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Most cells use calcium (Ca2+) as a second messenger to convey signals that affect a
multitude of biological processes. The ability of Ca2+ to bind to proteins to alter their
charge and conformation is essential to achieve its signaling role. Cytosolic Ca2+ (cCa

2+)
concentration is maintained low at ~100 nM so that the impact of elevations in cCa

2+ is
readily sensed and transduced by cells. However, such elevations in cCa

2+ must be
transient to prevent detrimental effects. Cells have developed a variety of systems to
rapidly clear the excess of cCa

2+ including Ca2+ pumps, exchangers and sequestering
Ca2+ within intracellular organelles. This Ca2+ signaling toolkit is evolutionarily adapted so
that each cell, tissue, and organ can fulfill its biological function optimally. One of the most
specialized cells in mammals are the enamel forming cells, the ameloblasts, which also
handle large quantities of Ca2+. The end goal of ameloblasts is to synthesize, secrete and
mineralize a unique proteinaceous matrix without the benefit of remodeling or repair
mechanisms. Ca2+ uptake into ameloblasts is mainly regulated by the store operated Ca2+

entry (SOCE) before it is transported across the polarized ameloblasts to reach the
insulated enamel space. Here we review the ameloblasts Ca2+ signaling toolkit and
address how the common electronegative non-metal fluoride can alter its function,
potentially addressing the biology of dental fluorosis.

Keywords: Ca2+, fluoride, enamel, ameloblasts, store operated Ca2+ entry, amelogenesis imperfecta, fluorosis
INTRODUCTION

Calcium (Ca2+) is the third most abundant metal in nature. The chemical properties of Ca2+, its
radius (0.99 Å), hydration energy and charge, are such that they facilitate its role as a signaling
messenger in cells favored over other cations, such as magnesium (Mg2+), that have a smaller radius
and higher hydration energy (1). Its chemistry also allows Ca2+ to optimally accept binding sites of
irregular geometry, in contrast with Mg2+, which requires octahedral-binding sites that are not
commonly found in proteins. Instead, proteins offer a wide range of binding sites for Ca2+ (2) and
therefore, Ca2+ has become a global phenomenon in cell signaling to the point that it is virtually
impossible to consider a biological function where Ca2+ does not play a role (3). The impact of Ca2+

signaling on cell function is closely linked to changes in its concentration within cells. Cytosolic
Ca2+ (cCa

2+) concentration is maintained low at ~100 nM compared to ~2 mM outside the cell and
therefore, small changes in cCa

2+ have important effects (3). An excessively high elevation in cCa
2+
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could result in mitochondrial Ca2+ overloading, activation of
proteases, activation of DNA-fragmenting enzymes and cell
death, consequently, elevations in cCa

2+ must be transient (4).
Cells have adopted complex systems to clear excess of Ca2+

including pumps, exchangers, Ca2+-binding proteins as well as
using intracellular organelles such as the endoplasmic reticulum
(ER) and mitochondria as Ca2+ sinks (5).

Across cells and organs, the involvement of Ca2+ in signaling
can be limited in scope, such as the elementary events involving
Ca2+ exchange between the ER and mitochondria or can be more
global such as the Ca2+ waves associated with muscle contraction
(6). Although the signaling toolkit in mammalian cells is highly
conserved, the physiological output of these signaling events is
logically distinct across cells and organs. In some ways, it would
be reasonable to consider that the role of Ca2+ in mineralizing
cells, i.e. dental enamel and bone cells, would be well understood
given their reliance on Ca2+ to form these tissues, however, this
isn’t the case. The most highly calcified tissue of vertebrates,
dental enamel, offers an attractive model for potentially decoding
relevant Ca2+ signatures in mineralizing systems, yet knowledge
of the identity and function of the Ca2+ toolkit of the enamel
forming cells remains in its infancy. In this review, we will
explore the most relevant aspects of what is known about Ca2+

transport in enamel cells, the ameloblasts, and will focus on the
effects of a worldwide phenomenon caused by excessive amounts
of another metal, fluoride, and how these two metals converge in
a disease known as dental fluorosis.
Ca2+ IN ENAMEL

Ca2+ is a key element in the composition of dental enamel (7),
being required during the two stages of enamel development,
namely the secretory and maturation stages. In the secretory
stage, thin enamel crystals elongate within an organic matrix
template formed by key enamel structural proteins (e.g.
amelogenin, ameloblastin and enamelin) in a highly organized
fashion (7). During the maturation or mineralization stage,
crystals expand in width and thickness as the organic matrix is
removed. Ca2+ requirements increase at this stage (7).
Ameloblasts are epithelial cells of ectodermal origin that form
and mineralize enamel. A mention of their morphological
characteristics is relevant because secretory ameloblasts are ~65
µm in height and maturation are ~35 µm and both maintain a
narrow diameter of ~5 µm. Therefore, ameloblasts are highly
polarized cells and form a tight cell barrier, limiting intercellular
passage of ions and minerals (7). The possibility of a passive Ca2+

transport system across the interstitial space is an unlikely
scenario given the presence of tight junctions adjoining the
distal pole of maturation stage ameloblasts (8). Passive
transport also appears counterintuitive because the highly
organized nature of the mineralized enamel crystals suggests a
non-haphazard stoichiometric accumulation of ions in the
enamel fluid (9).

Ameloblasts not only use Ca2+ as a signaling messenger, of
which we have limited understanding, they must also transport
Ca2+ safely across the cell. Hubbard indicated that the
Frontiers in Endocrinology | www.frontiersin.org 2
transcellular Ca2+ transport in ameloblasts is complex and
requires an understanding of several steps (10): a) entry, b)
transit and c) extrusion. For a very long time, the molecular
pathways regulating these steps in ameloblasts had remained
undefined. Recently, several studies of human mutations and
rodent models indicate that the store operated Ca2+ entry
(SOCE) pathway is essential for enamel mineralization, being
the primary Ca2+ uptake systems in ameloblasts (11–13).
STORE OPERATED Ca2+ ENTRY IN
AMELOBLASTS

SOCE, also known as Ca2+ release activated Ca2+ (CRAC)
channels, is an essential and widely expressed Ca2+ influx
channel to the extent that SOCE dominates the ability of non-
excitable cells to uptake Ca2+ in physiological and pathological
conditions (14). CRAC channels are formed by the Ca2+ sensors
STIM1 and 2 (stromal interaction molecules) found in the
membrane of the ER, and the channel pore formed by the
ORAI proteins in the plasma membrane (ORAI1-3) (14–16).
CRAC channels are activated following the stimulation of a cell
surface receptor resulting in the production of PLC
(phospholipase-C) and InsP3 (inositol 1,4,5 triphosphate),
which in turns binds to its ER membrane receptors, the IP3R
(17, 18). InsP3-IP3R interactions elicit the release of ER Ca2+

pools via the receptor channel (18, 19). A decline in luminal Ca2+

concentration in the ER triggers substantial conformational
changes in STIM proteins leading to the binding and
activation of the ORAI channel to allow a sustained Ca2+

influx (14, 20). Mutations in STIM1 or ORAI1 genes cause
channelopathy including immune dysfunction and ectodermal
dysplasia, amelogenesis imperfecta (AI), muscle weakness and
anhidrosis (21, 22).

The links between SOCE and AI became evident in a series of
papers published by the Feske laboratory reporting that patients
with mutations in ORAI1 or STIM1 showed clear enamel defects
described as type 2 hypomineralized AI (23, 24). Similar findings
have been reported by other groups (25). Our studies using
CRAC channels inhibitors such as synta-66, BTP-2 and
GSK7975A, in rat ameloblasts, showed that these blockers
markedly reduced or nearly abolished Ca2+ influx via SOCE
(13, 26). We also showed that mice lacking STIM1/2 or ORAI1,
which exhibited deficient SOCE in ameloblasts, had enamel
defects raging from severe hypomineralization to disruptions
in enamel crystal formation (11, 12). Combined, the human and
mouse data highlight the critical role of SOCE as a key Ca2+

influx channel in enamel cells.
POTENTIAL SOCE MODULATORS IN
AMELOBLASTS

Although STIM1/2 and ORAI1-3 proteins are the core
components of SOCE, a number of molecular modulators have
been described having various effects on SOCE, reviewed in (27).
August 2021 | Volume 12 | Article 730913
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These include proteins that stabilize STIM–ORAI interactions,
stimulate STIM1 conformational changes or induce slow Ca2+-
dependent inactivation (27).A recent study reported thatmutations
in the solute carrier SLC10A7 gene results in hypomineralized
enamel and AI (28). A more recent study suggested that
SLC10A7 is a negative modulator of SOCE, because the
knockdown of SLC10A7 resulted in increased SOCE (29). The
mechanism of the interaction between SLC10A7 and SOCE is
unknown, although some possibilities have been proposed: 1)
disrupts sarcoendoplasmic reticulum calcium transport ATPase
(SERCA) function, 2) destabilizes STIM1 oligomers or 3) interferes
withORAI. Based on human andmouse studies, a possible cause of
the enamel defects caused by SLC10A7 mutations was associated
with a deficiency in glycosaminoglycan (GAG) synthesis (28).
GAGs are important components of extracellular matrix and
when GAG degradation pathways are disrupted due to enzyme
deficiency, GAGs accumulate causing skeletal dysplasia, and could
also be the cause of enamel defects (30). However, this novel
connection between SOCE and SLC10A7 suggests that Ca2+

could also play a role.
Another negative modulator of SOCE, known as SARAF

(SOCE-associated regulatory factor), may be an important
factor in SOCE modulation in ameloblasts. SARAF (also
known as TMEM66) is an ER membrane protein that
associates with STIM to promote Ca2+ dependent inactivation
of SOCE (31). We found that Saraf was significantly upregulated
in maturation stage ameloblasts relative to secretory ameloblasts
(32), suggesting a possible function in enamel but no data is
currently available.

Of significance are recent reports on Trpm7-inactive knock-in
mutant mice which showed hypomineralized enamel in the
heterozygous mice (33). The dental phenotype, as well as,
other skeletal anomalies were ascribed to Mg2+ deficiency,
which was required for alkaline phosphatase activity and
mineralization (33). The transient receptor potential melastatin
7 (TRPM7) had been characterized as an ion channel permeable
to divalent cations (Mg2+, Ca2+) linked to an intrinsic kinase
domain, enabling it to modulate cellular functions (34). Faouzi
et al. reported that although they did not consider TRPM7 a
SOCE component, its kinase domain had a modulatory effect on
SOCE (35). Our investigations into the role of TRPM7 in
primary ameloblasts showed that TRPM7 potentiates Ca2+

influx via SOCE, and reported that its function is fully
dependent on the prior activation of the ORAI1 channels (36).
Ca2+ TRANSIT AND REMOVAL IN
AMELOBLASTS

Hubbard’s original groundbreaking studies on the identification
of several Ca2+ proteins in ameloblasts and their upregulation in
maturation (37–40), led him to suggest that Ca2+ may be
transiting the ameloblasts via a type of safe tunneling
mechanism which might implicate the ER tubules, a model he
termed the “transcytosis” model (10, 41). The lack of enamel
phenotype in mice with disrupted function of the Ca2+ binding
Frontiers in Endocrinology | www.frontiersin.org 3
proteins known as calbindins, reinforced this model and
appeared to rule out a possible scenario where calbindins could
ferry Ca2+ across the ameloblasts (42). Besides calbindins,
ameloblasts express several other Ca2+ buffering proteins (8).
However, how Ca2+ may be reaching the distal pole before it is
extruded out of the cell, remains a significant gap in knowledge
in enamel biology.

As highlighted above, it is important that elevations in cCa
2+

concentrations are transient. To control this, cells employ two
efficient systems to remove the Ca2+ from the cytosol: Ca2+

pumps and Ca2+ exchangers (3, 4, 43, 44).
Plasma membrane Ca2+-ATPases (PMCAs), or Ca2+ pumps,

found in the cell membranes, that translocate Ca2+ from the
inside to the outside of the cell, consuming ATP in the process (2,
45). PMCAs have high affinity for Ca2+ (Kd ~0.1 mM) but have
low transport capacity, pumping 1 Ca2+ per ATP consumed (2,
45, 46). PMCAs are coded by the ATP2B genes and three of these
genes (ATP2B1,3 and 4) are expressed in enamel cells, appearing
to be upregulated during the secretory stage (47). However,
whether PMCAs are functional in ameloblasts or whether there
are differences across stages, has not been reported to date.

Ca2+ exchangers are also important in removing cCa
2+ out of

the cell and unlike PMCA, the exchangers do not require ATP
hydrolysis. Instead, the Na+/Ca2+ exchangers use the chemical
energy of the Na+ gradient (the Na+ concentration is much
higher outside of the cell than inside the cell) to remove Ca2+

from the cytosol (3, 4). The exchangers have low Ca2+ affinity but
high transport capacity with estimated values of ~5000 Hz for
NCX (48). Because their function depends on electrochemical
driving forces across the plasma membrane, the exchangers can
operate in a forward mode (Ca2+ extrusion mode), which is their
physiological function, as well as, in a reverse mode (Ca2+

uptake) (49).
There are two main families of Ca2+ exchangers, the NCX and

NCKX. The NCX are Na+/Ca2+ exchangers in the plasma
membrane, coded by the SLC8A genes, that remove 1 Ca2+ in
exchange for 3 Na+ (49). By contrast, the NCKX family of
proteins, coded by SLC24A genes, remove 1 Ca2+and 1 K+ in
exchange for 4 Na+ (50). Unlike the NCX family, NCKXs require
K+ to accomplish the Ca2+ exchange (50, 51). NCX were reported
originally in ameloblasts in an outstanding paper by Okumura
and colleagues (52). However, to date, there are no known
mutations in the SLC8A genes causing AI. It was probably our
identification of NCKX4 in ameloblasts (32, 53, 54) that
improved our knowledge on the proteins having an essential
role in Ca2+ extrusion in ameloblasts. We and others have
suggested that NCKX4 is important in enamel mineralization
(25, 54) because the expression of NCKX4 in maturation is high,
the highest of the six NCKX family members in ameloblasts (54),
and because mutations in the coding gene (SLC24A4) in humans
and mouse models results in enamel defects (25, 55). Its
localization in the distal pole of maturation ameloblasts would
be consistent with a role in Ca2+ extrusion likely being more
prominent in maturation (54). However, there are no currently
published data on the functionality of NCKX4, and no data in
maturation stage ameloblasts for NCX.
August 2021 | Volume 12 | Article 730913
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DISRUPTIONS ON Ca2+ HOMEOSTASIS:
THE CASE OF FLUOROSIS

Having briefly described the broader picture of the Ca2+ handling
system in ameloblasts, an interesting case study linking an
enamel disease and disruptions in Ca2+ homeostasis is
represented by dental fluorosis, a disease that arises when
excessive amounts of fluoride are ingested during childhood,
the time during which enamel development takes place (56, 57).
The effects offluoride on enamel are dose-dependent (58, 59) and
result in pitted or discolored enamel prone to fracture, and
increased wear and caries (56, 58). In chronic situations, fluorosis
can lead to skeletal dysfunction causing bone breakage (58). The
prevalence of dental fluorosis varies across countries. In the US,
~41% of adolescent population showed varying degrees of
fluorosis (60). In India, dental fluorosis has a major impact
with estimates of ~62 million people being affected (61). Clearly,
dental fluorosis remains a world health issue, and despite decades
of research, the proximate causes remain unclear.

EFFECTS OF FLUORIDE ON ENAMEL

The benefits offluoride in caries prevention have been known for
decades. Therefore, the controlled supplementation offluoride in
drinking water or table salts has become a common practice in
many countries. In the US, the most recent recommended
concentration of fluoride in drinking water is ~0.7 parts per
million (ppm), providing the best balance of protection from
dental caries while limiting the risk of dental and/or skeletal
fluorosis. At this concentration, fluoride has a positive effect on
enamel strengthening chemical bonds in the formed enamel
crystals, decreasing the risk of caries once the enamel crown has
erupted (62–64). Excessive consumption of fluoride however
leads to retention of enamel matrix proteins, e.g. amelogenin,
and hypomineralization (58, 64). The effects on ameloblasts are
stage-dependent with differences observed in the secretory and
maturation stages (62–64). In the secretory stage, excess of
fluoride inhibits protein secretion whereas in maturation it
disrupts the cyclic modulation of ruffled-to-smooth ended
ameloblasts which is important for ion transport (58, 59, 65).
It has been reported that the ameloblast cell line LS8 treated with
≥1 mM concentrations of fluoride (NaF), results in ER stress and
unfolded protein response (UPR) (66–69). This evidence
suggests that excess of fluoride affects ameloblast biology,
which could result in disruptions in crystal formation.
Bronckers and colleagues suggested that fluoride causes
hypermineralization of the enamel resulting in an increase in
the proton load, a byproduct of crystal formation (65).
Interestingly, they propose that this hypermineralization effect
results in a barrier that prevents proper ion transport and protein
recycling causing the hypomineralization effect associated with
dental fluorosis (65).

One consideration that remains unclear is how fluoride access
the ameloblasts. Fluoride could plausibly cross the ameloblast
membranes via diffusion as hydrogen fluoride (HF), as reported
in other cells (70). However, we have previously raised the
Frontiers in Endocrinology | www.frontiersin.org 4
possibility that it crosses the ameloblasts’ membrane via
chloride channels, given their expression in ameloblasts (53,
71). Currently, the cellular uptake pathway of fluoride in enamel
cells is not clear.
INTERACTIONS OF FLUORIDE
AND Ca2+ HOMEOSTASIS

Associations between fluoride and Ca2+ have been reported (70).
Rats drinking fluoridated water also receiving a dietary Ca2+

supplement showed ameliorated negative effects in their bones
and kidney (analyzed histologically) than rats drinking the same
fluoridated water but without receiving a Ca2+ supplement,
strongly suggesting that Ca2+ has a protective role in fluorosis
toxicity (72). It is also noteworthy that acute NaF exposure in rats
resulted in hypocalcemia in plasma (73). Experiments conducted
in osteoblasts and in rat proximal tubule showed that, in the
presence of external Ca2+, fluoride stimulation at 10 µM
concentration results in a rapid elevation of cCa

2+ (74, 75).
These elevations in cCa

2+ were likely mediated by activation of
G-protein-coupled receptors (GPCRs) (74, 75). These reports
support the notion that fluoride modulates Ca2+ homeostasis in
cells, as summarized in Figure 1.
THE DISRUPTIVE EFFECTS OF FLUORIDE
ON AMELOBLAST Ca2+ SIGNALING

A recent study using rat primary ameloblasts and LS8 cells
exposed to various concentrations of fluoride in vitro showed
decreased internal Ca2+ in the ER and SOCE (76). These effects
were observed when using high NaF concentrations (0.5 mM, 1
mM), equivalent to ~9 ppm and 18 ppm, respectively. In primary
ameloblasts, these fluoride treatments decreased the ER Ca2+

within 30 minutes of incubation, and resulted in ER stress (76).
LS8 cells exposed to bromide (NaBr) did not change these
functions. An unexpected finding of the study was that treating
LS8 and HEK-293 cells with the same concentration (1 mM) of
NaF in similar conditions did not affect ER Ca2+ or SOCE in the
latter. Moreover, NaF affected mitochondrial function in LS8
cells. Because this was not investigated in HEK-293 cells, we
performed the seahorse mitochondrial assay like that was
reported by Aulestia et al. in LS8 cells. Results show that while
mitochondrial respiration in LS8 cells was negatively affected by
NaF (1 mM) (Figure 2A), HEK-293 cells were not (Figure 2B)
supporting the notion that mineralizing cells might be more
sensitive to fluoride than other cells.

The fluoride concentrations used above are relatively high
and mimic the effects of fluorosis. However, we found that
fluoride, at lower dosage, also had a negative effect on Ca2+

signaling in LS8 cells. When LS8 cells were treated for 24 hours
with 10 µM of NaF, equivalent to ~0.2 ppm, it disrupted the
function of the ER-localized Ca2+ channel IP3R and the activity
of the SERCA pump during Ca2+ refilling of the ER (76). These
data, we believe, provide a mechanism that can potentially
August 2021 | Volume 12 | Article 730913
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FIGURE 1 | Schematic of the effects of fluoride in enamel cells. Fluoride modulates Ca2+ homeostasis with a dual effect. Low concentration leads to normal
cytosolic and ER Ca2+ load, lack of ER stress leading to normal ER and mitochondrial function. High fluoride induces abnormal cytosolic and ER Ca2+, possibly via
impairment of G-protein activation, and dysregulates cell metabolism.
A

B

FIGURE 2 | Mitochondrial OCR in fluoride treated cells. Oxygen consumption rate (OCR), basal respiration, ATP production and maximal respiration in LS8 cells
(A) and in HEK-293 cells (B) after 4 hours of NaF (1 mM) pre-treatment. Oligomycin (1 µM), FCCP (1.5 µM) and rotenone/antimycin A (Rot/AA - 0.5 µM) were serially
added in a Seahorse XFe24 Analyzer to assess differences in oxidative phosphorylation. Fluoride treatment affects OCR in the enamel LS8 cells but not HEK-293
cells (ns, not significant). Data represent the mean ± SEM of 3 independent experiments using unpaired Student’s t test. (**p < 0.01, ***p < 0.001).
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address the biology of dental fluorosis or, at the very least,
provide important information on the effects of fluoride in
ameloblast Ca2+ physiology.
SUMMARY

Enamel is a prototypical example of biologically controlled
mineralization. Ameloblasts form a boundary that encloses the
space of mineral formation and have the ability to control the
introduction of ions into that space. The introduction of Ca2+ is
essential for the mineralization of the long and thin
hydroxyapatite enamel crystals. SOCE is the dominant system
controlling the uptake of Ca2+ in ameloblasts. As Ca2+ crosses the
ameloblast’s membrane, SERCA helps weather the effects of the
Ca2+ storm but surely other mechanisms must be in place to
ensure that ameloblasts protect cell function. However, little is
known about these other processes including the capacity of
mitochondria to uptake Ca2+ or the practicability of the
Frontiers in Endocrinology | www.frontiersin.org 6
clearance mechanisms by pumps and exchangers. Such
information would be important to address the ins and outs of
how enamel is mineralized by the ameloblasts. At any rate, it
would appear that several components of the Ca2+ signaling
toolkit of the ameloblasts are hindered by fluoride altering their
physiology and function, likely affecting enamel mineralization.
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