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Simple Summary: Innovative advancements in lung cancer treatment have developed over the
past decade with the advent of targeted and immune therapies. Yes-associated protein (YAP), an
effector of the Hippo pathway, promotes the resistance of these targeted drugs and modulates tumor
immunity in lung cancer. YAP is involved in autophagy in lung cancer and plays a prominent
role in forming the tubular structure in lung organoids and alveolar differentiation. In this review,
we discuss the central roles of YAP in lung cancer and present YAP as a novel target for treating
resistance to targeted therapies and immunotherapies in lung cancer.

Abstract: Despite significant innovations in lung cancer treatment, such as targeted therapy and
immunotherapy, lung cancer is still the principal cause of cancer-associated death. Novel strategies to
overcome drug resistance and inhibit metastasis in cancer are urgently needed. The Hippo pathway
and its effector, Yes-associated protein (YAP), play crucial roles in lung development and alveolar
differentiation. YAP is known to mediate mechanotransduction, an important process in lung
homeostasis and fibrosis. In lung cancer, YAP promotes metastasis and confers resistance against
chemotherapeutic drugs and targeted agents. Recent studies revealed that YAP directly controls
the expression of programmed death-ligand 1 (PD-L1) and modulates the tumor microenvironment
(TME). YAP not only has a profound relationship with autophagy in lung cancer but also controls
alveolar differentiation, and is responsible for tubular structure formation in lung organoids. In this
review, we discuss the various roles and clinical implications of YAP in lung cancer and propose that
targeting YAP can be a promising strategy for treating lung cancer.

Keywords: YAP; TAZ; Hippo pathway; lung cancer; drug-resistance; EGFR-TKI; PD-L1; autophagy;
organoid

1. Introduction

The Hippo signaling pathway has been one of the most actively studied pathways
in biomedicine over the past decade [1–3]. It was first discovered in Drosophila, where it
regulates cell differentiation and proliferation during development [4,5]. Studies in mice
later revealed that it is highly involved in tumorigenesis and metastasis [2]. Yes-associated
protein (YAP) is a downstream transcriptional co-activator of the Hippo pathway. It con-
trols cell proliferation and apoptosis by regulating the transcription of genes that control
DNA replication, DNA repair, apoptosis, and metabolism [6]. YAP also cooperates with
other transcription factors, including AP1, β-catenin, and cytokines such as TGF-β, to
control many cellular functions [3,7]. Furthermore, it senses and responds to mechanical
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stress [8]. Mechanotransduction signals related to matrix stiffness directly influence the
subcellular localization and activity of YAP, which modulates cell differentiation and prolif-
eration [9,10]. The role of YAP in mechanotransduction relies on a specialized assembly of
the F-actin cytoskeleton [8]. During respiration, alveolar cells are exposed to mechanical
stress, which significantly affects homeostasis and the pathogenesis of pulmonary dis-
eases [11]. The continuous inflation and deflation of the lungs induce the differentiation
of type II pneumocytes into type I pneumocytes [12]. Mouse model studies revealed that
reduced YAP expression in lungs during development causes severe impairment in airway
patterning and lung regeneration after lung injury [13]. The gene amplification and epige-
netic changes of YAP are widespread in many cancers [3]. In lung cancer, YAP functions as
an oncogene by promoting cell proliferation and survival [3]. YAP also confers resistance to
chemotherapeutic agents such as epidermal growth factor receptor (EGFR)-tyrosine kinase
inhibitors (TKIs), and anaplastic lymphoma kinase (ALK) inhibitors in lung cancer [14–16].
Additionally, YAP activity influences the tumor microenvironment (TME) and directly
regulates the transcription of programmed death-ligand 1 (PD-L1), which is an important
target for immuno-oncological therapies [17–19]. Therefore, several research groups are
investigating YAP modulation to defeat drug resistance and improve the effectiveness of
immunotherapies in cancer patients [20].

Autophagy is a core cell survival mechanism involving the digestion of damaged
organelles, malformed proteins, and unnecessary proteins as a reaction to cellular threat,
nutrient deficiency, and chemotherapy [21,22]. Its functions differ depending on the
physiological context. In normal cells, it inhibits carcinogenesis via the degradation of
abnormal proteins [23]. However, it can accelerate the survival of cancer cells and induce
resistance to chemotherapy in established tumors [23].

Organoids are novel three-dimensional (3D) multicellular structures derived from
stem or progenitor cells, and they can potentially be used for applications in both basic and
clinical research [24,25]. They can recapitulate the structures and some functions of specific
organs. Currently, alveolar and airway organoids are actively used in various areas of lung
research, including lung regeneration, lung cancer, and infectious lung diseases, including
coronavirus disease-19 (COVID-19) [24,26,27]. Interestingly, several novel studies have
suggested that YAP plays a vital role in the autophagy of lung cancer and the formation of
lung organoids [28,29].

In this review, we deliberate the basic functions and recently discovered roles of
YAP in chemo-resistance, tumor immunity, autophagy, and lung organoids, as well as the
clinical implications of targeting YAP in lung cancer treatment.

2. Overview of Hippo Pathway and YAP in Lung Development and Regeneration

The Hippo pathway adjusts cell proliferation, differentiation, and organ extent during
development and is involved in carcinogenesis, chemotherapeutic drug resistance, and
tumor metastasis [30]. The canonical Hippo pathway comprises multiple components,
including mammalian sterile 20-related kinases 1 and 2 (MST1/2), Salvador-1, large tumor
suppressor kinase 1 and 2 (LATS1/2), mps1 binding proteins 1 and 2 (MOB1/2), transcrip-
tional coactivator with PDZ-binding motif (TAZ), and YAP. YAP and its paralog TAZ are the
final effectors of the Hippo signaling pathway and function as transcriptional complexes
when bound to the transcriptional enhanced associate domain (TEAD). MST1/2 activates
LATS1/2, which inhibits YAP/TAZ via phosphorylation and sequestration in the cyto-
plasm. YAP and TAZ share several functions but exhibit distinct roles in specific contexts.
Unphosphorylated YAP can enter cell nuclei and control the transcription of numerous key
factors related to cell propagation and anti-programmed cell death [5,31]. In addition to the
canonical Hippo pathway, various other signals regulate the activity of YAP (Figure 1). For
example, G-protein coupled receptors (GPCRs), RAS-RAF, and metabolic signals including
byproducts from the mevalonate pathway, act as YAP regulators independently from the
Hippo pathway [32,33].
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The Hippo pathway performs critical roles in lung development and regeneration.
Specifically, YAP adjusts proximal-distal modeling in airway progenitor cells by inducing
Sox2 expression as a reaction to transforming growth factor-β (TGF-β) [34]. YAP-deficient
mice exhibit hypoplastic lungs and severely disrupted branching morphogenesis [35]. YAP
also contributes to lung fibrosis by upregulating extracellular-matrix-related genes and
inducing the TGF-β/SMAD signaling pathway [36,37]. Furthermore, it is essential for
alveolar epithelial regeneration after bacterial pneumonia; in its absence, lung regeneration
is delayed due to the continuous activation of NF-κB-mediated inflammatory response and
type II pneumocytes [13].
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Figure 1. Core components and interacting signals of the Hippo/YAP signaling pathway in cancer.
In the canonical Hippo pathway, Mst1/2 and Sav1 activate Lats1/2 and Mob1, which in turn
phosphorylate YAP/TAZ. Then, phosphorylated YAP and TAZ are sequestered in the cytoplasm
and degraded by proteasomes. Nuclear YAP/TAZ and TEAD complexes induce the transcription of
multiple genes that regulate cell propagation and programmed cell death. Several growth factors,
G-protein coupled receptors, and mechanical stimuli regulate the activation of YAP/TAZ.

3. The Role of YAP in Chemo-Resistance and Metastasis

YAP functions as an oncogene in numerous solid cancers [38]. It is overexpressed in
60–70% of non-small cell lung cancers (NSCLCs), and amplification of the YAP copy num-
ber occurs in ~15% of squamous lung cell cancers [20,38]. In addition, its overexpression is
positively correlated with poor clinical prognoses in lung cancer patients [20,38]. Recent
studies have revealed that YAP promotes chemoresistance in conventional chemotherapies
and targeted therapies [20]. YAP not only activates ERK and AXL signaling, but also in-
duces epithelial–mesenchymal transition (EMT) against EGFR-TKI treatment [16]. Several
studies have shown that YAP inhibition can overcome resistance to chemotherapy [39–42].
For example, the combined treatment of EGFR-TKI with YAP inhibitors suppresses EGFR-
TKI resistance [16]. In addition, AXL was found to be a responsible factor in a third-
generation EGFR-TKI, osimertinib-persistent cells [43]. Moreover, YAP1 promotes resis-
tance to an ALK inhibitor, alectinib, by regulating pro-apoptotic proteins such as Mcl-1
and Bcl-xL. Co-treatment of YAP inhibitor suppresses the initial survival of cancer cells
against alectinib [44]. In small-cell lung cancer (SCLC), YAP promotes multidrug resis-
tance by triggering a cluster of differentiation (CD) 74 related signaling pathways [45]. It



Cancers 2021, 13, 3069 4 of 12

also induces epigenetic reprogramming in lung cancer, leading to tumor dormancy and a
senescence-like state [46].

In the processes of EMT and metastasis, YAP is known to interact with many factors
including AXL, β-catenin, and Slug [14,39,47]. In mice, YAP promotes metastasis in lung
cancer by activating CD24+/Sca1+ tumor-propagating cells and inducing Slug transcrip-
tion [48]. It also induces EMT by activating several downstream target genes, including
forkhead box C2 (FOXC2), twist-related protein 1(TWIST), and zinc finger E-box binding
homeobox 1 (ZEB1) [48,49]. Furthermore, YAP promotes metastasis by enhancing the
extravasation of cancer cells and rendering circulating cancer cells resistant to anoikis [49].
It also regulates the transcription of Rho GTPase, which decreases cytoskeleton rigidity
and enhances the metastatic phenotype of cancer cells [50]. When tumor cells metastasize
into lymph nodes and adapt to the TME, they redirect their metabolism toward fatty
acid oxidation; YAP activation accelerates these metabolic changes in cancer cells. Jin et al.
discovered that norcantharidin, a demethylated form of cantharidin, reverses cisplatin resis-
tance and inhibits EMT in NSCLC by regulating the YAP pathway [51]. In summary, these
studies show that YAP inhibition might be a promising strategy to suppress metastasis of
tumor cells.

4. The Role of YAP in Tumor Immunity and Microenvironment

Tumor development and progression depend on the TME, which is composed of
immune, endothelial, and other stromal cells [52]. YAP has immunomodulatory effects
by regulating various types of immune cells [53]. For example, it decreases the differenti-
ation of CD8β cells by hindering the transcription of B lymphocyte-induced maturation
protein-1. Furthermore, its expression controls the immunosuppressive activity of T reg-
ulatory cells (Tregs) [54], highlighting its vital role in the function of Tregs and relation
to the TGF-β/SMAD axis [54]. Macrophages control both innate and adaptive immunity
and significantly affect the TME [55]. Depending on the conditions, macrophages can
differentiate into classically activated macrophages (M1), which have anti-tumoral and
proinflammatory functions, or activated macrophages (M2), which exhibit pro-tumoral
and angiogenic tissue-remodeling functions. YAP expression can modulate macrophage
differentiation and control the development and functionality of macrophages [56].

PD-L1 is an important protein target of immuno-oncological NSCLC treatments.
Deepening our understanding of PD-L1 is essential to improving immunotherapies for
NSCLC [57]. PD-L1 is regulated by various inherent and extrinsic factors [54,55]. For
example, interferon-γ is the most prominent PD-L1-regulating extrinsic factor released
by immune cells. Important intrinsic factors that adjust PD-L1 expression in cancer cells
include the mechanistic target of rapamycin (mTOR), mitogen-activated protein kinase,
and Myc [58,59]. Recent studies have found that YAP directly controls the transcription of
PD-L1 [17,18] and that YAP inhibitors can modulate immune evasion by controlling PD-L1
expression [17,18]. Generally, PD-L1 is localized in the cell membrane and functions as a
ligand of programmed death-1 (PD-1) [19]. However, a recent study revealed that nuclear
PD-L1 has intrinsic functions that disrupt the effectiveness of anti-PD-1 immunotherapy. It
demonstrated that PD-L1 nuclear translocation is controlled by acetylation and is associated
with the efficacy of PD-1/PD-L1 targeted immunotherapy [60]. Furthermore, nuclear PD-
L1 regulates several genes involved in immune responses, including NF-κB signal-related
genes and major histocompatibility complex class I [59–61]. Smahel et al. showed that the
presence of nuclear PD-L1 in circulating tumor cells is related to reduced survival rates
in both prostate and colorectal cancer patients [62]. In another recent study, a screening
for drug candidates capable of inhibiting PD-L1 expression identified verteporfin, a YAP
inhibitor, as the most potent [63], suggesting that it can be repurposed as an adjuvant
for immunotherapy.

In addition to the regulation of PD-L1, YAP alters the TME by recruiting and acti-
vating myeloid-derived suppressor cells via the upregulation of CXCL-5 in various solid
cancers, such as prostate and pancreatic cancer [64]. YAP also plays a significant role
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in the differentiation of immune cells including Tregs, CD8+ T cells, T helper-17 cells,
and macrophages [65,66]. In mouse tumor models, YAP deficiency in T cells reduces the
recruitment of CD4+ and CD8+ T cells in tumors [65,66]. Based on these studies, YAP can
be a novel target for controlling tumor immunity in lung cancer.

5. The Interplay between YAP and Autophagy

Autophagy is a physiologic process activated to survive against cellular stresses such
as serum starvation or augmented metabolic demands [21,67]. Remarkably, in cancer,
autophagy plays the opposite role depending on the context. Before the establishment
of a tumor, autophagy functions as a tumor suppressor by degrading abnormal proteins.
However, in the established cancer cells, autophagy confers survival mechanisms against
chemotherapy and radiation therapy [68]. In many solid cancers, including lung cancer,
autophagy activation is generally correlated with poor prognosis [69].

Several studies have shown that YAP has a close relationship with autophagy in
cancer [69–74]. For instance, YAP causes cisplatin resistance by activating autophagy in
ovarian cancer [70]. Similarly, it induces autophagic flux to improve cell survival in breast
cancer cells upon nutrient deprivation [71]. In hepatocellular carcinoma, YAP constrains
autophagy-dependent cellular death via the RAC1-reactive oxygen species-mTOR sig-
naling [72]. Interestingly, mechanical stress can also activate autophagy flux and induce
cell phenotype plasticity via YAP activation [73]. Furthermore, contact inhibition and
YAP activation contribute to cell survival and proliferation by regulating autophagosome
formation [74].

In lung cancer, autophagy plays a prominent role in cell proliferation, metastasis, and
drug resistance. High expression of p62, a cargo protein of autophagosomes, correlates
with tumor proliferation in NSCLC [75]. Autophagy also contributes to chemoresistance
in NSCLC under hypoxic conditions [15,69]. EGFR-TKI-resistant NSCLC cells stimulate
autophagy against EGFR-TKI, and treatment with the autophagic inhibitor chloroquine par-
tially suppresses EGFR-TKI resistance [15]. In addition, a study showed that camptothecin
induces autophagic activation in NSCLC, and co-treatment with autophagy inhibitor 3-
methyladenine can increase apoptosis of cancer cells [76]. A recent study demonstrated that
YAP regulates cell proliferation by activating autophagy and inhibiting the AKT/mTOR
pathway in lung adenocarcinoma [77]. Another study revealed that YAP controls the
expression of p62 in lung adenocarcinoma, and the YAP inhibitor verteporfin suppresses
YAP, p62, and PD-L1 simultaneously [15]. Therefore, YAP and autophagy are promising
targets for treating intractable drug resistance in lung cancer.

6. The Special Role of YAP in Lung Organoids

Organoids are specialized 3D multi-cellular, microtissues created from embryonic stem
cells, induced pluripotent stem (iPS) cells, or organ-specific adult stem cells/progenitor
cells [78,79]. Whereas spheroids contain only the same cell type, organoids are composed of
multiple cell types [80]. Since organoids can effectively recapitulate the 3D structures and
functions of organs, many scientists think that organoid abilities are among the most sig-
nificant scientific advancements with many clinical applications [81]. Lung and intestinal
organoids derived from cystic fibrosis patients are currently being used to develop cystic fi-
brosis transmembrane conductance regulator (CFTR) modulating therapies [82]. Organoids
are typically cultured in laminin-rich extracellular matrices such as Matrigel or Cultrex
basement membrane extracts derived from Engelbreth–Holm–Swarm tumors. Although
these matrices mimic the complex extracellular TME, growth factors from them have not
been accurately clarified. Although the absence of immune cells and vasculatures is a major
drawback of organoid systems, we can culture lung organoids with some immune and
mesenchymal cells in a transwell plate [83]. Furthermore, hemodynamic flow processes
can be applied to organ-on-a-chip systems to replicate physiological conditions [84]. At
present, organoids are widely used for disease modeling and drug screening in various
biomedical fields [80,81].
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Lung organoids are formed from lung stem cells or progenitor cells and can be
classified into two types: airway organoids and alveolar organoids [85]. Airway organoids
are generally derived from basal cells, whereas type II pneumocytes are applied to generate
alveolar organoids with or without supporting stromal cells [86]. Human airway organoids
consist of Trp63+/Krt5+ basal cells, Mucin 5 (Muc5) AC+/Muc5AB+ secretory goblet cells,
and multi-ciliated cells [87]. Human alveolar epithelial (AEC) type 2 cells are defined as
CD31-/CD45-/ EPCAM+/HTII280+ cells, and they can form alveolar organoids with the
majority of AEC2s and few AEC1s [88]. Lung tissues created from embryonic stem cells
and iPS cells can also be induced to differentiate into the airway or alveolar organoids [85].
Lung organoids are currently used to investigate lung development, fibrosis, restoration,
and cancer [26,89]. In addition, they are a valuable platform for studying infectious diseases
such as COVID-19 [26]. Biobanks of lung cancer organoid derived from patients’ tissue
have been established and successfully employed for drug screening [90,91].

During the development of organoids into specialized 3D systems, each cell is sub-
jected to mechanical stress [81,85]. The mechano-sensitive YAP protein plays decisive
functions in cell proliferation and differentiation and functions as a key controller for
organoid development [92,93]. For intestinal organoids, the development of complex mul-
ticellular asymmetric structures involves self-organization and breaking symmetricity; this
process requires YAP signaling [94]. YAP inhibition by verteporfin significantly reduces
the size and number of esophageal organoids [95]. Mechano-sensitive growth coordination
by the integrin–Src family kinase–YAP pathway is also essential for liver organoid forma-
tion [96]. During the development of tubular structures in lung organoids, actomyosin
contraction and YAP activation are important factors influencing the organoid size and cell
proliferation [29]. Inhibition of retinoic acid production increases the size and enhances the
differentiation of lung organoids through YAP activation, whereas verteporfin treatment
decreases the size and number of lung organoids [97]. Further investigations into YAP
and mechanistic factors in lung organoids are crucial to advancing the engineering of
lung organoids.

7. Clinical Implication of YAP Targeting and Verteporfin in Lung Cancer

YAP plays a central role in lung cancer progression, metastasis, drug resistance, and
immune evasion [17,20,64]. Therefore, it is a promising target for suppressing tumor pro-
gression and drug resistance [20]. Several YAP inhibitors have been discovered, including
dasatinib, statin, pazopanib, verteporfin, and dobutamine [98,99]. Most drugs attenuate
YAP-dependent transcription by inhibiting its nuclear translocation. More specifically,
dasatinib suppresses YAP via the inhibition of Src family kinases, and statin inhibits YAP
nuclear localization by blocking sterol regulatory element-binding proteins or the meval-
onate pathway [100]. Furthermore, verteporfin has been actively studied as a YAP inhibitor
for cancer treatment [100,101]. It is known to inhibit YAP activity via disruption of the
YAP/TEAD complex formation [100,102]. Originally, verteporfin was permitted by the
Food and Drug Administration as a photodynamic therapeutic agent. However, recent
studies have revealed that verteporfin can inhibit cell proliferation and drug resistance
in the absence of light [103,104]. In several solid cancers such as ovarian, pancreatic,
and colon cancer, verteporfin effectively inhibits cancer cell proliferation, invasion, and
chemoresistance [104].

Verteporfin can also reduce resistance to anti-cancer drugs. It restores sensitivity to
EGFR-TKIs in lung adenocarcinoma with primary and acquired EGFR-TKI-resistance [16].
It also significantly reduces the activation of EMT-related signals and restores suscepti-
bility to chemotherapy in NSCLCs with mesenchymal characteristics [16,105]. In SCLC,
verteporfin increases the apoptosis rate of cancer cells that exhibit drug resistance to
cisplatin and etoposide [106].

In terms of autophagy, PD-L1, and TME, verteporfin has several additional func-
tions. For example, it can inhibit autophagy in cancer cells by blocking the expansion of
phagophores and causing the oligomerization of the autophagic adaptor p62 [107]. It also
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inhibits PD-L1 expression through YAP inhibition and disruption of STAT1-IRF1-TRIM28
signaling [66]. In the TME, it activates cytotoxic T lymphocytes by inhibiting PD-L1 ex-
pression in tumors [66]. In hepatocellular carcinoma, verteporfin increases sensitivity
to cisplatin by reducing the expression of YAP, PD-L1, and TGF-β [20]. Considering its
anti-tumor effects, verteporfin shows great potential in treating intractable lung cancer
by overcoming drug resistance and enhancing the efficacy of cancer immunotherapies.
Although verteporfin is clinically used as a photosensitizer for photodynamic therapy,
its off-target side effects and optimal dosage for anti-tumor effects should be considered.
Recently developed drugs, including CA3, can potently and selectively interfere with the
bond between YAP1 and TEAD [98,99]. These drugs may be valuable for targeting YAP in
lung cancer.

8. Concluding Remarks and Future Perspectives

Over the last decade, the characteristics of YAP in lung cancer have been extensively
elucidated. Recent studies have revealed that YAP acts as an oncogene by regulating
cell proliferation and apoptosis, but also controlling TME and autophagy. Notably, it
directly regulates the transcription of PD-L1, which is a major target in immuno-oncology.
Recent in vitro and mouse model experiments have unveiled novel functions of YAP,
including drug resistance, metastasis, and immune escape in lung cancers. The lately
discovered connection between YAP and autophagy has helped develop novel strategies
to suppress drug resistance and metastasis in lung cancer. Nowadays, lung organoids
have become an important platform for investigating lung cancer, fibrosis, and infectious
diseases such as COVID-19. Lung cancer organoids can recapitulate the genomic and
molecular characteristics of the cancers from which they are derived. Interestingly, YAP
is essential for the formation of alveolar-like cellular arrangements and tubular shapes of
airway cells in lung organoids. Finally, YAP inhibitors, including verteporfin, and CA3
have great potential as novel strategies for overcoming drug resistance and as adjuvants
for immunotherapeutics (Figure 2). However, further clinical studies are vital to translate
these promising findings to the clinical field.
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Figure 2. The crucial roles of YAP from chemoresistance and tumor immunity to autophagy and organoid. YAP is intimately
involved in lung development and regeneration. In cancer, it promotes drug resistance by activating AXL, Mcl-1, and Bcl-xL.
In addition, YAP induces the metastasis of cancer cells by increasing the expressions of FOXC2, TWIST, and ZEB1. It also
directly regulates the transcription of PD-L1 and modulates the functions of several immune cell types. Furthermore, it
regulates autophagic flux and the expression of several key autophagic factors, including p62 and Ulk1. Lastly, YAP plays a
crucial role in regulating the size of lung organoids and developing the tubular structure of airway organoids.
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