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Crohn’s disease (CD) and ulcerative colitis (UC), the two main forms of inflammatory bowel disease (IBD),
affect several million people worldwide. CD and UC are characterized by periods of clinical remission and
relapse. Although IBD patients present chronic alterations of the gut microbiome, called dysbiosis, little
attention has been devoted to the relapse-related microbiome. To address this gap, we generated shotgun
metagenomic data from the stools of two European cohorts—134 Spanish (followed up for one year) and
49 Belgian (followed up for 6 months) subjects—to characterize the microbial taxonomic and metabolic
profiles present. To assess the predictive value of microbiome data, we added the taxonomic profiles gen-
erated from a previous study of 130 Americans. Our results revealed that CD was more dysbiotic than UC
compared to healthy controls (HC) and that strategies for energy extraction and propionate production
were different in CD compared to UC and HC. Remarkably, CD and UC relapses were not associated with
alpha- or beta-diversity, or with a dysbiotic score. However, CD relapse was linked to alterations at the
species and metabolic pathway levels, including those involved in propionate production. The random
forest method using taxonomic profiles allowed the prediction of CD vs. non-CD with an AUC = 0.938,
UC vs. HC with an AUC = 0.646, and CD relapse vs. remission with an AUC = 0.769. Our study validates
previous taxonomic findings, points to different relapse-related growth and defence mechanisms in CD
compared to UC and HC and provides biomarkers to discriminate IBD subtypes and predict disease
activity.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Crohn’s disease (CD) and ulcerative colitis (UC), the two major
subtypes of inflammatory bowel disease (IBD), are chronic intesti-
nal disorders characterized by periods of relapse and remission.
Distinguishing CD from non-CD and UC from non-UC remains a
challenge as this process is traditionally based on a combination
of clinical, endoscopic, histological, and radiological criteria [1].
However, proper distinction between CD and UC can still not be
achieved in up to 10% of patients [2].

Although the exact cause of CD and UC remains unknown, stud-
ies have shown that gut microbiota plays a key role in IBD develop-
ment, with patients who suffer from this disorder showing an
imbalance in the microbial community, known as dysbiosis [3–
6]. This dysbiosis is characterized by reduced microbial diversity,
a shift in the abundance of Firmicutes phylum bacteria towards
Proteobacteria [7–9], and disruption of metabolites, including acyl-
carnitines, bile acids, and short-chain fatty acids (SCFAs) [10].
SCFAs have often been associated with gut inflammatory processes
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and IBD [11,12], as they can modulate the host’s immune response
[13,14].

Although these findings are highly relevant to explain differ-
ences between healthy individuals and IBD patients, little attention
has been given to predicting clinical relapse in IBD. CD and UC
patients have a 44% and 38% risk of relapse, respectively, after dis-
continuation of medication such as anti-TNFs [15]. An attempt
using clinical, genetic, endoscopic, histological, serological and fae-
cal markers to predict relapse has not yet provided an reliable
prognostic tool [16]. Furthermore, approximately 75% of patients
with CD will ultimately require surgery due to disease complica-
tions or unsuccessful treatment [17]. This surgery involves the
resection of the inflamed section of the intestine but it does not
provide a cure. Indeed, most of these patients will suffer a relapse
known as postoperative recurrence (POR), making it necessary for
them to undergo another surgical intervention [18]. Although
many clinical risk factors, such as active smoking, perforating dis-
ease, shorter disease duration, and CD development at a younger
age, have been associated with POR, these indicators alone are
insufficient to predict the outcome of patients both after a remis-
sion period and after surgery [17].

Few studies have evaluated microbiome data in predicting
relapse in IBD or, more specifically, in POR. Microbiome data based
on bacterial taxonomic profiling [19,20] and bacterial and fungal
loads [21] have provided promising predictive tools for relapse in
POR and in a follow-up study, respectively. However, as most of
these studies were performed with 16S rRNA data, further insights
into the metabolic pathways involved in relapse or POR could not
be achieved.

In the present study, we performed a shotgun sequencing
metagenomics analysis of faecal samples collected from healthy
individuals, patients of the two major IBD subtypes, and CD
patients who needed surgical resection due to disease severity.
The objectives were to find an association between potential
microbial taxonomic (species level) and metabolic pathway pro-
files and disease course, and to propose a tool to discriminate CD
from non-CD, and UC from non-UC, and to predict relapse.
2. Methods

2.1. Study cohorts

To evaluate microbiome changes related to disease activity, we
recruited two discovery cohorts of patients in a longitudinal set-
ting. A Spanish cohort recruited at the Hospital Vall d’Hebron (Bar-
celona, Spain) and a Belgian cohort recruited at the University
Hospital Leuven (Belgium), both with the approval of their respec-
tive local Ethics Committees. To evaluate the predictive value of
microbiome data, we also included an American cohort retrieved
from the Inflammatory Bowel Disease Multi’omics Database
(https://ibdmdb.org/).

The Spanish cohort consisted of CD (n = 34) and UC (n = 33)
patients who were clinically in remission at baseline and were fol-
lowed up for one year (Supplementary Table 1). This cohort was
part of a previous study and clinical data of patients could be found
in Pascal et al. [5]. They all provided a faecal sample at baseline and
at relapse or at month 12 if they remained in remission. Clinical
diagnosis of patients from this cohort was based on the Harvey-
Bradshaw score for CD and the Colitis Activity Index for UC. Non-
IBD subjects (n = 67) were included as healthy controls (HC), and
these subjects provided faecal samples only at baseline. For all par-
ticipants, the use of antibiotics during the two months before
entering the study was an exclusion criterion. A total of 212 faecal
samples were processed for DNA shotgun sequencing.
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The Belgian cohort consisted of CD patients (n = 49) who
needed surgical intervention due to therapy failure and/or devel-
opment of penetrating and/or stricturing complications of the dis-
ease. Patients’ characteristics can be found in Supplementary
Table 2. These patients were at risk of developing POR, which
was defined by a Rutgeerts score � i2b. This cohort was also part
of a previous study [19]. A total of 98 faecal samples were provided
before surgery and at month 6 post-surgery and were processed for
DNA shotgun sequencing.

The American cohort consisted of 1638 stool samples (750 CD,
459 UC, 429 non-IBD) collected from 65 CD patients, 38 UC
patients and 27 non-IBD subjects. Illumina sequencing libraries
were prepared using the Nextera XT DNA Library Preparation kit
(Illumina), following the protocol recommended by the manufac-
turer. Libraries were sequenced on HiSeq 2x101 to yield � 10 mil-
lion PE reads/sample.

2.2. DNA shotgun sequencing

For the Spanish and Belgian cohorts, a frozen aliquot (200 mg)
of each faecal sample was suspended in 250 ml of guanidine thio-
cyanate–0.1 M Tris (pH 7.5) and 40 ml of 10% N-lauroyl sarcosine.
DNA was then extracted as described in [21].

For the Spanish cohort, the DNA shotgun library was prepared
as described in Qin et al. [22]. The sequencing procedure was per-
formed by the Beijing Genomics Institute (BGI) using the Illumina
HiSeq platform and following Illumina standards [22]. The
sequencing process provided an average of 47 million paired-end
sequence reads per sample.

For the Belgian cohort, the DNA shotgun library was prepared
using the Nextera XT DNA Library Prep Kit and the Illumina HiSeq
sequencing platform. The sequencing process provided an average
of 95 million paired-end sequence reads per sample. Sequence data
will be deposited in the NCBI database following publication.

2.3. Upstream sequence analysis: Quality control, decontamination
and profiling

The KneadData v0.7.4 pipeline (https://huttenhower.sph.har-
vard.edu/kneaddata) was used to pre-process and decontaminate
the sequence reads. KneadData performed a quality filtering of
the reads using trimmomatic [23] and then mapped them against
a human reference genome database using bowtie 2 [24]. Reads
with lengths below 50% of the total input read length and also
those that mapped with the human genome were discarded from
further analysis.

The HumanN3 pipeline [25] was then used to map the
sequences against the UniRef90 database with default parameters
to obtain taxonomic and functional profiles. Taxonomic profiles
were provided by the MetaPhlan’s intermediary output file in the
HumanN3 pipeline and functional profiles from the final output.
Since HumanN3 does not natively support paired-end reads as
input, the corresponding FASTQ files were concatenated before
sequence processing. All feature abundances that did not exceed
0.1% of the data with a minimum prevalence of 10% of the total
samples were excluded from further analysis.

2.4. Downstream sequence and statistical analysis

Taxonomic profiles, output of HumanN3, were generated in
stratified relative abundance, from phylum to species level. For this
reason, no normalization was applied, but the stratified relative
abundances were extracted according to the taxonomic level of
interest (species level). The Chao1 and Shannon indexes were cal-
culated to estimate microbial alpha-diversity. Weighted and
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unweighted UniFrac distances were calculated to estimate beta-
diversity [26].

A dysbiosis estimator or score, as proposed by Lloyd-Price et al.
[10], was calculated using the unweighted UniFrac distances. This
score was defined as the median unweighted UniFrac distance of
any given sample with a reference set that was built with 67 sam-
ples from HC. Two-sided Mann-Whitney U tests were performed to
compare dysbiosis scores between groups of samples with a target
false discovery rate (FDR) < 0.05.

Since MetaCyc pathways (default pathways output of
HumanN3) were not gut-specific and lacked some relevant meta-
bolic routes for gut homeostasis, gene families were regrouped
(summed) into KO (KEGG Orthology) categories and then mapped
against gut metabolic modules using the omixer-rpmR package in
R [27]. The resulting modules were regrouped by identifier and
then normalized using the trimmed mean of M-values (TMM) of
the edgeR package in R [28], and they were also log-transformed
and sum-normalized to copies per million (CoPM) instead of
counts per million (CPM) since the HumanN3 output data were
presented in reads per kilobase (RPK). CoPM could be considered
as transcripts per million (TPM) in RNA-Seq.

Statistical analyses were performed in R (version 4.0.3). Princi-
pal coordinate analysis (PCoA) was performed using the phyloseq
package[29] based on unweighted and weighted UniFrac distances
for taxonomical profiles and on Bray-Curtis distances [30] for func-
tional profiles. The contribution of clinical factors to the effect size
was calculated employing permutational analysis of variance (PER-
MANOVA) using the adonis2 function from R’s vegan package
(https://cran.r-project.org/web/packages/vegan/index.html). Dif-
ferential abundances were assessed using the limma-voom
method [31]. Limma is a Bioconductor R package that allows the
building of linear multivariable models to test for differentially
abundant features. Limma has a feature that allows adjustment
for mean–variance between samples. This feature, known as voom,
enables the inclusion of covariates in the model to account for con-
founding variables and reduce type I and type II errors. This
method also allows adjustment for unknown variables (surrogate
variables) using the sva package. The models did not consider
any covariates such as patients’ characteristics and treatments,
apart from patient identifiers on paired analyses because they were
not found to be significantly different after the PERMANOVA test
(Supplementary Table 3). Significance tests were performed using
the eBayes function provided by the limma package. This function
computed moderated t-statistics, F-statistics and log-odds of dif-
ferential abundance by empirical Bayes moderation of the standard
errors towards a global value. P-values were subjected to multiple
hypothesis testing correction using the Benjamini-Hochberg
method with an FDR threshold of 0.15. The statistical power of
the models was assessed by plotting the distribution of p-values
of the model without including covariates, the model including
known covariates, and the model including known and unknown
covariates. Surrogate variables were included in the model only
when they improved the statistical power of the test. For interpre-
tation purposes, we considered the results most relevant as those
with an FDR below 0.05 and a log2FC cut-off of 0.58 (fold-change
of approximately 1.5).

2.5. Construction of predictive models using random forest

Random forest is a supervised learning algorithm that con-
structs a model with multiple decision trees. At each tree split,
the model uses a given number of variables that are bootstrapped
randomly. The output of the random forest is the average of the
prediction of all the decision trees. We used random forest to pre-
dict disease vs. non-disease or disease activity based on the micro-
bial signatures discovered in the differential abundance analysis,
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and as implemented in the R package caret (Max Kuhn 2021; R
package version 6.0–86. https://CRAN.R-project.org/pack-
age=caret). The default number of trees (500) was applied and
the number of variables at each split (mtry) that presented a better
ROC (receiver operating characteristic) was selected. The model
was trained with 2/3 of the training set using 10-fold cross-
validation. The test set consisted of 1/3 of the cohort of interest.
A validation set was also included.
3. Results

3.1. Alpha- and beta-diversity, and dysbiosis scores in IBD subtypes
and activity.

To confirm previous reports on diversity in the different IBD
subtypes and in remission [5,8,10], we calculated the Chao1 and
Shannon indexes and the dysbiosis scores based on the taxonomic
profiles issued from the DNA shotgun sequencing data of the Span-
ish cohort. Our findings mirrored previous 16S rRNA-based obser-
vations showing that CD was associated with a significant
reduction in richness (Chao1 index) and evenness (Shannon index)
compared to HC and UC, while UC did not display lower diversity
compared to HC (Fig. 1A and B). Beta-diversity analysis using
weighted and unweighted UniFrac distances also confirmed previ-
ous results showing that, at the global microbial composition level,
the microbial community of CD patients formed a separate cluster
from that of HC and UC (PERMANOVA, p < 0.001), while the UC
microbiome was similar to that of HC (PERMANOVA, p = 0.25)
(Fig. 1C and D).

To evaluate the level of dysbiosis, we calculated the dysbiosis
score based on unweighted UniFrac dissimilarities to non-IBD
metagenomes, as described by Lloyd-Price et al. [10]. This analysis
revealed a clear alteration in CD compared to HC (two-sidedMann-
Whitney U test, p = 3.2E-13) and UC (Mann-Whitney U test,
p = 1.7E-12) (Fig. 1I). CD and UC patients were followed up for
12 months and faecal samples were collected and analysed around
the relapse period (using the Harvey-Bradshaw Index for CD and
the Colitis Activity Index for UC) or at month 12 if they remained
in remission. Findings showed that neither alpha-diversity nor
dysbiosis scores were successful in differentiating disease activity
status (relapse vs. remission) for either CD or UC (Fig. 1E, F, G, H,
J, and K).

The Belgian cohort showed similarity with the Spanish cohort
when patients were in remission but not when they underwent a
flare, as assessed by beta-diversity (p < 0.05 for weighted and
unweighted UniFrac distances) analysis (Supplementary Fig. 1).
This observation could be explained by the fact that most of the
Belgian CD patients needed surgical intervention due to therapy
failure and/or the development of penetrating and/or stricturing
complications of the disease, and, therefore, they presented a more
severe disease phenotype than the patients in the Spanish cohort.
Like the Spanish cohort, recurrence vs. remission status in the Bel-
gian cohort did not show significant differences in alpha- or beta-
diversity (Supplementary Fig. 2).
3.2. Differentially abundant species in IBD subtypes and disease
activity

In the Spanish cohort, differential abundant (DA) species analy-
sis showed an enrichment of 12 and a depletion of 23 species in CD
samples (n = 33) compared to UC (n = 33) at baseline (i.e., patients
in remission) and HC (n = 67), respectively (Fig. 2A, Supplementary
Tables 4 and 5). The most significant results corroborated previous
reports on the alteration of the microbiome composition of CD
compared to non-CD subjects. These results included the increase
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Fig. 1. Diversity and dysbiosis analyses based on the taxonomic profile of samples from the Spanish cohort. Alpha-diversity analyses using the Chao1 (A) and Shannon (B)
indexes show significant differences between CD, UC and HC. Beta-diversity analyses using unweighted (C) and weighted (D) UniFrac Principal Coordinate Analysis (PCoA)
clustered CD away from UC and HC. The Chao1 and Shannon indexes could not differentiate between relapse and remission in samples from CD (E and G) or UC (F and H).
Dysbiosis score analyses also found significant differences between CD and UC and between CD and HC (I), but not between relapse and remission in CD (J) and UC (K). Crohn’s
disease (CD), ulcerative colitis (UC), and healthy control (HC).
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in relative abundance of Escherichia coli in CD (FDR = 3.1E-08
against UC, FDR = 0.0002 against HC), Ruminococcus gnavus
(FDR = 3.4E-08 against UC, FDR = 1.26E-07 against HC), and
Clostridium clostridioforme (FDR = 2.9E-08 against UC, FDR = 6.9E-
07 against HC) in CD compared to UC, and a decrease in Faecalibac-
terium prausnitzii in CD compared to UC and HC [3,32,33]. Remark-
ably, Veillonella parvula was one of the most significantly enriched
species in CD compared to UC and HC (FDR = 1.3E-09 against UC,
FDR = 3.8E-13 against HC).

To evaluate alterations in the microbiome related to disease
severity in CD, we performed various comparisons: baseline
(REM-TP0->REL, samples collected from patients in remission at
baseline who relapsed during the follow-up period, n = 13) vs. final
relapse samples (REL-TP1, n = 13), and baseline (REM-TP0->REM,
samples collected from patients in remission at baseline who
remained in remission after one year of follow-up, n = 20) vs. final
remission samples (REM-TP1, n = 22) in a pairwise manner, and we
also compared remission (REM-TP1, n = 22) vs. relapse samples
(REL-TP1, n = 13) during the follow-up. Relapse samples (REL-
TP1) were depleted of 10 microbial species compared to remission
samples (REM-TP1) (Supplementary Table 6). The shift from remis-
sion (REM-TP0) to relapse (REL-TP1) was not associated with sig-
nificant differences. To uncover potential biomarkers of relapse,
we also compared baseline samples of CD patients who remained
in remission after one year (REM-TP0->REM) with those who
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relapsed during the follow-up year (REM-TP0->REL). As a result,
patients who relapsed (REM-TP0->REL) were enriched in three bac-
terial species (Ruminococcus torques, FDR = 2.3E-07; Clostridium
bolteae, FDR = 0.0004; Fusicatenibacter saccharivorans,
FDR = 3.11E-06) compared to those who remained in remission
(REM-TP0->REM) (Supplementary Table 7) (Fig. 2C).

Compared to HC (n = 67), UC patients (n = 33) were depleted in
two species including Methanobrevibacter smithii (FDR = 0.03)
(Supplementary Table 8). No species was altered in baseline sam-
ples of patients who relapsed (REM-TP0->REL, n = 17) when com-
pared to relapse samples (REL-TP1, n = 17), but when comparing to
baseline samples of patients who remained in remission (REM-
TP0->REM, n = 16), two species were enriched (Supplementary
Table 9).

In the Belgian cohort, CD patients who underwent POR (n = 21)
presented an enrichment of Dialister invisus, Ruthenibactrium lac-
tatiformis, Parabacteroides distasonis and Bacteroides stercoris,
among others (FDR < 0.05), but a depletion of Ruminococcus lactaris
(FDR = 0.048) compared to those who remained in remission
(n = 28) (Supplementary Table 10). CD patients in remission in
both the Spanish (n = 33) and Belgian (n = 28) cohorts did not pre-
sent significant microbial differences, as reflected by the PERMA-
NOVA test on weighted UniFrac distances, while patients who
underwent a flare showed significant differences (PERMANOVA,
p = 0.038, n = 13 for the Spanish and n = 70 for the Belgian cohort).



Fig. 2. Differential abundance analysis of taxonomic and metabolic pathway profiles. Log2FC of significant differentially abundant species (A) and pathways (B) between
baseline samples of CD and UC/HC (positive logFC refers to enrichment in CD). (C) Log2FC of significant differentially abundant species between CD REM-TP0->REL samples
and REM-TP0->REM samples (positive logFC refers to enrichment in REM-TP0->REL samples). (D) Log2FC of significant differentially abundant pathways between REL-TP1
samples and REM-TP1 samples (positive logFC refers to increase in relapse). Threshold for significance: q < 0.05 and log2FC > 0.58. Crohn’s disease (CD), ulcerative colitis (UC),
healthy control (HC); REM-TP0->REL: samples collected from patients in remission at baseline who relapsed during the follow-up period; REM-TP0->REM: samples collected
from patients in remission at baseline who remained in remission after one year of follow-up; REL-TP1: samples collected from patients who relapsed; REM-TP1: samples
collected from patients who remained in remission. Threshold for significance: q < 0.05 and log2FC > 0.58.
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3.3. Differentially abundant pathways in IBD subtypes and disease
activity

In the Spanish cohort, DA pathway analysis of samples collected
at baseline (i.e., patients in remission) showed that four Gut Meta-
bolic Modules (GMMs) were enriched and two were depleted in CD
(n = 33) compared to UC (n = 33), while four were enriched and
three were depleted in CD (n = 33) compared to HC (n = 67). Among
the implicated pathways, propionate production I, lysine degrada-
tion II, and anaerobic fatty acid beta-oxidation were enriched in CD
compared to both UC and HC (FDR < 1E-04). The trehalose degra-
dation and glutamate degradation III pathways were found to be
depleted in HC and UC, respectively, compared to CD. Propionate
production II and lactate consumption II were depleted in CD com-
pared to HC and UC (FDR < 1E-04) (Fig. 2B, Supplementary Tables
6485
11 and 12). Interestingly, Escherichia coli was the main contributor
of the three enriched pathways and Anaerostipes hadrus was the
main contributor of the two depleted pathways (Fig. 3). No GMMs
were found differentially abundant in UC samples at baseline com-
pared to HC.

Samples from CD patients who relapsed (REL-TP1, n = 13) were
enriched in three GMMs, including propionate production II
(FDR = 0.009), lactate consumption II (FDR = 0.009) and glutamate
degradation I (FDR = 0.02), compared to those from CD patients in
remission (REM-TP1, n = 22), with Anaerostipes hadrus as the main
contributor for the two first pathways and Acidaminococcus intes-
tini for the last one (Fig. 2D; Supplementary Table 13). However,
in UC, a shift from remission (REM-TP0->REL, n = 17) to relapse
(REL-TP1, n = 17) was not associated with any significant changes
in the pathways. No microbial markers of UC relapse were found



Fig. 3. Contribution of species to different metabolic pathways. Escherichia coli was the most important contributor to the propionate production I, lysine degradation II and
anaerobic fatty acid beta-oxidation pathways, which were enriched in CD compared to UC and HC, and to the trehalose degradation pathway, enriched in CD compared to UC
alone. Anaerostipes hadruswas the main contributor to the propionate production II and lactate consumption II pathways, which were depleted in CD compared to UC and HC.
The propionate production II, lactate consumption II and glutamate degradation I pathways were also enriched in CD REL-TP1 compared to CD REM-TP1 samples,
Acidaminococcus intestini being the main contributor of the latter. REM-TP0->REL: samples collected from patients in remission at baseline who relapsed during the follow-up
period; REM-TP0->REM: samples collected from patients in remission at baseline who remained in remission after one year of follow-up; REL-TP1: samples collected from
patients who relapsed; REM-TP1: samples collected from patients who remained in remission. Threshold for significance: q < 0.05 and log2FC > 0.58.
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(REM-TP1, n = 27 vs. REL-TP1, n = 17) and no predictive functional
biomarkers of relapse could be recovered from UC baseline sam-
ples (REM-TP0->REM vs. REM-TP0->REL).

In the CD Belgian cohort, no pathway was found to be signifi-
cantly associated with relapse. Only one pathway in samples at
baseline (patients with active disease, n = 21) showed a trend
towards enrichment (lactate consumption II, FDR = 0.13) compared
to samples from patients who remained in remission 6 months
after surgery (n = 28).

3.4. Predictive value of the microbiome data to discriminate IBD from
non-IBD, and relapse from remission

To assess the predictive value of the microbial signatures dis-
covered and their consistency between cohorts, we built random
forest models based on the abundance of microbiome species to
predict health status and disease activity. To this end, in addition
to the Spanish cohort, which allowed the discovery of potential
biomarkers of IBD vs. non-IBD and IBD subtypes, and the Belgian
6486
cohort, we included another large and longitudinal cohort (Ameri-
can cohort) retrieved from the Inflammatory Bowel Disease Multi-

omics Database (http://ibdmdb.org). The American cohort con-
sisted of 1638 stool samples (CD, n = 750; UC, n = 459; non-IBD,
n = 429) collected from 65CD patients, 38 UC patients and 27
non-IBD subjects.

First, to distinguish CD from HC and UC, we built a model using
the 26 microbial species found altered between CD-TP0 and HC
and/or between CD-TP0 and UC-TP0 as predictor variables (Bac-
teroides caccae, Bifidobacterium pseudocatenulatum, Blautia hansenii,
Blautia obeum, Blautia sp CAG 257, Clostridium bolteae, Clostridium
clostridioforme, Clostridium innocuum, Coprococcus comes, Dorea
formicigenerans, Dorea sp CAG 317, Eggerthella lenta, Erysipelato-
clostridium ramosum, Escherichia coli, Eubacterium eligens, Eubac-
terium hallii, Eubacterium rectale, Eubacterium siraeum,
Faecalibacterium prausnitzii, Intestinibacter bartlettii, Lachnospira
pectinoschiza, Roseburia faecis, Ruminococcus gnavus, Ruminococcus
lactaris, Ruthenibacterium lactatiformans and Veillonella parvula).
The American cohort was used as a training (⅔) and test (⅓) data-
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set because of its large size, and the European (Spanish + Belgian)
cohort as a validation dataset. The model achieved an area under
the receiver operating characteristic (ROC) curve (AUC) of 0.868
on the training set (CD = 500, non-CD = 592) using a 10-fold
cross-validation, 0.908 on the testing set (CD = 250, non-
CD = 296), and 0.938 on the validation European cohort
(CD = 166, non-CD = 144) (Fig. 4A).

Second, to discriminate UC from HC, we built a random forest
model using the abundance of the 9 differentially abundant species
uncovered between UC-TP0 samples and HC (Bifidobacterium pseu-
docatenulatum, Blautia hydrogenotrophica, Clostridium sp, CAG 242,
Eubacterium sp. CAG 38, Firmicutes bacterium CAG 110, Gemmiger
formicilis, Methanobrevibacter smithii, Oscillibacter sp.57 20 and
Paraprevotella xylaniphila). The American cohort was used as a
training (⅔) and test (⅓) dataset and the Spanish cohort as a vali-
dation dataset. This model achieved a ROC AUC of 0.736 in the
training set (UC, n = 306; HC, n = 286), 0.765 on the testing set
(UC, n = 153; HC, n = 143) and 0.646 on the validation cohort
(UC, n = 77; HC, n = 67) (Fig. 4B).
Fig. 4. Area under the receiver operating characteristic (ROC) curve (AUC) of the
random forest models built from the abundance of predictor species. (A) The CD vs.
non-CD model was built using the American cohort as the training (⅔) and test (⅓)
dataset because of its large size, and the European (Spanish + Belgian) cohort as the
validation dataset. (B) The UC vs. non-IBD model and (C) CD baseline remission vs.
relapse model were built using the American cohort as the training (⅔) and test (⅓)
dataset, and the Spanish cohort as the validation dataset.
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Third, to predict relapse in CD patients, we used the 11 most dif-
ferentially abundant species between REM-TP0->REM and REM-
TP0->REL samples (Ruminococcus torques, Anaerostipes hadrus, Fusi-
catenibacter saccharivorans, Clostridium bolteae, Dorea longicatena,
Roseburia intestinalis, Prevotella copri, Phascolarctobacterium succi-
natutens, Ruthenibacterium lactatiformans, Streptococcus parasan-
guinis and Bifidobacterium pseudocatenulatum) as predictor
variables. The American cohort was used as a training (⅔) and test
(⅓) dataset, and the Spanish cohort as a validation dataset. In this
case, the ROC AUC was 0.643 on the training set (REM-TP0->REM,
n = 7; REM-TP0->REL, n = 10), 0.733 on the testing set (REM-TP0-
>REM, n = 3; REM-TP0->REL, n = 5) and 0.769 on the validation
cohort (REM-TP0->REM, n = 20; REM-TP0->REL, n = 13) (Fig. 4C).
4. Discussion

This study sought to characterize changes in the human micro-
biome related to IBD relapse and their associated metabolic path-
ways using a shotgun metagenomics approach. To this end, the
preliminary analysis evaluated dysbiosis in IBD subgroups by cal-
culating alpha- and beta-diversity and dysbiosis scores. The results
showed evidence of microbiome dysbiosis in IBD, in particular in
CD compared to HC, following the trend of previous studies based
on the 16S rRNA approach [5,8,10]. Indeed, our finding related to a
higher dysbiosis score in CD compared to UC is in line with previ-
ous works [3,8]. However, none of these studies uncovered the dif-
ferentiation between relapse and remission states in IBD
subgroups. In the present work, by performing DA analysis on tax-
onomic and functional profiles, we were able to uncover microbial
species associated with IBD and also relapse or remission, in partic-
ular in CD.

The enrichment of some species such as Escherichia coli,
Ruminococcus gnavus, and Clostridium clostridioforme and the
depletion of Faecalibacterium prausnitzii in CD compared to UC
and HC confirmed previous findings. However, the enrichment of
Veillonella parvula in CD is a novel finding. Indeed, V. parvula
belongs to the genus Veillonella, considered a commensal found
in the oral and intestinal tract, but which has occasionally been
identified as a pathogen in cases of osteomyelitis [34], meningitis
[35], and periodontitis [36], and could therefore improve predic-
tion models.

SCFAs are key metabolites in the maintenance of gut homeosta-
sis, as some exert anti-inflammatory activity and help strengthen
the intestinal barrier [37,38]. These SCFAs can be produced and
degraded by many pathways. This is the case of propionate, which
could be synthesized by different metabolic routes in CD patients
and in UC/HC. Species that contributed to these pathways also
clearly differed, with Anaerostipes hadrus (Firmicutes), one of the
main contributors to the propionate production II pathway,
enriched in HC and UC, and with species from the Enterobacterales
order (Proteobacteria) contributing to the propionate production I
pathway, which was enriched in CD. These findings confirm the
shift from Firmicutes towards Proteobacteria in CD compared to
non-CD reported in previous studies [39] and suggest that the dys-
biosis is related to SCFA metabolism.

E. coli, one of the most enriched species in CD, was also the main
contributor to the four most enriched and the two depleted meta-
bolic pathways in CD compared to non-CD. However, this bac-
terium was almost undetected in UC samples (Supplementary
Fig. 3). There is some controversy regarding the role of E. coli in
both CD and UC. Some studies have addressed the presence of
E. coli in UC [40,41] and others reported its implication exclusively
in CD, in particular in ileal biopsies [7,42,43]. Our findings not only
support the presence of E. coli almost exclusively in CD but also
reveal the potential metabolic pathways by which E. coli is associ-
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ated with CD or may contribute to the pathogenesis of this
condition.

Our understanding is that, in CD, trehalose degradation, a car-
bohydrate degradation pathway, and anaerobic fatty acid beta-
oxidation, a lipid degradation pathway, are used to generate
energy for growth, with E. coli being the main contributor to these
pathways. Instead, in HC and UC, the triacylglycerol degradation
pathway is used to generate energy, with Ruminoccocus bicirculans
and Coprococcus eutactus appearing as the main contributors. Pro-
pionate production in CD patients is via the lysine degradation
pathway, which generates succinate, a known intermediate of pro-
pionate via the propionate production I pathway, with E. coli as the
main contributor of these pathways [44]. In contrast, HC and UC
patients use the lactate consumption II pathway, which is known
to provide an intermediate of propionate in the propionate produc-
tion II pathway, with Anaerostipes hadrus being the dominant con-
tributor of these pathways. The choice of one or the other
metabolic pathway to produce a source of carbon or energy could
be determined by the accumulation of a particular intermediate or
to the higher prevalence of a particular species. In the scenario in
which succinate accumulates in CD patients, we hypothesize that
succinate may trigger inflammation. Indeed, succinate, known to
be formed by the reversal of partial tricarboxylic acid (TCA) cycle
reactions or produced during bacterial fermentation of dietary
fiber [45], has recently emerged as an important signal in immu-
nity and inflammation; however, its precise role in immunity
needs to be explored further.

As in previous studies, we did not find significant differences at
the species level between UC and HC, or between relapse and
remission status [5]. In POR-related analyses, the enrichment of
several bacterial species and the depletion of Ruminococcus lactaris
in flares were not consistent with previous findings using the 16S
rRNA approach [19]. This discrepancy could be explained by the
different meta-omics approach used and the different number of
samples analysed in each approach (n = 189 in 16S analysis and
n = 98 in shotgun DNA analysis). At the time the proposal was
drafted, the cost of shotgun sequencing was too high to allow the
sequencing of the 189 samples used in our previous study [19].
Therefore, further validation would be needed to relate micro-
biome changes and POR.

Relapse-related taxonomic and functional analyses, based on
the Spanish CD cohort, uncovered considerable alteration towards
the loss of beneficial microbial species in relapse compared to
remission samples. This result suggests that flare is associated with
a loss of beneficial bacteria rather than a gain of potential patho-
bionts. However, the enrichment of three bacterial species, two
of which, Ruminococcus Torques and Clostridium bolteae [46,47],
associated with autism, in samples of patients who were in remis-
sion at baseline and who relapsed during the one-year follow-up
may suggest a predisposition to relapse.

One of the significant metabolic pathways used by CD patients
in flare to generate energy is the glutamate degradation I pathway.
Degradation of glutamate usually produces butyrate or its precur-
sors, but the glutamate degradation I pathway, which was signifi-
cantly increased in CD relapse compared to CD remission, only
produces 2-oxoglutarate. This compound can be incorporated into
the TCA, but it can also be used to produce more glutamate. These
considerations may indicate that patients who underwent a flare
produced butyrate and its precursors in a less efficient way than
those who remained in remission, thus decreasing their protection
against a more severe disease state.

To predict the IBD subtype, we built several random forest mod-
els based on the species found in the statistical analyses. Previous
studies [19,21] have shown that the combination of clinical and
microbiota data enhances the performance of this kind of model.
However, due to the unavailability of common relevant clinical
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data between the train/test cohort and the validation cohort, we
used species abundance as the only predictor variable in the mod-
els. Despite expecting reduced performance due to the lack of clin-
ical data, the CD vs. non-CD model (AUC = 0.908 on test set,
AUC = 0.938 on validation cohort) performed better than models
including bacterial and fungal loads alongside clinical data
(AUC = 0.899) [21] and models including a combination of the
whole metabolic and taxonomic profile of shotgun-metagenomic
samples (AUC = 0.89 on validation cohort) [3]. The increased per-
formance and consistency of our model across cohorts suggests
that the 26 species found in this study may be highly relevant in
CD development since they can be used to discriminate CD from
non-CD patients.

The UC vs. non-IBD model did achieve the performance of our
previous models [21]. The difference in performance between the
train/test cohort and the validation cohort can lead to two main
interpretations: model overfitting, or selection of inadequate pre-
dictor variables. Both explanations are plausible, but since this ran-
dom forest was built with the abundance of species gathered from
DA analysis with an FDR > 0.15, some of the predictors used could
be false positives. The inability to find significant microbial signa-
tures to discriminate UC patients from HC leads, once again, to the
notion that the causality of UC is not as related to the microbiome
as it is for CD. The relatively high performance of CD relapse pre-
diction must also be interpreted with caution due to the low num-
ber of subjects used to build the models. This limitation points to
the need for additional efforts to increase cohort size, in particular,
to implement longitudinal studies that enable the inclusion of
patients who may switch from remission to relapse or vice versa.

Our shotgun metagenomics study has provided valuable insight
into CD and relapse-related microbiome dynamics. However, the
impossibility to integrate the data of the two European cohorts
due to the lack of a valid common disease activity indicator
(Harvey-Bradshaw and Rutgeerts scores) could be considered a
limitation. Although our findings are interesting and relevant,
one should keep in mind that, given the DNA nature of our study,
GMM information is based on potential metabolic pathways rather
than expressed metabolic pathways. The approach described
herein could be complemented with metatranscriptomics, which
would provide information about the pathways expressed in the
gut by the microbiota. It may also be possible to integrate both
metagenomics and metatranscriptomics approaches to normalize
RNA transcription by DNA gene copy number and obtain informa-
tion about the pathways differentially expressed in distinct condi-
tions, thus providing more detailed insights into the metabolic
mechanisms of gut microbiota in IBD.

Notwithstanding these limitations, we can draw the following
conclusions: 1) CD is more dysbiotic than UC both at the taxonomic
and functional levels; 2) the production of SCFAs, such as propi-
onate, is different in CD compared to UC/HC individuals. While this
production is driven by Firmicutes phylum bacteria in HC and UC
patients, it is driven by Proteobacteria in CD patients; and 3) the
random forest method using microbiome taxonomic profiles
allows good prediction of CD vs. non-CD and a satisfactory predic-
tion of UC vs. HC, and relapse vs remission.
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