, medial temporal, and frontal cortices (Figure 1D).
These regions exhibit considerable overlap with the brain
estrogen network (Brinton et al., 2015; Figure 1D), further
highlighting the connection between endocrine aging and
cognitive aging in women. Biomarker effects correlated with
menopause status being lowest premenopause, intermediate in
perimenopause, and greatest postmenopause (Mosconi et al.,
2017a,b, 2018, 2021; Rahman et al, 2020). Additionally,
perimenopausal and postmenopausal women, especially those
positive for APOE-4 genotype, exhibited the highest AR burden
(Mosconi et al., 2017b, 2021), supporting the notion that APOE-
4 genotype exacerbates AD-related brain changes in women
(Riedel et al, 2016), with onset in perimenopause. While
menopause effects on AB deposition were overall mild, the earlier
onset and longer exposure to AR pathology could help account
for the higher prevalence of AD in women.

Longitudinal exams indicate that biomarker abnormalities
related to the menopause transition were progressive over a
3 year period (Mosconi et al., 2018). However, some brain
regions showed stabilization and in some cases, recovery
later into menopause (Mosconi et al, 2021). For example,
GM volumes in temporal regions and precuneus declined
in perimenopausal and recently postmenopausal women
(Mosconi et al., 2018), but increased in late postmenopause
(Mosconi et al., 2021; Figure 1E). Additionally, in spite of
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FIGURE 1 | Reproductive history effects on gray matter volume. Summary of MRI studies indicating associations of reproductive history indicators and MRI-derived
gray matter (GM) volume: (A) Surface renderings of statistical parametric maps displaying areas of lower GM volume in midlife women as compared to
age-controlled men (Rahman et al., 2020). Results are displayed on a color-coded scale with corresponding Z values, where Z > 3 corresponds to p < 0.05,
corrected for multiple comparisons. (B) LASSO regression models indicate that midlife sex differences in GM volume were driven by menopause status, followed by
use of hormonal replacement therapy (HT) and hysterectomy status (Rahman et al., 2020). Coefficients from LASSO regressions ranking multiple exposures are
displayed on a color-coded scale such that coefficients >0.5 correspond to p < 0.05. (C) Among midlife women, GM density was highest in premenopausal women
(PRE), intermediate in perimenopausal women (PERI), and lowest in postmenopausal women (POST), adjusting by age and intracranial volume (Mosconi et al.,
2017b, 2021); Plots display the mean, covariate-adjusted GM density (SE) in temporal cortex and precuneus of PRE, PERI and POST groups; *p < 0.001,

*p < 0.01. (D) Brain regions undergoing GM volume changes as a result of the menopause transition exhibit substantial anatomical overlap with the brain estrogen
network, including medial temporal lobe, insula, anterior and posterior cingulate, precuneus, parieto-temporal and frontal cortices (Rahman et al., 2020). Statistical
parametric maps showing 3D GM volume differences between PRE, PERI and POST groups are superimposed on a standardized T1-MRI image at p < 0.05. (E) In
longitudinal studies, GM volume declined in temporal regions of postmenopausal groups (negative values), but showed recovery in precuneus (positive values)
(Mosconi et al., 2018, 2021). Surface renderings display significant GM volume changes post-menopause, which are represented on a color-coded scale with
corresponding Z values, where Z > 3 and Z < —3 correspond to p < 0.05. (F) GM volume changes in precuneus correlated with memory changes among
postmenopausal women (Mosconi et al., 2021). (G) GM volume is influenced by additional reproductive history events such as a longer reproductive span and
exogenous estrogen exposure (Schelbaum et al., 2021). Statistical parametric maps (SPM) displaying brain regions showing significant associations between longer
reproductive spans and GM volume. Effects are represented on a color-coded scale with corresponding Z values, where Z > 3 corresponds to p < 0.05.

WM volume declines, fractional anisotropy (FA), as derived
using Diffusion Tensor Imaging (DTI), remained broadly
stable during the menopause transition (Mosconi et al,
2021). Since FA is a marker of WM integrity and structural
connectivity, these data suggest preserved connectivity
of smaller WM tracts (Mosconi et al, 2021). Moreover,
cerebral blood flow (CBF), as measured by means of Arterial
Spin Labeling (ASL), was higher in the postmenopausal
group as compared to premenopausal controls and to

age-controlled men, and so were ATP levels measured via
31Phosphorus Magnetic Resonance Spectroscopy (*'P-MRS)
(Mosconi et al., 2021). GM volume recovery and brain
ATP production post-menopause correlated with cognitive
performance (Mosconi et al., 2021), supporting the clinical
findings above. On the other hand, biomarker recovery
was attenuated in perimenopausal and postmenopausal
APOE-4 carriers, who also exhibited the highest AP load
(Mosconi et al., 2021).
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Overall, this preliminary data suggests brain adaptation to
the hypo-estrogenic postmenopausal state, at least in some
women, consistent with findings of system-biology adaptations
in response to estrogen decline in aging female animals
(Wang et al., 2020b). This may account for the easing of
menopausal symptoms observed in late postmenopausal women
(Monteleone et al., 2018). Studies comparing women at high
vs low risk for AD are needed to determine whether the
hypothesized brain recovery is comprised in presence of an
AD predisposition.

OTHER REPRODUCTIVE HEALTH
INDICATORS

Even before menopause, the level of estrogen in the female brain
fluctuates based on several reproductive events and hormone
treatments. Reproductive history is an important modifier of
lifetime estrogen exposure and likely of cognitive aging. As
reviewed below, there has been increasing interest in determining
whether estrogen exposure over the female lifespan is protective
against AD. Key findings are summarized in Table 2 and Figure 2.

Age at Menarche

The age at which a woman enters menarche (puberty) has
gained attention for a possible relationship with cognition in
later life due to higher estrogen levels, and thus longer estrogen
exposure, when menarche occurs at a younger age (Bernstein
et al., 1991). However, as shown in Figure 2A, the majority of
studies so far indicate null associations between age at menarche
and cognitive impairment or AD risk (Geerlings et al.,, 2001;
Henderson et al., 2003; Colucci et al., 2006; Fox et al., 2013; Prince
et al., 2018; Najar et al., 2020; Song et al., 2020). On the other
hand, some studies reported that a younger age at menarche was
associated with better visual memory and psychomotor speed
(Ryan et al.,, 2009), and reduced risk of dementia or AD in later
life (Rasgon et al., 2005a; Gilsanz et al., 2019). Additionally,
the Gothenburg H70 Birth Cohort study reported associations
between a younger age at menarche and lower CSF AB4/40
ratio and higher hyperphosphorylated tau levels among older
postmenopausal women free of dementia (Najar et al., 2021).

Age at Menopause

Given findings of neuroprotective effects of estrogen, it is
plausible that a later age at menopause would enable longer
overall exposure to estrogen, and supposedly better cognitive
function. The majority of studies so far indicate positive
outcomes with a later age at menopause (Figures 2B,C). As
mentioned above, a younger age at surgical menopause has been
linked to higher risk of AD (Bove et al., 2014), dementia (Rocca
et al., 2008b; Phung et al., 2010), and cognitive decline (Rocca
et al., 2007; Zhou et al., 2011). Although data on spontaneous
menopause are less consistent, some studies also report better
cognitive performance (McLay et al., 2003; Georgakis et al,
2016a), reduced risk of cognitive impairment (Song et al., 2020)
or dementia (Rasgon et al., 2005a; Gilsanz et al., 2019), and a later
age at AD onset (Sobow and Kloszewska, 2004) when menopause

occurs later in life. In the Kaiser Permanente cohort, women
who underwent spontaneous menopause between the ages of
31-40 and 41-45 years had a 20% and 29% increased risk of
dementia, respectively, when compared to those who were aged
51-55 years at the time of menopause (Gilsanz et al., 2019). On
the other hand, two studies reported an increased incidence of
dementia and AD with an older age at menopause for specific
study populations (Geerlings et al., 2001; Najar et al., 2020). In
the Rotterdam study, this association was found only in women
carrying at least one copy of the APOE-4 allele (Geerlings et al.,
2001). In the Gothenburg H70 Birth Cohort study, the association
was only significant in women who had dementia onset after
75 years of age, with the strongest occurrence after 85 years of age
(Najar et al., 2020), whereas no association with AD was observed
before age 85 or with APOE-4 status (Najar et al., 2020). Null
associations have also been reported (Colucci et al., 2006; Fox
et al.,, 2013; Prince et al., 2018; Najar et al., 2021).

Reproductive Span

While both age at menarche and age at menopause mark the
duration of a woman’s lifetime exposure to endogenous estrogen,
examination of the time in between these two events - the
reproductive span — appears to be a stronger predictor of later
life cognition. Given the neuroprotective effects of estrogen, it
is plausible that a longer reproductive span would be correlated
with better cognitive outcomes in later life. The length of
this window has been associated with reduced risk of several
diseases in postmenopause, such as cardiovascular disease and
depression (Georgakis et al., 2016b; Ley et al., 2017). However,
the relationship between reproductive span and dementia risk is
less clear (Table 2 and Figure 2D).

Several studies have found that women with longer
reproductive periods, especially in presence of older age at
menopause, have better cognitive outcomes and lower risk of
dementia or cognitive decline (Rasgon et al., 2005a; Fox et al,,
2013; Georgakis et al., 2016a; Gilsanz et al., 2019). In the Kaiser
Permanente study, a reproductive span less than 34.4 years was
associated with a 20% increased risk of dementia compared to
those with a reproductive span of at least 34.4 years, and when
comparing the groups of those with the shortest and longest
reproductive span, 14-20 years and 39-44 years, respectively,
there was a 55% increased risk of dementia associated with a
shorter reproductive span (Gilsanz et al., 2019).

However, other studies observed no associations between
reproductive span and dementia risk (Georgakis et al., 2016a;
Prince et al., 2018) or verbal memory (Henderson et al,
2003), while two studies reported associations between longer
reproductive periods and higher dementia risk among older
women (Geerlings et al., 2001; Najar et al., 2020). In a follow-
up analysis of the Gothenburg H70 Birth Cohort, longer
reproductive span also correlated with lower CSF ABy, /49 and
higher phosphorylated tau levels in a subset of postmenopausal
women ages 70-85 years (Najar et al., 2021). The authors offer
that women who undergo menopause at an older age have higher
estrogen levels later in life, when AD-related pathologies arise.
This is consistent with the “healthy cell bias” theory, which
postulates that while estrogen is neuroprotective in healthy cells,
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TABLE 2 | Effects of reproductive history factors on cognitive function and AD risk.

References Location Type of study Study population Inclusion of surgical Age at cognitive  Follow up Exposures Endpoints Primary outcomes
menopause cases assessment, visits
mean (SD)
Geerlings Netherlands Observational, 3,601 cognitively 2,737 women with 70(9) years 6 years; Age at menarche, age at Dementia and AD e Longer reproductive span and later age at
etal., 2001 longitudinal normal women aged  spontaneous menopause; range menopause, reproductive span incidence natural menopause were associated with
over 60 years 865 women with surgical 0-9 years dementia and AD incidence in APOE-4
menopause carriers.
o Age at menarche was not associated with
dementia or AD.
Rasgon et al., Sweden Observational, 5,844 women aged Not specified Cognitively N/A Age at menarche, age at Difference between e Menarche before age 12 or after age 14,
2005a cross-sectional 65-84 years (1,111 Impaired: 75(6) menopause, reproductive span,  dementia patients and and shorter reproductive span were
with cognitive years; Controls: total length of estrogen exposure controls associated with dementia.
impairment, 4,733 72(5) years (reproductive span + HT duration e Dementia patients had lower age at
controls) years), number of childbirths, HT menopause than controls
use and duration e Women with > 5 children were more likely to

have dementia compared to women with 1-2

children.

e HT use was more common in controls than

in dementia patients
Colucci et al., Italy Observational, 405 women over AD patients: 21% surgical ~ AD patients: 75(7) 15 months Age at menarche, age at Difference between AD e No differences in age at menarche, age at
2006 cross-sectional 65 years (204 probable menopause; Controls: 13%  years; Controls: menopause, reproductive span, patients and controls menopause, reproductive span, number of
AD patients, 201 surgical menopause 74(6) years number of pregnancies and miscarriages, or breast pathology between AD
controls) miscarriages, surgical menopause, patients and controls.
breast pathology, HT use e \Women with AD were more likely to have 3
or more children compared to controls.
Ryan et al., France Observational, 996 cognitively normal 810 women with 73(6) years 2- and Age at menarche, age at Cognitive e Longer reproductive span was associated
2009 longitudinal women aged spontaneous menopause; 4 years menopause, reproductive span, performance; with higher verbal fluency scores but not with
65-94 years 186 women with surgical parity (number of children), age at ~ Dementia incidence dementia incidence
menopause first birth, HT use, contraceptive e Younger age at menarche was associated
use with higher visual memory and psychomotor
speed.
e \WWomen who had their first birth between
ages 21-29 scored higher on verbal fluency,
visual memory, and psychomotor speed tests
vs. women who gave birth before age 21.
e Current HT use, but not past, was
associated with higher visual memory scores
VS. never users.

o No associations between contraceptive use
or surgical menopause with cognitive
performance or dementia incidence.

Heys et al., China Observational, 8,685 cognitively Women with hysterectomy 60(7) years 1-3years  Reproductive span, parity (number ~ Change in cognitive e Longer reproductive span, lower parity, and
2011 longitudinal normal women aged or oophorectomy were of children), age at first birth, time performance less time spent breastfeeding were associated
50-95 years excluded spent breastfeeding with higher cognitive performance on word
recall and MMSE.

o Older age at first birth was associated with

lower cognitive performance on delayed word

recall and MMSE.
Fox et al., England Observational, 89 women aged 32 women with surgical Dementia: 86(6) N/A Age at menarche, age at Difference between AD e Controls exhibited longer cumulative
2013 cross-sectional 70-100 years (38 AD menopause years; Controls: menopause, reproductive span, patients and controls  estrogen exposure, first birth after age 21, and

patients, 51 controls)

77 (7) years

total length of estrogen exposure
(reproductive span and HT
duration years minus time spent
breastfeeding), time spent
pregnant, parity, age at first birth;
time spent breastfeeding, number
of menstrual cycles, HT use,
contraceptive use

more months spent pregnant vs. AD patients.
e No associations between reproductive span,
age at menarche, age at menopause, parity,
contraceptive use, HT use, or regularity of
menstrual cycles with AD status
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TABLE 2 | (Continued)

References Location Type of study Study population Inclusion of surgical Age at cognitive Follow up Exposures Endpoints Primary outcomes
menopause cases assessment, visits
mean (SD)
Prince et al., Latin America, Observational, 6,854 cognitively normal Not specified T4(7) years 3-5 years Age at menarche, age at Dementia incidence o Greater parity was associated with
2018 China longitudinal women over 65 years in menopause, reproductive span, increased dementia incidence.
Latin America and China index of cumulative endogenous o No association between age at
estrogen exposure parity (number menarche, age at menopause,
of live births), age at first birth, reproductive span, index of cumulative
premature ovarian failure endogenous estrogen exposure, age at
first birth, or premature ovarian failure
with dementia incidence
Gilsanz et al.,  United States Observational, 6,137 cognitively normal 4,047 women with 77(5) years 9(6) years; Age at menarche, age at Dementia and AD Later age at menarche, menopause
2019 longitudinal women, mean age 51(4) spontaneous range menopause, reproductive span, incidence before 47 years, reproductive spans
years at baseline menopause; 2,090 women 0-22 years hysterectomy status shorter than 34 years, and having had a
with hysterectomy hysterectomy were associated with
higher dementia incidence
Matyi et al., United States Observational, 2,114 cognitively normal Not specified 75(7) years Triennial Lifetime endogenous estrogen  Change in cognitive e Longer endogenous estrogen
2019 longitudinal women over 65 years visits for exposure (reproductive span performance exposure was associated with higher
12 years minus time spent breastfeeding), modified MMSE (3MS) scores.
HT use e Longer use of HT and initiation of HT
within 5 years of menopause were
associated with higher 3MS scores.
Najar et al., Sweden Observational, 1,364 cognitively normal  Women with hysterectomy 80(8) years 27(10) years Age at menarche, age at Dementia and AD e Later age at menopause and longer
2020 longitudinal women, mean age 53(6) or oophorectomy were menopause, reproductive span, incidence reproductive span were associated with
years at baseline excluded number of pregnancies, time increased risk of dementia and AD.
spent breastfeeding, HT use, o No associations between age at
contraceptive use menarche, number of pregnancies, time
spent breastfeeding, HT use, or
contraceptive use with dementia or AD
incidence.
Song et al., China Observational, 9,656 women aged 8,222 women with 78(7) years Range Age at menarche, age at e Cognitive Older age at menopause, longer
2020 longitudinal 45-74 years at baseline  spontaneous menopause; 5-23years  menopause, reproductive span, performance reproductive span, short-term
1,324 with surgical number of children, age at first contraceptive use, and HT use were
menopause birth, HT use, contraceptive use positively associated with SM-MMSE
and duration performance.
e Women with > 5 children had lower
cognitive scores vs. 1-2 children.

o No association between age at
menarche, age at first birth, and type of
menopause with cognitive performance

Najar et al., Sweden Observational, 75 women aged Women with hysterectomy 74 years; range  20(4) years Age at menarche, age at CSF Ap42, o Earlier age at menarche and longer
2021 longitudinal 46-60 years at baseline, or oophorectomy were 70-85 years menopause, reproductive span AB42/AB40, reproductive span were associated with
free of dementia excluded hyperphosphorylated higher P-Tau and lower AB42/AB40.
tau (P-Tau), total tau e Longer reproductive period was
(T-Tau) associated with lower AB42.
o No associations between age at
menopause and CSF biomarkers.
Schelbaum United States Observational, 99 cognitively normal 36 women with 52(6) years N/A Age at menarche, age at Cognitive e Longer reproductive span, number of
etal., 2021 cross-sectional  women aged 40-65 years  spontaneous menopause; menopause, reproductive span, performance; gray  children and pregnancies, HT use, and

13 women with surgical
menopause

number of pregnancies and
children, HT use, contraceptive
use, hysterectomy status

matter volume (GMV)
on MRI

oral contraceptive use were associated
with larger GMV in regions vulnerable to
cognitive aging and AD.
o No association between age at
menarche, age at menopause, or
hysterectomy status with GMV.
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reproductive span

A Later age at B Surgical menopause Cc Earlier age at
menarche menopause
d
\
D Shorter E Parity >5 children F Hormonal

contraceptive use

Higher risk

No association

Lower risk

menopause and higher AD risk.

FIGURE 2 | Associations of reproductive health indicators with cognitive aging, AD biomarkers and AD risk. Reproductive health indicators are (A) age at menarche,
(B) type of menopause (surgical vs spontaneous), (C) age at menopause, (D) reproductive span, (E) grandparity vs nulliparity, (F) hormonal contraceptive use. Pie
charts summarize the percentage of studies reporting effects of reproductive health indicators and endpoints (including AD or dementia incidence, cognitive
performance, and AD biomarkers) in terms of higher, lower, or null AD risk. For example, in panel (C), 56% of studies report associations between earlier age at

it can be neurotoxic in damaged cells (Brinton, 2008). Thus, the
timing of endogenous estrogen exposure likely contributes to
the positive or negative impact of estrogen on neuronal health.
However, as all women in the Gothenburg study remained free of
dementia despite the biomarker data, the functional significance
of the associations is unclear. In fact, these correlations may
suggest a protective effect of reproductive span instead -
analogous to the way that more years of education correlate with
higher AD pathology burden in non-demented elderly, which
are interpreted as reflecting greater cognitive reserve (Barulli
and Stern, 2013). For context, over 40% of dementia free elderly
exhibit AD biomarkers in pathological range (Roberts et al,
2018), with AP positivity increasing from ~10% at age 50 to an
average of 44% or higher at age 90 in cognitively normal elderly
(Jansen et al., 2015).

In a recent brain MRI study of midlife women, longer
reproductive span was associated with larger superior parietal
and precuneus GM volume, independent of age, APOE-4 status,
type of menopause (surgical vs spontaneous) midlife health
indicators, and use of menopausal HT (Schelbaum et al., 2021;
Figure 3). GM volume is a proxy for cognitive reserve, with
larger volume indicating less neuronal aging (Jack et al., 2013).
Therefore, MRI findings suggest a beneficial effect of longer
endogenous estrogen exposure, at least in midlife. Since the
pre-symptomatic phase of AD corresponds with midlife years
(Sperling et al, 2011), and endogenous estrogen exposures

occur before or concomitant with menopause, simultaneous
examination of reproductive span and biomarker data avoids
possible effects of attrition, recall, and survival bias. In fact, these
results are consistent with epidemiological studies of younger
women with a narrower window of age at menopause (Fox et al.,
2013; Gilsanz et al,, 2019). The two studies reporting negative
effects of a longer reproductive span on AD risk instead focused
on older postmenopausal women over 70 (Geerlings et al,
2001; Najar et al., 2020), excluded patients with hysterectomy or
oophorectomy (Geerlings et al., 2001; Najar et al., 2020), and in
some cases did not assess use of hormonal therapy (Geerlings
et al, 2001), or reported effects only in APOE-4 carriers
(Geerlings et al., 2001), which could account for the mixed
findings. Further comparison across studies is made difficult
by substantial heterogeneity of the study cohorts, including
differences in geographical areas, ethnicities, socio-economic
backgrounds, and overall medical health, as well as different
clinical criteria for AD and dementia diagnosis, and variable
cognitive batteries across studies.

Parity, Number of Children and

Pregnancies

Pregnancy is a female-specific reproductive event that induces
profound changes in the levels of endogenous estrogen, with
significant effects on brain structure and function (de Lange et al.,
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FIGURE 3 | Associations of reproductive span with regional gray matter volume in midlife. (A) Statistical parametric maps displaying significant associations between
reproductive span years and GM volume are superimposed on a standardizedT1-MRI image and represented on a color-coded scale with corresponding Z values,
at p < 0.05 corrected for multiple comparisons. (B) Scatterplots of associations between reproductive span and GM volume in superior parietal and precuneus in
(Ieft) the entire postmenopausal cohort and (right) among women who had undergone spontaneous menopause, thus excluding surgical menopause cases. Figures

are modified from results included in Schelbaum et al. (2021).

32 36

Reproductive span years

40 44 48

2020). Higher levels of estradiol are observed during pregnancy,
up to 300 times the normal circulating levels (Deems and Leuner,
2020), which may have beneficial effects in terms of cumulative
estrogen exposure throughout a woman’s life. However, the
effects of pregnancy on the brain are complex and more rigorous
work is needed to elucidate how these biological mechanisms
impact cognitive aging. For instance, parous women have lower
levels of circulating estrogen compared to nulliparous women,
with this difference persisting into menopause (Bernstein et al.,
1985). On the other hand, parity has positive effects on the brain’s
long-term sensitivity to estrogen via effects on ER expression or
functioning as evidenced by findings that parous rats have higher
numbers of ERa positive cells than age-matched, nulliparous
controls (Byrnes et al., 2009). There is also evidence that parity
renders the human brain more responsive to estrogen in older
age, which might contribute to favorable brain aging trajectories
(de Lange et al., 2019).

In studies investigating the long-term association between
pregnancy-related factors and risk of cognitive impairment in
later life, associations are mixed, as summarized in Table 3.

Some studies report better cognitive performance in midlife
(Henderson et al., 2003; Ning et al., 2020), and a lower AD risk
in later life (Fox et al.,, 2018) in women who had experienced
pregnancy. Two large European studies reported less apparent
brain aging in parous compared to nulliparous women, especially
in association with a higher number of childbirths, as predicted
using MRI-based machine learning models (de Lange et al,
2020; Ning et al., 2020). Studies of midlife women have also
reported positive effects of parity on cognitive performance, such

as improved verbal and visual memory performance (Henderson
et al., 2003; Ning et al., 2020), and on GM volume in frontal
and temporal regions (Schelbaum et al., 2021). While number of
children was not directly associated with cognitive performance,
GM volume in temporal cortex positively correlated with
memory and global cognition, suggesting possible mediation
effects (Schelbaum et al,, 2021). Additionally, in studies that
examined gravidity (total number of pregnancies including
stillbirth, miscarriage, and/or abortion), elderly women who
spent more cumulative months pregnant and breastfeeding over
the course of a lifetime had a reduced risk of AD (Fox et al.,
2013, 2018). Longer duration of breastfeeding was also found to
be protective against AD dementia in other studies (Heys et al.,
2011). As estrogen levels are lower during lactation, other factors
are likely involved.

However, while some studies indicate that having 1-3 children
may provide protective effects against dementia (Heys et al., 2011;
Ning et al., 2020; Song et al., 2020), grand multiparity (5 or more
pregnancies) may have detrimental effects instead (Rasgon et al,,
2005a; Bae et al., 2020; Song et al., 2020; Figure 2E).

Findings of no associations between number of children
and memory performance or AD and dementia risk were also
reported (Ptok et al., 2002; Corbo et al., 2007; Ryan et al., 2009;
Bae et al., 2020). The largest epidemiological study to date, the
Rancho Bernardo Study in southern California, studied 1,025
women between the ages of 44-99 followed for over 28 years, with
cognitive testing data collected at up to 7 different timepoints
(Ilango et al., 2019). Results indicated no long-term influence of
pregnancy history on age-related cognitive function, except for a
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TABLE 3 | Pregnancy-related factors, cognitive function and dementia risk.

References Location Study population Inclusion of Follow Up Parity-related exposures Mean age Endpoints Primary outcomes
nulliparous Visits (SD), years
women
Ptok et al., 2002 Germany 295 women (106 with Yes N/A Parity (parous vs nulliparous); AD: 77(10); Difference between AD e Women with AD were more likely to
AD, 117 with number of children depression: patients and controls be parous than nulliparous.
depression, 72 controls) 71(8); Control: o Number of children was not
72(11) associated with AD diagnosis
Henderson Australia 326 healthy Yes 8 years Parity (parous vs nulliparous); 57(3) years Change in cognitive Parity was positively associated with
et al., 2003 premenopausal women number of pregnancies performance verbal memory
MclLay et al., United States 361 Caucasian and Yes 13 years Number of live births, oral 63(14) years Change in cognitive o Parity was associated with
2003 African American contraceptive usage performance cognitive decline.
women with and without e Oral contraceptive use was not
dementia associated with cognitive function
Dunkin et al., United States 17 healthy Yes 10 weeks Number of childbirths 57(7) years Change in cognitive No associations between parity and
2005 postmenopausal women performance cognitive performance
Rasgon et al., Sweden 5,844 women (1,111 Yes N/A Number of children Cognitively Difference between Women with dementia were more
2005a with cognitive Impaired: 75(6) dementia patients and likely to have > 5 children compared
impairment, 4,733 years; Control: controls to controls.
controls) 72(5) years
Colucci et al., Italy 405 women (204 with Yes 15 months Number of pregnancies AD: 75(7) years; Difference between AD e AD patients had more pregnancies
2006 probable AD, aged 75(7) Control: 74(6) patients and controls than controls.
years, 201 controls aged years e 3 or more pregnancies were
74(6) controls) associated with a younger age at
onset of AD.
o No association between number of
pregnancies and change in MMSE
scores
Corbo et al., Italy 176 women with Yes N/A Number of children 77(7) years Association with age at o \Women with children had a
2007 sporadic AD onset of AD younger age at AD onset compared
to nulliparous women.
e No associations between number
of children and age at onset.
e Age at AD onset was younger in
APOE4 negative parous women.
Beeri et al., United States 73 AD patients (42 Yes N/A Number of children Women: 86(11) Association with AD e Women who had more children
2009 women and 31 men) years; Men: pathology had greater AD neuropathology and
confirmed at autopsy 73(9) years neuritic plaques vs. nulliparous
women.
e No associations between number
of children and AD pathology in men.
Ryan et al., France 996 cognitively normal Yes 2-, 4- years Parity (parous vs nulliparous), 73(6) years Cognitive performance; e \WWomen who gave birth before age
2009 women age at first birth, oral Dementia incidence 21 had lower MMSE scores, visual

contraceptive use

memory scores, and psychomotor
speed vs. those with first birth
between 21 and 29 years.

e No associations between parity
and oral contraceptive with cognitive
performance.

e No association between parity, age
at first birth, or oral contraceptive use
with dementia incidence.

(Continued)
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TABLE 3 | (Continued)

References

Location

Study population

Inclusion of
nulliparous
women

Follow Up
Visits

Parity-related exposures

Mean age
(SD), years

Endpoints

Primary outcomes

Heys et al.,
2011

Fox et al., 2018

Bae et al., 2020

de Lange et al.,
2020

Jung et al.,
2020

Ning et al., 2020

Song et al.,
2020

Schelbaum
etal., 2021

China

England

Europe/Asia

Europe

Korea

Europe

China

United States

8,685 cognitively normal
women

95 women (39 with
dementia, 56 controls)

7,010 dementia free
women

19,787 cognitively
normal women
237 women (89 with and
148 without MCI)

303,196 male and
female (160,077
females)

9,656 women

99 cognitively normal
women

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

1-3 years

N/A

5(3) years

N/A

N/A

N/A

Range
5-23 years

N/A

Number of children, age at first
birth, breastfeeding duration

Parity (nulliparous vs parous),

age at first birth, cumulative

months pregnant, cumulative
months breastfeeding

Number of childbirths or children

Number of live childbirths, age at
first birth, years since last birth
Parity (nulliparous vs parous);
number of pregnancies, number
of childbirths

Number of children

Number of children, age at first
birth, oral contraceptive usage

Number of pregnancies and
children, hormonal contraceptive
use

60(7) years Change in cognitive

performance

Difference between AD
patients and controls

Dementia: 86(6)
years; Control:
77(7) years

Dementia or AD
incidence

72(8) years

64(7) years MRI-derived brain age

70(8) years Cognitive performance,
MRI, PiB PET

57(8) years Cognitive performance,

MRI-derived brain age

78(7) years Change in cognitive

performance

52(6) years Cognitive performance;
gray matter volume

(GMV) on MRI

e Lower parity and less time spent
breastfeeding were associated with
higher cognitive performance on
word recall and MMSE.

e Older age at first birth was
associated with lower cognitive
performance on delayed word recall
and MMSE.

e AD patients had fewer cumulative
months pregnant compared to
controls.

e Controls had a greater number of
first trimesters than women with AD.
e Parity was not associated with AD
incidence.

o All-cause dementia and non-AD
dementia were associated with
increasing parity
Increasing parity was associated with
younger ‘brain age’ on MRI
e Women with > 5 children exhibited
lower MMSE scores vs. < 5 children.
e \Women with > 5 children had
lower gray matter volume, especially
in the hippocampus, vs. < 5 children.
o No associations with amyloid
plaque load or white matter
hyperintensity volume.

e Men and women with > 1 children
exhibited faster response time and
better visual memory vs. no children.
e Parous individuals had a younger
relative brain age on MRI.

e \WWomen with > 5 children had
reduced cognitive performance vs.
1-2 children.

e Short duration of oral contraceptive
usage associated with decreased
cognitive impairment.

e No association with age at first
birth.

Number of children and pregnancies,
and oral contraceptive use were
associated with larger GMV in
regions vulnerable to AD.
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slight decline in verbal memory in parous vs. nulliparous women,
which did not survive correction for multiple comparisons
(Ilango et al., 2019).

On the other hand, in some studies, parous women had greater
cognitive decline on Mini-Mental State Examination (MMSE)
scores (McLay et al., 2003), higher AD risk (Colucci et al., 2006)
and a younger age at AD onset as compared to nulliparous
women (Ptok et al., 2002), effects that seemed, however, limited
to APOE-4 non-carriers (Corbo et al., 2007). A post-mortem
study reported greater AD-related neuropathology with more
childbirths, though no clear associations were observed with
cognitive function (Beeri et al., 2009).

Discrepancies among studies may be due to small sample sizes
(Corbo et al., 2007; Beeri et al., 2009), differences in cognitive
assessments (Ryan et al., 2009) or diagnostic criteria (Ptok et al.,
2002; Beeri et al., 2009; Bae et al., 2020), possible inclusion of
non-biological children (Bae et al., 2020), and different exposure
variables including parity (parous vs. nulliparous) (Ptok et al.,
2002), gravidity (Colucci et al., 2006; Fox et al., 2018), number
of children (Rasgon et al., 2005a; Heys et al., 2011), number
of living childbirths (Bae et al., 2020; de Lange et al., 2020;
Ning et al., 2020), or number of months spent pregnant (Fox
et al., 2018). Associations with cognition were more commonly
observed when parity was defined as number of childbirths or
time spent pregnant rather than as having vs. not having children.
Additionally, few studies have taken other pregnancy-related
factors, such as age at first childbirth, breastfeeding, pregnancy
complications such as pre-eclampsia and gestational diabetes,
and oral contraceptive usage into consideration. Contrasting
results might also be due to the timing of the observations,
as the effects of motherhood on the brain are likely more
discernible closer in time to childbirth than in older age or
at post-mortem. Generally, studies that examined associations
between number of children and cognitive performance closer
to the time of childbirth have more consistently reported
beneficial effects of pregnancy on brain and cognition function
(Brunton and Russell, 2008).

EXOGENOUS ESTROGEN EXPOSURES

Hormonal Therapy for Menopause

If estrogen depletion in midlife is associated with increased risk of
AD in later life, then theoretically estrogen therapy could reduce
risk of AD. Although an increasing number of studies have
explored menopausal HT for AD risk reduction, data regarding
this issue is mixed. There are strong discrepancies between basic
science, observational studies, and small clinical trials of HT
on the one hand, and large randomized clinical trials of HT
on the other hand.

The former studies generally reported a protective effect of
HT on cognitive function and AD risk (Kawas et al., 1997; Zandi
et al,, 2002; Paganini-Hill et al., 2006; Sherwin, 2006; Whitmer
et al,, 2011), especially among younger, 50-59 year-old women
(LeBlanc et al., 2001). Positive effects were more consistent with
estrogen-only, or unopposed HT, for hysterectomized women
(Sherwin and Phillips, 1990; Henderson et al., 2005; Rocca et al.,

2007, 2010; Whitmer et al., 2011; Shao et al., 2012). These results
are in contrast with large randomized, placebo-controlled clinical
trials of HT, starting with the Women’s Health Initiative (WHI),
a 15-year study tracking over 161,800 healthy, postmenopausal
women. The study included two trials, the WHI Estrogen-plus-
Progestin Study, in which women with a uterus were randomly
assigned to receive either HT containing both estrogen and a
progestin (Prempro) or a placebo; and the WHI Estrogen-Alone
Study, in which women without a uterus were randomly assigned
to receive either HT containing estrogen alone (Premarin) or
a placebo. Cumulatively, the WHI has shown some benefits
related to use of HT, including one-third fewer hip and vertebral
fractures, and one-third lower risk of colorectal cancer relative
to placebo (Rossouw et al., 2002; LaCroix et al., 2011). However,
both trials were interrupted early as it was determined that
both types of therapy were associated with specific health risks,
particularly an increased risk of coronary artery disease, stroke
and blood clots (Rossouw et al., 2002; Anderson et al., 2004).
In both trials, risk of heart disease returned to normal levels
after treatment discontinuation (Shumaker et al., 2003; Heiss
etal,, 2008). Additionally, the Estrogen-plus-Progestin arm of the
study showed an increased risk of cancer (Rossouw et al., 2002;
Anderson et al., 2004).

The WHI included an additional arm, the WHI Memory
Study (WHIMS), which examined HT for dementia prevention
in postmenopausal women ages 65 or older (Shumaker et al.,
2003). Instead, results indicated a doubling of the risk of all-cause
dementia among women in the Estrogen-plus-Progestin arm
(Shumaker et al., 2003), and no significant effects in the Estrogen-
Alone arm (Espeland et al., 2004; Shumaker et al., 2004). A major
problem with this study is that participants were several years past
menopause at enrollment, thus possibly already harboring pre-
existing dementia or cardiovascular conditions. Re-examination
of the WHI data indicates that the efficacy of HT is linked to
the timing of initiation with respect to age at menopause onset
(LeBlanc et al., 2001; Manson et al., 2006; Maki, 2013; Bove et al.,
2014). On meta-analysis, younger, 50-59 year-old women who
used HT had a 30-44% reduction in AD risk as compared to
never-users (LeBlanc et al., 2001; Maki, 2013).

In the Early versus Late Intervention Trial with Estradiol
(ELITE), HT reduced the progression of subclinical
atherosclerosis when therapy was initiated soon after menopause
(Hodis et al., 2016), which has been linked to a 30% reduced
number of heart attacks and cardiac deaths (Salpeter et al., 2009).
The newer ELITE-cog and Kronos Early Estrogen Prevention
Study (KEEPS) trials have so far reported no adverse effects
of HT on cognition among recently postmenopausal women,
though no beneficial effects were observed either (Gleason et al.,
2015; Henderson et al., 2016; Miller et al., 2019).

Clinical trials using brain scans as a secondary endpoint
lend support to the hypothesis that both age at treatment and
type of HT are important factors to consider. Some studies
indicated positive effects of HT on GM volume (Erickson
et al., 2005; Boccardi et al.,, 2006), CBF and CMRglc in AD-
vulnerable regions, which have been attributed to effects of
estrogen on the cerebrovascular system (Eberling et al., 20005
Maki and Resnick, 2000; Stopien et al., 2003; Rasgon et al., 2005b,
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2014; Silverman et al., 2011), with unopposed HT being more
beneficial than combined HT (Silverman et al., 2011; Rasgon
et al,, 2014). Further, oral conjugated equine estrogen (CEE)
therapy was associated with reduced GM volume (Resnick et al.,
2009; Zhang et al., 2016), increased ventricular enlargement and
WM hyperintensity load as compared to transdermal estradiol
(Kantarci et al., 2018).

Hormonal Contraceptives

Despite the millions of women worldwide using HC, little is
known about HC effects on the brain (Petitti, 2003; Christin-
Maitre, 2013; Taylor et al, 2019). Systemic HC have been
available since the 1960s, sold under various brand names
and formulations, most of which are administered orally,
transdermally, transvaginally or via implants. HC are comprised
of synthetic sex hormones, often ethinylestradiol, a more potent
form of endogenous estradiol and synthetic progestin, which
can either be androgenic or anti-androgenic (Pletzer et al., 2019;
Taylor etal., 2021). The functions of HC treatment involve several
mechanisms that lead to the inhibition of follicular development,
suppression of the production of endogenous estradiol and
progesterone, and preventing ovulation (Taylor et al., 2021).

Although studies investigating the impact of HC on later
life cognition are scarce, 56% of the studies report a reduced
risk of cognitive impairment (Li et al., 2016; Song et al., 2020)
or higher scores on cognitive tests in midlife women taking
HC (Egan and Gleason, 2012; Karim et al., 2016; Figure 2F).
One study reported an almost 50% reduced risk of cognitive
impairment in elderly women aged 60 or older who had used HC
compared to never users (Li et al., 2016). Structural MRI studies
of young adult women generally show greater GM volume in HC-
users compared to natural cycling women in the hippocampus,
parahippocampal and fusiform gyri, and cerebellum (Pletzer
et al,, 2010, 2015, 2019; De Bondt et al., 2013), although results
are not always consistent (Petersen et al., 2015; Lisofsky et al,,
2016). Among midlife women at risk for AD, HC users exhibited
greater GM volume in medial temporal lobe, precuneus, fusiform
gyrus, parietal and frontal cortex as compared to never users
(Schelbaum et al., 2021).

The remaining studies reported no associations between HC
use and dementia incidence (Najar et al., 2020), cognitive decline
(McLay et al., 2003), or cognitive performance (Ryan et al., 2009;
Tierney et al., 2013). Inconsistent findings may be a result of
several factors such as age of initiation, HC formulations, dosage
and duration of use (Taylor et al., 2021).

Endocrine Therapy for Breast Cancer

Every year, 1.4 million women worldwide are diagnosed with
breast cancer, which still results in over 400,000 deaths annually
(Kamangar et al., 2006). Nearly 13% of American women are
diagnosed with breast cancer at some point in their life (Branigan
et al., 2020). While breast cancer is a multi-factorial disease, it
has a known hormonal component. Around 75% of all breast
cancers are hormone-receptor positive (HRP) and patients are
usually advised to undergo adjuvant endocrine therapy. In this
section, we review data on the effects of anti-estrogen therapy
on cognition, as treatment with estrogen blockers and aromatase

inhibitors (Als) suppresses estrogenic function in body and brain
(Zwart et al., 2015). This has spurred concerns around dementia
risk in breast cancer survivors.

Two of the most frequently prescribed classes of endocrine
therapy for breast cancer are selective estrogen receptor
modulators (SERMs) (e.g., tamoxifen and raloxifene), and
steroidal (i.e., exemestane) and non-steroidal Als (i.e.,
anastrozole and letrozole). SERMs have tissue-specific
agonistic and antagonistic actions on estrogen receptors,
while Als inhibit estrogen production in body and brain.
Premenopausal women with HRP cancer typically receive
tamoxifen whereas postmenopausal women receive Al
monotherapy, or Al as adjuvant or neoadjuvant therapy
with tamoxifen (Arnedos et al., 2015). Both therapies can include
adjuvant chemotherapy depending on clinicopathological
indications (Arnedos et al., 2015).

Owing to the increasing awareness of the importance of
estrogens for brain health, more research is now focused on
evaluating the potential adverse impact of endocrine therapies
on cognition and AD risk in patients with breast cancer (Zwart
et al., 2015). Several studies have indicated that chemotherapy
with or without endocrine therapy can induce cognitive changes,
especially declines in memory, processing speed, and executive
function, as compared to pre-treatment levels (Wefel et al.,
2015). Cognitive declines have been reported in 20-60% of
chemotherapy-treated cancer survivors (Wefel et al, 2015),
who also tend to exhibit GM loss and alterations in structural
connectivity (de Ruiter et al., 2012). However, as many patients in
these studies received both chemotherapy and endocrine therapy,
the specific influence of hormonal treatment on cognition
remains unclear. Herein, we review the studies that specifically
addressed the cognitive effects of endocrine therapy in patients
with breast cancer.

To date, three large intervention trials have conducted
sub-studies to examine the effects of endocrine therapy on
cognitive function in women with breast cancer. In the Arimidex
Tamoxifen Alone or in Combination (ATAC) trial, five years
of therapy with anastrozole alone, tamoxifen alone, and the
combination of anastrozole and tamoxifen was associated with
significantly lower scores on verbal memory and processing
speed assessments in postmenopausal women with invasive
operable breast cancer who had completed primary therapy and
eligible for adjuvant hormonal therapy (including 20-22% on
chemotherapy) relative to an age-controlled group of cancer-
free women (Baum et al., 2002). A second analysis of the
ATAC study compared cancer patients who had received surgery
and various endocrine treatments with controls. None of the
patients had done chemotherapy, and 67% were treated with
course of radiotherapy. Results showed that patients receiving
anastrozole, tamoxifen and combined treatment performed
significantly worse on tasks of verbal memory and processing
speed as compared to an age-controlled group of cancer-free
women, independent of prior HT use (Shilling et al., 2003). No
information was provided as to whether these effects differed by
type of endocrine therapy.

The Tamoxifen Exemestane Adjuvant Multinational (TEAM)
study examined breast cancer patients who commenced
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treatment within 10 weeks of completion of surgery and
chemotherapy if indicated (nearly 2/3 for both tamoxifen
followed by exemestane and exemestane alone groups did not
have adjuvant chemotherapy) and cancer-free controls (van de
Velde et al., 2011). Direct comparison of the use of tamoxifen
or exemestane revealed a significant decline in verbal memory
and executive functioning, especially processing speed, with
tamoxifen use, and no negative effects of exemestane relative
to controls (Schilder et al., 2010). These outcomes were more
pronounced in patients aged 65 and older, suggesting a possible
age-dependent effect of tamoxifen on cognition. Follow-up one
year after cessation of therapy demonstrated improvement in
cognitive scores for all groups.

Finally, the Breast International Group 198 study (BIG 198)
(Thiirlimann et al., 2005) examined postmenopausal patients
with breast cancer who had been randomized to receive
tamoxifen, letrozole, tamoxifen followed by letrozole, or letrozole
followed by tamoxifen (Phillips et al, 2010). Some of these
patients also received chemotherapy (24% for tamoxifen group,
35% for letrozole group). Using a cognitive composite score,
results indicated significantly higher cognitive performance in the
letrozole arm compared with the tamoxifen arm, although both
groups performed below age-adjusted norms on the majority of
tests (Phillips et al., 2010). Additionally, a neuroimaging study
of postmenopausal women found that older women currently
taking tamoxifen had smaller hippocampal volumes as compared
to women taking unopposed estrogen therapy for menopause
(Eberling et al., 2004).

Further investigation to account for menopause HT use,
menopausal status, age since menopause, and pre-treatment
hormonal status is warranted. Nonetheless, clinical trial results
are consistent with the few observational studies that examined
the influence of tamoxifen on cognition in truly chemotherapy-
naive patients. Although limited due to small sample sizes,
unmatched ages, and mixed treatment durations, these studies
consistently showed negative effects of tamoxifen on verbal
memory and fluency (Collins et al., 2009; Lejbak et al., 2010;
Boele et al,, 2015). In summary, tamoxifen, but not Als, may
be associated with negative cognitive effects in postmenopausal
women. However, these effects appear to be temporary as
improvements in cognitive function after therapy completion
have been described (Paganini-Hill and Clark, 2000; Schilder
etal., 2010).

Only two studies have specifically examined endocrine therapy
independent of chemotherapy or radiation therapy as a risk
factor for AD. One study reported a decrease in AD incidence in
treated vs. untreated breast cancer patients (Branigan et al., 2020),
while another study showed no difference in dementia incidence
(Ording et al., 2013).

Other studies to date focused on mixed treatment populations,
and reported conflicting findings of no associations with
dementia (Ording et al., 2013; Bromley et al., 2019; Thompson
etal., 2021), an increased risk of dementia (Liao et al., 2017), or a
reduced risk of mild cognitive impairment (Yaffe et al., 2005), AD
(Breuer and Anderson, 2000; Branigan et al., 2020) and dementia
(Sun et al.,, 2016; Blanchette et al., 2020) with SERM and/or
AT use. In two studies, SERM-treated breast cancer patients

over the age of 70 had 12-18% lower risk of AD or dementia
compared to untreated patients (Sun et al., 2016; Branigan et al.,
2020). The protection associated with the SERMs was exclusively
due to tamoxifen, and not to raloxifene (Branigan et al., 2020).
Additionally, older patients receiving the steroidal aromatase
inhibitor exemestane had a statistically significant decrease in
the incidence of AD and dementia compared with patients
receiving the non-steroidal therapies anastrozole and letrozole
(Branigan et al., 2020).

Discrepancies among studies may be due to different
assessments of outcome (Paganini-Hill and Clark, 2000; Sun et al.,
2016), small sample sizes (Shilling et al., 2003; Palmer et al,,
2008), differences in subject age (Palmer et al., 2008; Branigan
etal., 2020), differences in treatment dose, duration, or type (Yafte
et al., 2005), or other confounding variables such as surgeries or
chemotherapy (Eberling et al., 2004; Branigan et al., 2020). Future
studies are needed to better characterize the relationship between
endocrine therapy and AD risk in women.

Gender-Affirming Hormone Therapy
Transgender people experience gender dysphoria due to
incongruence between their gender identity and the sex they
were assigned at birth (Winter et al., 2016). Gender-affirming
hormone therapy (GHT) is the primary intervention sought by
transgender people. GHT allows the acquisition of secondary
sex characteristics more aligned with an individual’s gender
identity, in part by reducing characteristics of biological sex
(Winter et al., 2016). The mainstay of this lifelong treatment
in transgender men is testosterone, typically delivered as
intramuscular testosterone undecanoate or ester formulation
(Irwig, 2017). Transgender women typically receive oral or
transdermal estrogen preparations often in conjunction with
a gonadotropin-releasing hormone analog or an anti-androgen
(Tangpricha and den Heijer, 2017).

Evidence for negative effects of same-sex hormone deprivation
on cognitive aging and AD risk begs the question of
whether GHT impacts cognitive functioning in transgender
individuals. While neuropsychological research on this topic
is limited, meta-analysis indicates no adverse effects of GHT
in young adult transgender men or women (Karalexi et al.,
2020). Rather, young transgender men exhibited a significant
enhancement of visuospatial ability following testosterone
treatment (Karalexi et al., 2020).

GHT effects on cognition in older individuals are less clear
as only one study of transgender women has investigated the
long-term effects of GHT (van Heesewijk et al., 2021). This
study compared 37 transgender women receiving GHT for at
least 10 years (range 10-42 years) to an age and education level
matched cohort of 222 cisgender women and men, showing that
transgender women performed similar to cisgender men on all
tests, but scored lower than cisgender women on immediate and
delayed recall tests (van Heesewijk et al., 2021). No long-term
studies of transgender men have been published.

Brain imaging studies thus far are also limited to transgender
young adults (Guillamon et al., 2016). MRI studies of transgender
women demonstrate that estradiol plus antiandrogen therapy
was associated with a decrease in brain volume and an increase
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in ventricular volume after four to six months of treatment
(Pol et al., 2006; Zubiaurre-Elorza et al., 2014), which persisted
after at least one year (Spizzirri et al., 2018). Cortical thickness
was also reduced post-treatment, with the strongest changes
observed in occipital and parieto-temporal regions (Zubiaurre-
Elorza et al,, 2014). On the contrary, four months of androgen
treatment increased total brain volume, total gray matter volume,
and hypothalamic and thalamic volumes, as well as cortical
thickness in parieto-occipital regions of transgender men (Pol
et al., 2006; Zubiaurre-Elorza et al., 2014), which correlated with
the increase in serum testosterone levels (Zubiaurre-Elorza et al.,
2014). Additionally, 7 months of testosterone treatment increased
fractional anisotropy in the superior longitudinal fasciculus and
corticospinal tract of transgender men (Rametti et al., 2012).
These increases might be due to anabolic effects of testosterone
and its reduced metabolite dihydrotestosterone, which bind
androgen receptors and to a lesser extent estrogen receptors
(Negri-Cesi et al., 1996). The suppression of testosterone via
antiandrogens in transgender women might therefore diminish
the anabolic tone in brain tissues and induce decreases in
volume (Zubiaurre-Elorza et al, 2014). Epidemiological data
indicates that the use of estrogens in transgender women
confers an increased risk of myocardial infarction and ischemic
stroke, whereas transgender men receiving testosterone lack
any consistent evidence of increased risk of cardiovascular or
cerebrovascular disease (Connelly et al., 2019).

Overall, limited research indicates that GHT impacts the
morphology as well as the connectivity of the brain in
young transgender adults, possibly aligning their brains to
the morphological characteristics of the desired gender. These
changes do not appear to have negative effects on cognition in
the short term. Short and long-term studies of older transgender
people are lacking.

CONCLUSION

Worldwide populations are aging and with advanced age is an
increased risk for neurodegenerative diseases, including AD.
While for many years the prevailing view held women’s greater
longevity relative to men as the main reason for women’s higher
AD prevalence (Seshadri et al., 1997; Hebert et al., 2001), there
is increasing evidence that cerebral aging in women does not
follow the same chronology as in men, and that female-specific
reproductive history factors have a significant impact on later life
cognition and AD risk.

There is growing consensus that, to stem the AD epidemic,
sex-specific interventions that can potentially slow or reverse
the trajectory of AD earlier in the course of the disease will be
required. Recent evidence that AD starts in midlife (Sperling
et al., 2013), and that the timing of the menopause transition
coincides with the prodromal phase of AD, has highlighted
a previously overlooked connection between menopause and
AD risk. Currently, menopause is the most widely investigated
female-specific risk factor for AD (Rahman et al., 2020). The
neuroprotective effects exerted by estrogens have been proposed
as a major reason for reduced signs of cerebrovascular and

metabolic aging in premenopausal women compared to men
(Raz, 2014; Zarate et al., 2017). When estrogen withdrawal occurs
during menopause, effects of accelerated cellular aging become
evident in the CNS and in the periphery, possibly leading to an
increased risk of neurodegenerative events and AD (Wang et al.,
2020a; Mosconi et al., 2021).

While very little work has been done to investigate changes
in cognition and AD biomarkers during the transition to
menopause, recent translational neuroimaging studies have
provided in vivo evidence for emergence of AD endophenotypes
in midlife women (Mosconi et al., 2017a,b, 2018, 2021; Rahman
et al., 2020). Surgically induced menopause is associated with
higher risk of AD and of AD biomarkers, especially in presence
of an earlier age at oophorectomy (Bove et al., 2014). Menopause-
related midlife deficits in glucose metabolism and activation of
amyloidogenic processes could be early indicators of prodromal
AD contributing to the sex difference in AD prevalence.

Altogether, clinical and biomarker data suggest an earlier start
of AD pathogenesis in women than men, with onset in the
perimenopause. The evidence for a connection between estrogen
deprivation and AD risk has prompted investigation of additional
indicators of estrogen exposure as predictors of dementia.
Epidemiological studies to date have yielded conflicting results
regarding estrogen exposure and dementia risk as proxies of
lower lifetime estrogen exposure, such as later age at menarche
and younger age at menopause, have been shown to be associated
with increased, reduced, and null risk of cognitive impairment,
dementia and AD in later life. While results on parity, pregnancy
and number of children are mixed, recent neuroimaging data
indicates a protective role of pregnancy against AD-biomarker
risk in women, but not men (Schelbaum et al., 2021). This
suggests that the biological process of pregnancy and the
hormonal changes that accompany it, rather than lifestyle factors
involved with raising children, may be associated with AD risk,
though the exact relationship remains to be elucidated. More
studies with larger and more diverse samples, neuroimaging
biomarkers, and longer follow-up periods are needed to clarify
the relationships between cumulative estrogen exposure and
AD risk in women.

Among exogenous estrogen exposures, menopausal HT use
has been heavily scrutinized due to the disparity between basic
science, observational studies, and large randomized clinical
trials. HT action on brain is dependent on multiple factors,
including chronological age, stage of reproductive aging, duration
of hypogonadism, and presence of symptoms, as well as the
formulation of HT, route of administration, and the health
status of the brain. There is mounting evidence that HT use
in midlife may help sustain neurological health and reduce the
risk of AD (Brinton, 2008), whereas HT initiated >5 years
after menopause may be less beneficial if not detrimental as
clinical studies with elderly women have shown (Shumaker et al.,
2003). While more work is needed, recent neuroimaging data
in midlife women also suggests that HT use near the time of
menopause may have positive effects on brain aging (Mosconi
etal, 2017a,b, 2018, 2021; Rahman et al., 2020; Schelbaum et al,,
2021). Currently, menopause HT is not recommended for AD
prevention or cognition preservation in women of menopausal
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age. Personalized physician advice which takes into consideration
key factors including age, menopausal stage, symptoms, and
comorbidities, may offer a greater look at how HT impacts AD
risk as compared to the one-size-fits-all approach of randomized
clinical trials, and argues for a precision medicine approach to
HT use (Kim and Brinton, 2021; Kim et al., 2021).

While studies of HC use in midlife and elderly women are
scarce, there is evidence for positive associations between history
of HC use and cognitive function (Egan and Gleason, 2012; Li
et al., 2016). In structural MRI studies, women at risk for AD
who had ever taken HC exhibited larger regional GM volumes
as compared to never users (Schelbaum et al., 2021), which
may be attributed to estrogen receptor mediated increase in
synaptic spine density (Pletzer and Kerschbaum, 2014). Given
that over 100 million women are using HC, with the number
increasing yearly (Taylor et al, 2021), studies investigating
the long-term brain changes that accompany its use are vital
for women’s health.

Neuropsychological studies and clinical trials of endocrine
therapies for estrogen-positive cancer, including SERMs and
aromatase inhibitors, suggest that adverse effects on cognition
can exist, with and without chemotherapy, but may depend
on the specific therapy used (Schilder et al., 2010). While not
conclusive, a growing body of evidence from observational
studies point to potential adverse effects of tamoxifen on
cognition, whereas negative effects of aromatase inhibitor
treatment are currently not consistent (van de Velde et al., 2011),
though risks and benefits should be weighed for every patient.
While studies linking anti-estrogen therapies to AD risk are
scarce, the evidence so far indicates no clear increase in AD risk
with tamoxifen and steroidal aromatase inhibitors, as one study
found a decrease in AD incidence with endocrine therapy use
(Branigan et al., 2020), while another found no association with
dementia incidence (Ording et al., 2013). More work is needed
to examine the effects of endocrine therapy on AD and dementia
risk separately from those of chemotherapy, and to account for
background hormonal milieu, previous HT and HC use, and age
since menopause as important effect modifiers. Investigating the
potential effects of anti-estrogen endocrine therapy for cancer
on cognition is of increasing importance, as current guidelines
permit the choice between different regimens.

While short-term studies reported no negative impact of GHT
on cognition, evidence of the long-term impact of GHT on
cognition is lacking, especially with respect to AD risk in older
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