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Abstract

A network measure called knotty-centrality is defined that quantifies the extent to which a given subset of a graph’s nodes
constitutes a densely intra-connected topologically central connective core. Using this measure, the knotty centre of a
network is defined as a sub-graph with maximal knotty-centrality. A heuristic algorithm for finding subsets of a network
with high knotty-centrality is presented, and this is applied to previously published brain structural connectivity data for the
cat and the human, as well as to a number of other networks. The cognitive implications of possessing a connective core
with high knotty-centrality are briefly discussed.
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Introduction

The mathematical theory of complex networks has developed a

variety of measures that have found application in contemporary

science, such as the small-world index, modularity, betweenness

centrality, assortativity, and so on [1]. One such statistic is the rich-

club coefficient, which can be used to capture the extent to which a

network’s most highly connected nodes are densely connected

among themselves [2]. The rich-club coefficient for degree k is defined

as

w(k)~
2Ek

Nk(Nk{1)
ð1Þ

where Ek is the number of edges between nodes of degree greater

than k, and Nk is the number of such nodes [3]. If, for a given

network, w(k) is unexpectedly low for low k and high for high k,

then the network has a rich club of nodes that is densely connected

to itself and ‘‘owns’’ a lot of the connectivity. An alternative

degree-based assessment of network structure is provided by k-core

decomposition [4], which involves the recursive removal of nodes

below a given degree k until all remaining nodes in the network are

of degree k or above. Incrementing k until the network is fully

eroded yields a nested series of increasingly central k-cores.

The present paper introduces a measure called knotty-centrality

that attempts to capture a related concept, namely the extent to

which the network possesses a densely intra-connected and

topologically central core. To see that neither the rich-club

coefficient nor k-core decomposition is always sufficient for this

task, consider the two networks in Figure 1. On the left, we have a

network in which the central five nodes form a rich club. They

each have high degree, and they are densely connected to each

other. By contrast, the fifteen nodes on the periphery have low

degree and are connected only to members of the rich club.

Similarly, the central five nodes are more resistant to k-core

decomposition than the peripheral nodes. On the right we have a

different kind of network. This network is highly modular, and

each module has a connector hub through which it is connected to

the rest of the network. Moreover, one of the modules is

topologically central. All the other modules are connected to this

central module, and none of them is connected to any other

module. So every path between nodes in different peripheral

modules passes through the central module. However, this central

module does not constitute a rich club, nor is it resistant to k-core

decomposition, because none of its nodes has unusually high

degree. On the other hand, the nodes in this module do have

unusually high betweenness centrality, and it is on this account

that they can be picked out as the network’s ‘‘knotty centre’’.

In this paper we formally define the concept of a ‘‘knotty

centre’’ and apply it to a number of standard network models and

real-world networks. We first present an algorithm for finding

subsets of nodes within a directed graph that display high knotty-

centrality. We then demonstrate that this measure captures an

aspect of network structure that eludes previous measures by

applying the algorithm to a set of randomly generated networks,

encompassing several widely used topologies. We go on to apply

the measure to a number of real-world networks, including the

structural connectomes of the cat brain and human brain. We

conclude with a brief discussion of the usefulness of knotty-

centrality for understanding the neurological underpinnings of

cognition.

Methods

Defining Knotty-Centrality
Consider a directed graph G with N nodes. The knotty-centrality of

a (non-empty, non-singleton) subset S of the nodes in G is given by
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KC(S)~
ES

NS(NS{1)

X
i[S

bc(i) ð2Þ

where ES is the number of edges between nodes in S, and NS is the

number of nodes in S. bc(i) is the betweenness centrality of node i

normalised with respect to the whole graph, such that

bc(i)~
BC(i)P

j[G

BC(j)
ð3Þ

where BC(i) is the (directed) betweenness centrality of node i as

defined by Kintali [5]. Knotty-centrality ranges from 0 to 1. It is 0

if none of the nodes in S is adjacent (ES~0): It is 1 if S is a clique

and
P
i[S

bc(i)~1: If G is a clique then
P
j[G

BC(j)~0 and KC(S) is

undefined. The measure can be applied to either weighted or

unweighted graphs by substituting weighted or unweighted

variants of betweenness centrality [6] into Equation 3.

We can also weight knotty-centrality so that it favours small sub-

graphs by taking account of the proportion of nodes excluded from

S. The compact knotty-centrality of S is given by

KCC(S)~(1{NS=N)
ES

NS(NS{1)

X
i[S

bc(i) ð4Þ

A subset S1 of G’s nodes is a knotty centre of G if there does not

exist a distinct subset S2 such that KC(S2) . KC(S1). There may

be more than one knotty centre for a given graph, if they have

equal knotty-centrality (Figure 2), but typically we will be

interested in graphs that have a unique knotty centre. The

knotty-centredness s(G) of the whole graph G is the knotty-

centrality of its knotty centre(s). The definitions of a compact

knotty centre and the compact knotty-centredness sc(G) are analogous,

but use KCC in place of KC.

To facilitate the comparison of graphs with different numbers of

nodes and edges, we can define the knotty-centre index of a graph G as

j(G)~
s(G)

srand (NG,EG)
ð5Þ

where srand (NG,EG) is the expected knotty-centredness of a

random graph with the same number of nodes NG, edges EG, and

the same degree sequence as G. If j(G)w1 then G has a knotty

centre, and the higher j(G) is the more pronounced that knotty

centre is. Again, we obtain the compact knotty-centre index jC by

substituting KCC for KC. Although normalisation by a random

graph of the same degree sequence has been used to compare

networks in several previous studies, we note that this can produce

spurious results if the properties under study scale differently in the

randomised version of the network [7].

Computing Knotty-Centrality
There is no efficient naı̈ve algorithm for finding the knotty

centre of any given graph G. Obviously we could calculate the

knotty-centrality of all 2N subsets of G and pick the one with the

maximum value. But this is hopelessly inefficient for a non-trivial

graph. An alternative is to exhaustively search all subsets of G

whose members fall in the top M nodes for betweenness centrality,

and then use gradient ascent (Figure S1). The exhaustive search

phase is then O(2M), which is manageable if M is kept small.

As it stands the algorithm is non-deterministic. Any two nodes i,

j that have equal betweenness centrality, and are connected by the

same number of edges to the sub-graph S, will result in the same

value KC(S|fig)~KC(S|fjg): To render it deterministic let’s

suppose that the nodes are numbered, and that the node with the

highest number is chosen when there is a choice. Given that the

algorithm employs gradient ascent, there is no guarantee of finding

the optimal solution in the presence local maxima, where for some

S1, S2 and S3

KC(S1|S2)wKC(S1|S3) ð6Þ

and

Ai[S3Vj[S2 KC(S1|fig)wKC(S1|fjg)½ �: ð7Þ

Figure 1. Example networks. (A) A network with a rich club. The set of nodes in the centre have high degree and are densely intra-connected. (B)
A modular network with a knotty centre, but without a rich club. The set of nodes in the centre have high betweenness centrality, but their degree is
no higher than the more peripheral nodes.
doi:10.1371/journal.pone.0036579.g001

Knotty-Centrality
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A standard method of avoiding local maxima is to repeat the

algorithm with some randomisation of initial conditions, such as

the search order of vertices V. For the example brain connectivity

matrices presented in this paper repetition with randomised V

produced no improvement in s(G): Substituting KCC for KC yields

an analogous algorithm for approximating the compact knotty

centre and estimating sC(G): In what follows, deterministic

versions of each algorithm with M = 10 will be assumed.

The basic algorithm of Figure S1 can be improved in two

straightforward ways. First, the exhaustive search phase can be

iterated. Having found S, the best subset of G among the top M

nodes for betweenness centrality, a further exhaustive search can

be carried out for the best extension of S that adds only nodes from

the top M nodes in G not already included in S. This process can

be repeated until KC(S) stops increasing, and then followed by a

gradient ascent phase to catch any remaining nodes that might

further increase KC despite their low-ranking betweenness

centrality.

A second improvement can be made by using a different

ranking for the nodes. In order to favour nodes that are connected

to other nodes with high betweenness centrality, the ‘‘indirect’’

betweenness centrality of each node can be calculated. The indirect

betweenness centrality BC9(i) of a node i is defined as

BC0(i)~BC(i)z
X

j[NG (i)

BC(j) ð8Þ

where NG(i) is the set of nodes in G that are connected to i in either

direction. The algorithm (Figure S2) that results when both

improvements are incorporated was implemented in Matlab (see

supporting information, Text S1), using a library function from the

Brain Connectivity Toolbox to compute betweenness centrality

[8]. While computationally expensive, the proposed algorithm

proved sufficient for analysing real-world networks of the order of

5000 nodes and 10000 edges. In the case of larger graphs it may

prove beneficial to increase the value M and hence size of the

initial exhaustive search phase. Further investigation into efficient

means of computing the measure is required for the analysis of

larger networks.

Results

To see how knotty-centrality works in practise, we first apply the

measure to a number of well-known network models. To facilitate

comparison with the rich-club coefficient, we define the rich-club

index of a graph G in a similar manner to the knotty-centre index:

x(G)~ maxt
wk(G)

wrand
k (NG,EG)

 !
ð9Þ

where wk(G) is the rich-club coefficient of graph G for degree k,

and wrand
k (NG,EG) is the expected rich-club coefficient for degree k

of a random graph with same number of nodes NG, edges EG, and

the same degree sequence as G. x(G) is then the maximum ratio

for any degree k resulting in a rich club of size above threshold t.

In Figure 3 we compare rich-club and knotty-centre indices for

scale-free and two types of community-structured networks. The

dataset for each topology contains 20 randomly generated directed

networks of 256 nodes each. For each network, we display j(G)
against x(G) for rich-club threshold t~4: For generation of

directed scale-free networks we used the algorithm described in [9]

with parameters p~0:1, m~1, and l~1: To generate the first

type of community structured network (type A), we used

probabilistic re-wiring [10] with eight modules of 32 nodes each.

Each node was randomly connected to 20 nodes within the same

module, and each edge re-wired to an external module with

probabilityp~0:1: Community-structured networks of the second

type (type B) were generated according to the description in [11]

again with eight communities of 32 nodes, and with probability of

internal wiring pin~0:25 and of external wiring pext~0:1: For

each network a set of 100 random surrogate networks of the same

degree sequence was generated using a library function from the

Brain Connectivity Toolbox [8] and used to calculate both rich-

club and knotty-centre indices.

We include two additional topologies generated specifically to

maximise both measures. In the knotty-centre case, eight modules

of 32 nodes were connected internally in a similar manner to the

modular small-world network. Instead of randomly re-wiring

edges between modules however, a single module was selected as

Figure 2. A network with two knotty centres.
doi:10.1371/journal.pone.0036579.g002
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the centre of the network and a pair of random nodes connected in

either direction between the centre module and each non-centre

module. The probability pim of connecting to any node i in module

m of graph G was then adjusted at each step during generation of

internal module connectivity, such that

pim~
max (km){kiP

j[m

( max (km){kj)
ð10Þ

where ki is the degree of node i, and max (km) is the maximum

degree for all nodes in module m. Given an equal number of

internal connections in each module, this results in a set of

topologically central nodes of high betweenness centrality with

maximum difference in incoming degree of at most one for all

nodes in G. In the rich club case, each node was first connected to

sixteen others randomly selected from the entire network. A subset

of nodes was then selected to form a rich club, and additional

edges added from each of these nodes to four other randomly

selected rich club nodes, resulting in an intra-connected high-

degree sub network. For all networks described above, multiple

edges in the same direction between the same source and

destination nodes and connections between a node and itself were

disallowed.

Results are shown in Figure 3. For the standard network

models, neither knotty-centre index (1:09+2:87|10{2,
1:01+5:63|10{3 and 1:02+1:94|10{2 for type A communi-

ty-structured, type B community-structured, and scale-free

networks respectively) nor rich-club index

(1:09+1:18|10{1,1:26+2:48|10{1 and 1:11+1:24|10{2

respectively) indicate that the generated networks exhibit a more

pronounced rich club or knotty centre than randomised equiva-

lents, although both community-structured models exhibit a large

range of rich-club values, within [1.0, 1.8]. The two topologies

explicitly generated with a rich club or knotty centre both display

high values of a single index (3:14+9:35|10{2 and

3:92+1:13|10{1 for rich-club and knotty-centred networks

and indices respectively). This indicates that the rich-club and

knotty-centre measures capture different aspects of network

topology, neither of which is consistently displayed in the networks

generated by current standard models. It is worth noting that rich-

club networks also exhibit a knotty centre

(x(G)~1:64+3:37|10{2) while networks generated with high knotty-

centrality do not exhibit a rich club (j(G)~1:0+7|10{5).

We now briefly consider the stability of the knotty-centre index

when intra-module connections are added between the outer

modules of a network of the form shown in Figure 1B. A slight

modification is made to the randomly generated knotty-centre

network described above, by adding a single edge in either

direction between each adjacent module outside of the centre

module. This effectively short-circuits the shortest path between

modules around the rim of the network. For each topology, with

and without connections between modules outside the central

core, we generated 100 random networks. Without intra-module

connections, networks exhibited average knotty-centre index of

j(G)~3:91+0:16 and size of the knotty centre of 26:18+6:32
nodes. With intra-module connections networks exhibited average

knotty-centre index of j(G)~2:66+0:14 and size of 28:91+7:21
nodes. The change to the index value and size of the knotty centre

is in-line with the loss of topological centrality of the core module

resulting from the additional connections.

We turn next to real-world data sets, choosing two previously

used networks that exhibit a knotty centre. We consider first the

power grid of the Western United States used as an example of a

small-world network in [12]. The network consists of 4941 nodes

and 6594 edges with few connections between nodes of high

degree. Calculation of the rich-club index against 100 randomized

versions of the same network results in a value of x(G)&2:34 for

degreek~20, indicating a rich club comprising 26 nodes of degree

20 or greater. Computing the knotty-centre index identifies a

subset of nodes (2529, 2544, 2607, and 2613) with high knotty-

centrality compared to equivalent random networks

(j(G)&11:68) with no overlap between the rich club and knotty

centre. Each of these nodes exhibits low degree (6, 6, 7, and 4

respectively, where the maximum degree in the network is 19) but

is highly central, with the combined betweenness centrality of the

Figure 3. Knotty-centre index vs. rich-club index for three reference network models (type A and type B community-structured and
scale-free). Two additional models are included with a central core network of either high degree (rich-club) or high betweenness centrality (knotty-
centre).
doi:10.1371/journal.pone.0036579.g003
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four nodes representing approximately 4.7% of the network total.

Together they form a highly connected network with four of six

possible edges present.

The second real-world dataset we consider is the co-authorship

network of scientists working on network theory and experiment

described in [13]. We consider a binarised (unweighted) version of

the network containing 1589 nodes and 2742 edges. Comparison

against 100 randomised versions of the same network yielded an

estimate of wk(G)&0:55 and wrand
k (NG,EG)~0:074, indicating a

rich club of index x(G)&7:46 comprising 27 nodes of degree 36 or

greater. This network possesses a knotty centre (s(G)&0:166 and

srand (NG,EG)&0:021, giving j(G)&8:05) comprising a network

of eight nodes (ids 79, 151, 152, 226, 282, 302, 517, and 518). The

degrees of these nodes fall in the range [6,24] compared to a

network maximum of 34. They are of high centrality (combined

betweeness centrality 3:3% of network total), and are highly

connected, with 14 of 28 possible edges present. The rich club and

knotty centre overlap by a single node (node 79, who is M.E.J.

Newman, the paper’s author). It is worth noting that a number of

subsets of any network are likely to exist with near-optimal knotty-

centrality [14], and in real-world examples it may be instructive to

build a profile of larger groups of nodes with high knotty-

centrality.

We next apply the measure to a number of brain networks. The

first is a connectivity matrix Gcat for the cortex of the cat described

in [15]. This was collated from a large number of tracer studies of

adult cat cortical and thalamic connectivity, and represents a

single hemisphere containing approximately 1500 connections

parcellated into 95 anatomical regions. It was analysed from a

graph-theoretic standpoint by Sporns, et al. [16], and further

studied by Zamora-López, et al. [17] from a perspective close to

that of the present paper. Both binarised (unweighted) and

weighted versions of the 52 cortical regions of the matrix were

used for the present study. The matrix has Ncat~52 nodes and

Ecat~818 edges. By generating 100 random directed networks

with Ncat nodes, Ecat edges, and the same degree sequence as Gcat,

an estimate of srand (Ncat,Ecat)&0:4615 was obtained for the

unweighed matrix. For Gcat itself an estimate s(Gcat)&0:5843 was

obtained, yielding knotty-centre index of j(Gcat)&1:2662: The

membership of the computed knotty centre, using the nomencla-

ture of Scannell, et al. (1999) [15], was {20a, 20b, 7, AES, EPp,

6 m, 5 Al, PFCL, Ia, Ig, CGp, 35, 36} (Figure 4). This includes all

eleven nodes having degree greater than one standard deviation

above the mean, a set that is also identified as both a rich club and

a dynamic core by Zamora-López, but also includes areas 20 b

and PFCL, and includes all eight of the nodes having betweenness

centrality greater than one standard deviation above the mean, as

well as areas 7, 6 m, 5 A1, 20 b, and PFCL.

Similarly, estimates of srand
C (Ncat,Ecat)&0:3192 and

sC(Gcat)&0:4638 were obtained, yielding a compact knotty-

centre index of jC(Gcat)&1:453. The membership of the

computed compact knotty centre was {20a, AES, EPp, 6 m, Ia,

Ig, CGp, 35, 36} (Figure 4). This comprises nine out of the eleven

high-degree/rich-club nodes, excluding only areas 7 and 5 A1,

and includes all eight of the nodes having betweenness centrality

greater than one standard deviation above the mean, as well as

area 6 m. The weighted matrix resulted in similar values of

j(Gcat)&1:2865 and jC(Gcat)&1:4070: To summarise, the knotty

centre of the feline brain has a large overlap with the subset of

nodes that have previously been identified as topologically

significant using other measures. Moreover, the knotty-centre

index captures in a single measure the considerable extent to

which this distinguished set of nodes stands out as a topological

nexus over and above any subset of nodes in a comparable

random network.

To further assess its utility, the measure was applied to a second

brain network, namely the structural connectivity matrix Ghum

derived from diffusion spectrum imaging of five subjects by

Hagmann, et al. [18] and subjected to a graph-theoretic analysis by

the same authors. The matrix contains 66 cortical regions

partitioned according to standard anatomical landmarks. Con-

nectivity is based on the density and length of white matter fibre

tracts connecting each region. As with the cat matrix, we consider

both binarised (unweighted) and weighted versions of the human

matrix in the present study, for which we have Nhum~66 nodes

and Ehum~1148 edges. 100 random directed networks with Nhum

nodes, Ehum edges, and the same degree sequence as Ghum were

generated in each case. For the unweighed matrix this yielded an

estimate of srand (Nhum,Ehum)&0:3671: The knotty- centredness of

Ghum was estimated as s(Ghum)&0:4472, yielding an estimated

knotty-centre index of j(Ghum)&1:2184: Although the computed

knotty centre includes all members of the ‘‘structural core’’

identified by Hagmann, et al. [18], it comprises over 40% of the

whole network (Figure 5).

Following the same procedure with the compact version of the

measure yielded srand
C (Nhum,Ehum)&0:2696 and

sC(Ghum)&0:3412, giving jC(Ghum)&1:2655: The computed

compact knotty centre comprises 11 nodes (Figure 5). Of these,

six are shared with the Hagmann structural core, including the

precuneus and superior parietal areas in both hemispheres.

However, it excludes eight regions that are contained in the

Hagmann structural core, and contains five that are not. The five

extra regions are predominantly in the left hemisphere, but include

superior frontal areas in both hemispheres. The weighted matrix

resulted in values j(Ghum)&1:2322 and jC(Ghum)&1:3714:
It will be noted that the two knotty-centre indices for the human

matrix are exceeded by the corresponding indices for the cat

matrix, which may seem counter-intuitive (even to a cat-lover).

Given that the cat matrix represents a single hemisphere, the

analysis was also repeated for each hemisphere of the human

connectivity matrix independently, returning values in both cases

lower than that of the combined matrix (j(Gl hum)&1:096 and

jC(Gl hum)&1:1588 for the left hemisphere and

j(Gr hum)&1:1174 and jC(Gr hum)&1:2028 for the right). It

should be remembered that the human and cat matrices were

produced using different methods, and as noted previously [7],

comparison of the graph theoretic properties of networks of

different size and connectivity is not straightforward. A legitimate

cross-species comparison would require directly comparable

matrices, and would need to treat variations in connection

strength more carefully.

Discussion

The present results suggest that the concept of knotty-

centrality could make a useful addition to the network analysis

toolbox. Although the ideal knotty centre of a graph is hard to

compute, the approximations found by the heuristic algorithm

proposed here correspond well with previous more ad hoc

attempts to find topologically significant subsets of brain

networks. The measure requires further work, however. It is

unclear, for example, whether compact knotty-centrality is more

or less informative than the non-compact version, or whether in

fact both measures should be retained. The issue of multiple

knotty centres, which may be relevant to split-brain patients for

example, remains to be studied. Moreover, in the present work,

no distinction is made between nodes that feature in sets with

Knotty-Centrality
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less than but close to maximal knotty-centrality and nodes that

feature only in sets with low knotty-centrality. So it may be

desirable, rather than searching for an ideal knotty centre, to

characterise families of (possibly overlapping) sets of nodes with

high knotty-centrality. Finally, an investigation of the dynamical

implications of knotty-centrality would be beneficial, either using

empirical or synthetic data. In the latter case, algorithms for

generating graphs with varying degrees of knotty-centrality

would be needed.

As a measure of topological centrality, knotty-centrality stands

apart from degree-based measures of network structure such as

the rich-club coefficient and k-core decomposition. Nodes

forming a rich club by definition have higher degree than the

remaining nodes in the network and high connectivity between

the rich club members. Similarly k-core decomposition identifies

sets of highly connected nodes, and s-core decomposition [18]

sets of strongly connected nodes in a weighted network. By

contrast, there is no constraint on the degree or strength of

connectivity of nodes forming a knotty centre. The randomly

generated knotty-centred networks considered in this paper

explicitly maintain uniform degree of nodes and equal weight of

edges while generating a topologically central core module. All

of these measures can be considered complementary views into

network topology.

Although it may have application in other domains, the

concept of knotty-centrality is intended as an aid to identifying

a connective core in the brains of humans and other animals.

Recent evidence supports the notion of a topologically and

spatially central core network linking all areas of the brain and

supporting efficient global communication [19]. The possession

of a (single) connective core potentially constrains the way

information flows around the brain in a way that a) promotes

the generation of integrated brain states [20], and b) facilitates

serial processing [21], providing the flexibility to cope with an

arbitrarily large number of complex tasks [22]. It is hypothe-

sised further that a central core acts simultaneously as an arena

for competition and a locus of broadcast, mediating the

interactions of numerous otherwise segregated elements and

Figure 4. The knotty centre of cat cortex and its relationship to other topologically significant subsets of nodes. There is good
agreement in this case between rich club membership, high betweenness centrality, and knotty-centrality.
doi:10.1371/journal.pone.0036579.g004

Figure 5. The knotty centre of human cortex and its relationship to the structural core as defined by Hagmann, et al. (2008) [18]. The
compact knotty centre has a large overlap with the structural core, but excludes central medial areas and includes additional superior frontal areas.
doi:10.1371/journal.pone.0036579.g005

Knotty-Centrality
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allowing the brain to enter a state in which their activity is

coherently integrated [23,24]. Perhaps, using the formal concept

of knotty-centrality, it will be possible to identify networks of

brain regions that fulfil these vital cognitive roles in a variety of

species.
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