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In the vertebrate olfactory tract new neurons are continuously produced throughout life. It
is widely believed that neurogenesis contributes to learning and memory and can be
regulated by immune signaling molecules. Proteins originally identified in the immune
system have subsequently been localized to the developing and adult nervous system.
Previously, we have shown that olfactory imprinting, a specific type of long-term memory,
is correlated with a transcriptional response in the olfactory organs that include up-
regulation of genes associated with the immune system. To better understand the
immune architecture of the olfactory organs we made use of cell-specific fluorescent
reporter lines in dissected, intact adult brains of zebrafish to examine the association of the
olfactory sensory neurons with neutrophils and blood-lymphatic vasculature. Surprisingly,
the olfactory organs contained the only neutrophil populations observed in the brain; these
neutrophils were localized in the neural epithelia and were associated with the extensive
blood vasculature of the olfactory organs. Damage to the olfactory epithelia resulted in a
rapid increase of neutrophils both within the olfactory organs as well as the central nervous
system. Analysis of cell division during and after damage showed an increase in BrdU
labeling in the neural epithelia and a subset of the neutrophils. Our results reveal a unique
population of neutrophils in the olfactory organs that are associated with both the olfactory
epithelia and the lymphatic vasculature suggesting a dual olfactory-immune function for
this unique sensory system.

Keywords: olfactory sensory neurons (OSNs), olfactory Bulb (OB), olfactory imprinting, neutrophil brain migration,
mpx:Dendra2, bromodeoxyuridine (BrdU)
Abbreviations: (BV) BV, Blood Vasculature; EN, Epineurium: a layer of fibrous connective tissue surrounding the olfactory
epithelium; HEV, High Endothelial Venules; LOE, Lamellae of the olfactory epithelia; LV, Lymphatic Vasculature; OO,
Olfactory Organ: The complete olfactory structure including the olfactory epithelia and surrounding epineurium, blood
vasculature, and lymphatic vasculature; OE, Olfactory Epithelia: The epithelia comprised of sensory (neuronal) and respiratory
epithelia, but not epineurium, blood vasculature and lymphatic vasculature.
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INTRODUCTION

Neurons and Neutrophils
In vertebrates the olfactory sensory neurons (OSNs), a group of
continually renewing neurons located in the olfactory epithelium
(OE), extend their axons across the cribriform plate where they
make their first synapses in the olfactory bulb (OB) (1, 2). Odor
mediated social interactions in fishes (3, 4) and rodents (5) use
major histocompatibility complex (MHC) peptides that may also
interact with olfactory receptors and T cell antigen receptors to
link social cues with assessments of the health state of the animal
(6). Additionally, “olfactory imprinting” characterized in salmon
by odor-driven migration to their natal stream (7) has more
recently been shown to be based on the ability to discern
relatedness among conspecifics through detection of MHC
peptides as evidenced by the long term memory of genetically
determined kin signals (8) and the navigation of coral reef fish to
their home reef (9).

We have previously used zebrafish as a model system to study
the cellular basis of olfactory memory in the peripheral nervous
system, namely the olfactory epithelia, and showed that zebrafish
retain into adulthood memories of odors experienced as
juveniles. To identify genes involved in the formation of
olfactory memory we then analyzed the genomic response of
the adult OE in olfactory imprinted fish by both microarray and
RNAseq analyses (10–12). In addition to known genes expressed
in the OE, we found genes specific to both the innate and the
adaptive immune systems (13) prompting us to investigate the
“immune architecture” of the OE that may contribute to long-
term memory.

Neutrophils, the most abundant type of white blood cells in
mammals, are now known to play a key role in both the innate
and the adaptive immune response (14–16), where they can
rapidly migrate to lymph nodes via not only on the blood
vasculature and interstitial tissues, but also via afferent
lymphatics of inflamed tissues (17–20). Under normal
conditions, neutrophils are scarce in the central nervous
system (CNS), where the brain–blood barrier (BBB) prevents
their migration into the brain parenchyma and cerebrospinal
fluid. Conditions of neuroinflammation and injury-induced
damage to the BBB are associated with the infiltration to the
CNS of neutrophils (21–23). Most recently, in mouse,
neutrophils have been shown to infiltrate into the olfactory
organs and express proinflammatory genes in response to
inflammation, but then slowly initiate expression of
neurogenesis-related genes (24, 25). Using zebrafish as a model
system we have recently shown that neutrophils populate the
developing olfactory organs and use the blood vasculature to
migrate to the olfactory organ in response to injury (26), yet little
is known about the interactions of neutrophils in the adult
olfactory organ.

The Adult Olfactory Organ
Blood-Lymphatic System
The connection between the OE and the OB is part of a complex
neural and immune interface that includes flow of cerebral spinal
Frontiers in Immunology | www.frontiersin.org 2
fluid (CSF) and interstitial fluid (ISF) from the subarachnoid
space toward the nasal mucosa. Evidence supporting the
existence of a connection between the subarachnoid space of
the brain and cervical lymph nodes via the nasal mucosa was first
proposed over a century ago (for review see: (27, 28). Subsequent
studies in mammals using labeled tracers confirmed a drainage
route from the cranial subarachnoid space through the olfactory
pathway and leaving the nasal mucosa via terminal lymphatics or
blood capillaries (29, 30). Thus immunogenic material and
immune cells from the CNS could pass to immune organs
outside the brain via the olfactory epithelia. Of particular
interest are the nasopharynx-associated lymphoid tissues
(NALT), a term used in mammals to describe the network of
lymphoid tissue in the pharynx and palate (tonsils). Teleost fish
lack organized lymphoid structures such as tonsils yet a recent
study suggested the presence of a NALT-like diffuse network of
lymphoid and myeloid cells scattered both intraepithelial and in
the lamina propria of the fish olfactory organ (31).

More recently, the “re-discovery” of lymphatic vasculature
associated with the meninges of the CNS of mammals (32–35)
and of zebrafish (36, 37) has led to a renewed interest in immune
trafficking in the nervous system via the sinus-associated
meningeal lymphatic vessels and/or via cribriform plate and
nasal lymphatics into cervical lymph nodes (38–40). To date, and
in spite of over a century of reports on “brain drainage” through
the olfactory system/nasal mucosa and the expanded knowledge
of lymphatic vasculature in the vertebrate brain, there are no
detailed descriptions of the lymphatic vasculature (LV) in the
olfactory organ.

Here, we show for the first time in zebrafish that the olfactory
organs of the adult animal contain neutrophils that are activated
upon injury with the suggestion that injury, and perhaps other
neuroinflammatory stimuli, allow for neutrophil trafficking
across the BBB via the blood-lymphatic vasculature associated
with the olfactory nerve. Better understanding of the olfactory
neural-immune architecture will allow us to dissect the cellular
basis of olfactory memory and immunity.
MATERIAL AND METHODS

Animals
Zebrafish were maintained in a re-circulating system (Aquatic
Habitats Inc, Apopka, FL) at 28°C on a light-dark cycle of 14 and
10 hours respectively. All fish were maintained in the Whitlock
Fish Facility at the Universidad de Valparaiso. Wild-type (WT)
fish of the Cornell strain (derived from Oregon AB) were used.
All protocols and procedures employed were reviewed and
approved by the Institutional Committee of Bioethics for
Research with Experimental Animals, University of Valparaiso
(#BA084-2016). Adults used in the study were 12-16 months of
age. The following transgenic lines were used to visualize specific
cell types: Tg(BACmpx:gfp)i114, Tg(mpx:GFP) (41); (Tg(fli1a:
EGFP)y1 Tg(fli1a:EGFP; (42); Tg(−5.2lyve1b:DsRed)nz101, Tg
(2lyve1b:DsRed) Tg(−5.2lyve1b:EGFP)nz151 Tg(lyve1b:EGFP),
(43); Tg(gata1a:DsRed)sd2 Tg(gata1a:DsRed) (44), Tg(pomp2k:
May 2022 | Volume 13 | Article 881702
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gap-YFP)rw032a, Tg(omp:YFP); Tg(pomp2k:lyn-mRFP)rw035a Tg
(omp:RFP) (45); Tg(six4b:mCh), (46); Tg(mpx:Dendra2) (47).

Copper Exposure
Initial dose response analysis was performed based on previous
work in zebrafish and salmon (48, 49). A stock solution of 10
mM CuSO4 was diluted in system water for a final concentration
of 10 uM CuSO4.

Immunocytochemistry and Cell Labeling
Dissected adult brains were fixed in 4% PFA in 0.1M phosphate
buffer 0.4M pH 7.3), or 1X phosphate-buffered saline PBS pH 7.4.
Brains were rinsed three times in phosphate buffer or PBS,
permeabilized in acetone at -20°C for 10 minutes and then
incubated for two hours in blocking solution (10 mg/ml BSA, 1%
DMSO, 0.5% Triton X-100 (Sigma) and 4% normal goat serum in
0.1M phosphate buffer or 1X PBS). Primary antibodies used were
anti-RFP (rabbit 1:250, Life Technologies), anti-GFP (mouse 1:500,
LifeTechnologies), anti-GFP (rabbit 1:500, Invitrogen), anti-DsRed
(mouse 1:500, Santa Cruz Biotechnology), anti-HuC/D (rabbit
1:500, Invitrogen) and anti-BrdU (rabbit 1:250,Invitrogen). Adult
brains were incubated with the primary antibody for up to a week.
After washes, tissues were incubated overnight in experiment
dependent secondary antibodies: Dylight 488 conjugated anti-
mouse antibody (goat 1:500, Jackson Immuno Research), Alexa
Fluor 488 conjugated anti-rabbit antibody (goat 1:1000, Molecular
Probes), Alexa Fluor 568 conjugated anti-rabbit antibody (goat
1:1000,Molecular Probes), Alexa Fluor 568 conjugated anti-mouse
antibody (goat 1:1000, Molecular Probes), Dylight 650 conjugated
anti-rabbit antibody (goat 1:500, Jackson ImmunoResearch),Alexa
Fluor 350 conjugated anti-rabbit antibody (goat 1:1000, Molecular
Probes). Tissues were then rinsed in 0.1M phosphate buffer or 1X
PBSwith 1%DMSO, stained for DAPI (1mg/ml, Sigma), washed in
0.1Mphosphate buffer or 1XPBSandmounted in 1.5% lowmelting
temperature agarose (Sigma) in an Attofluor Chamber for
subsequent imaging (see below).

BrdU Labeling
For each experiment nine adult fish were first housed overnight
in 1.5 liter tanks containing 10 mM BrdU in system water. The
next morning three fish were transferred to a new 1.5-liter tank
with systemwater (control) and six fishwere transferred to a new
1.5 liter tank with system water containing 10 mM CuSO4, and
allowed to swim freely (4 hours). All control fish (3) and half of
copper-exposed fish (3) were then anesthetized, sacrificed and
heads fixed overnight in 4% PFA/1X PBS. The other half of
copper-exposed fish (3) were transferred to a clean 1.5-liter tank,
filled with system water, and allowed to recover. The next day,
these fish were anesthetized, sacrificed and fixed as described
above. After fixation, heads were incubated in EDTA (0.2 M, pH
7.5) for three days at 4°C and brains dissected in sterile 1X PBS
and pre treated in 2 M HCl for 30 minutes at 37°C.
Immunocytochemistry was performed as described in
Immunocytochemistry & Cell Labeling. For imaging, whole
adult brains were mounted on 2% low melting temperature
Agarose, and OE were mounted between coverslips, as
described above. The removal of brains from the skull with the
Frontiers in Immunology | www.frontiersin.org 3
OO still attached is a difficult dissection because the OSN axons
pass through the cribriformplate to arrive in theOB. Therefore it
was not always possible to have a preparation with both OE still
connected to the brain.

Cryosectioning
Fish were euthanized and heads were fixed overnight in 4% PFA
at 4°C and decalcified in EDTA (0.2 M, pH 7.6) for 3 days, and
later embedded in 1.5% agarose/5% sucrose blocks and
submerged in 30% sucrose for 3 days at 4°C. Blocks were
frozen (-20°C) with O.C.T. Compound (Tissue Tek®) and
sectioned (25 mm) using a cryostat.

For flat mounting of the olfactory epithelia, olfactory rosettes
were dissected after immunohistochemistry or staining, and
mounted with the caudal side down on Poly-L-Lysine coated
slides between triple 22x22 coverslip bridges and covered in
VECTASHIELD®AntifadeMountingMedia (Vector laboratories).

Imaging and Image Analysis
Microscopy: Fluorescent images were taken using a Spinning Disc
microscope Olympus BX-DSU (Olympus Corporation,
Shinjuku-ku, Tokyo, Japan) and acquired with ORCA IR2
Hamamatsu camera (Hamamatsu Photonics, Higashi-ku,
Hamamatsu City, Japan). Images were acquired using the
Olympus CellR software (Olympus Soft Imaging Solutions,
Munich, Germany). Some images were also obtained using a
confocal laser scanning microscope (Nikon C1 Plus; Nikon,
Tokyo, Japan). Images were then deconvoluted in AutoQuantX
2.2.2 (Media Cybernetics, Bethesda, MD, USA) and processed
using FIJI (National Institute of Health, Bethesda, Maryland,
USA; (50) and CellProfiler (51).

Image Analyses
Neutrophils: Only neutrophils within the boundaries of the
olfactory organs in adults were counted and the values were
given as the average of total number of mpx:GFP positive with
standard deviation. Values given for paired sensory structure are
a sum of the individual sensory tissues.

To analyze the distribution ofmpx:GFP+ neutrophils from both
whole adult brains andflat-mountedolfactory rosettes, imageswere
filtered by size (6-30 mm) and pixel intensity, and then counted
using CellProfiler available Pipelines (51). For quantification of
neutrophils in different regions of the OE, sensory (ss) versus non-
sensory (ns) regions were separated using Tg(omp:RFP) animals or
anti-HuC/D labeling as neuronal markers. We grouped the ns
region with the epineurial extensions (EN) wrapping the OE. The
percent of total neutrophils is the number of GFP cells in ss or ns
regions, divided by total (sum of all GFP positive cells in ss, ns and
EN).BrdUnucleiweredetectedbyfiltering sizebetween2-5mmand
co-localization betweenBrdUandneutrophils was doneusing “Co-
localization” Pipeline in CellProfiler (51).

The circularity index of each neutrophil was calculated using
Analyze Particles in FIJI (National Institute of Health, Bethesda,
Maryland, USA; (50). Neutrophils were size-filtered and values
were graphed according frequency of distribution.

BV/LV vessel density. Density is defined by the ratio of the
area positive for fli1a:EGFP (BV) and lyve1b:DsRed (LV) over
May 2022 | Volume 13 | Article 881702
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the total dorsal telencephalic or the olfactory system area (which
includes both the OE and OB). Protocol adapted from (52).

Photoconversion
The protocol “Labeling cells with photoconvertible fluorescent
proteins in zebrafish” was adapted for adult fish. Homozygote (2.5
months) Tg(mpx:Dendra2) (ZDB-TGCONSTRCT-110209-4) fish
expressing Dendra2 (original 490/507; photoconverted 553/573;
octocoral Dendronephthya sp. (47, 53) were used. Fish were
anesthetized using Tricaine (40mg/L) in tank water and positioned
using small wet sponges. Using the 10x objective, olfactory organs
were illuminated by the border of the visual field when the size of the
pinhole on the Leica DMR microscope (Leica Microsystems CMS
GmbH,Wetzlar,Germany)was adjusted. Fishwere checked forMpx :
Dendra2 positive cells (green) in the olfactory organ before initiated
the photoconversion. The photoconversion, as judged by the
appearance of conversion to red fluorescence, required ~90 seconds.
Fish were allowed to recover and then exposed to copper (see above).
Images were acquired using a Leica DFC 480 camera (Leica
Microsystems Ltd, Heerbrugg, Switzerland), and processed with the
Leica Application Suite 2.3.3 software (Leica Microsystems Ltd).

Statistics. Data are presented as means ± standard deviations.
Experiments number and statistical analysis were done using Prism
9 (Graphpad), and are indicated in each figure legend. Unpaired
Student’s t-tests were performed unless otherwise indicated. P
values are indicated as follows: *P, 0.05, **P, 0.01, ***P, 0.001.

GO Analysis of Data From Imprinted
Adult OO
Using data collected from adult olfactory organs of treated (PEA
Imprinted) and control animals (11) a GO analysis was performed.
The quality of the sequencing reaction was analyzed with the FastQC
software (v0.11.9) (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) and trimmed with Trim_galore (v0.6.4) (https://
www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Reads
were aligned to the Zv9 reference genome using Bowtie2 software
with standardsettings (doi:10.1038/nmeth.1923).After alignment, the
gene abundance was determined using the HTseq software (v0.11.2)
(https://htseq.readthedocs.io/en/master/) (doi:10.1093/
bioinformatics/btu638) to calculate the raw reads number for each
gene.Differential geneexpressionwasestimatedusingDESeq2(v1.24)
(10.1186/s13059-014-0550-8) within SARTools R package (v1.6.9)
(http://dx.doi.org/10.1371/journal.pone.0157022). Gene Ontology
(GO) analysis were carried out using the GO stat R package
(10.1093/bioinformatics/bth088). The data have been deposited in
NCBI’s Gene Expression Omnibus (54) and are accessible through
GEO Series accession number GSE196102 (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE196102).
RESULTS

Neutrophil Populations in the Adult
Olfactory Organ
Using RNA sequencing data from our original studies on the
genomic responses of the peripheral olfactory organ in imprinted
Frontiers in Immunology | www.frontiersin.org 4
versus control animals (11, 13), a GO analysis was performed
(GEO Series accession number GSE196102) which revealed
significant correlation between the formation of olfactory
memory and up-regulation of immune specific genes including
but not limited to immunoglobulin light 3 variable 5 (igl3v5),
immunoglobulin heavy variable 2-1 (ighv2-1), immunoglobulin
heavy variable 5-3 (ighv5-3), and immunoglobulin heavy constant
delta (ighd), of the adaptive immune system, and toll-like receptor
19 (tlr19) of the innate immune system. Recently neutrophils
have been shown to interact with cells of the adaptive immune
system [see for review (55)] including production of Ig heavy and
light chains in a subset of monocytes and macrophage (56),
where the expression of IgM heavy chains and IgK light chains in
human monocytes and neutrophils support Ig production by
myeloid cells (57, 58). Because the adaptive immune system is
responsible for immunological memory and reporter lines for
neutrophils were readily available, we initiated a characterization
of the neutrophils and their potential association with the
olfactory organ in adult animals. We used Tg(omp:RFP);Tg
(mpx:GFP) animals to visualize olfactory sensory neurons
(OSNs, red) and neutrophils (green), in fixed whole mount
brains. The omp:RFP+ OSNs (Figures 1A, B, red, ss, red) are
in the central sensory epithelia (ss) and peripheral regions of the
lamellae are made up of the non-sensory epithelia (ns)
(Figure 1B, ns). Surprisingly, we observed neutrophils only in
the OO of adult brains (Figures 1A, B green). Neutrophils were
localized in the fingerlike lamellae (LOE) of the OE,
predominantly associated with the epineurium (EN) wrapping
around the OE (Figure 1B) where the tips of the LOE are
connected to the EN (Figure 1B, EN, LOE, blue; Figure 2).
Analysis of the distribution of GFP-positive neutrophils revealed
that they were located primarily in the ns epithelia and EN with
many fewer neutrophils in the ss epithelia (Figures 1B, E).
Within the OE/EN there were three morphologically distinct
mpx:GFP+ cells (Figures 1C, D, F): Neutrophils with rounded
shape (Figure 1C, green, nt1) were associated with the basal OE,
while neutrophils with amoeboid like morphology (Figure 1C,
green, nt2, D, ci=0.7) were present in the tips of the LOE and EN,
although this distribution changed in response to damage of the
OE (see below). In sectioned OE tissue the columnar shaped
mpx:GFP+ cells (Figure 1D1, green) were morphologically
similar to sustentacular cells of the OE visualized with the Tg
(six4b:mCh) reporter line (59); Figures 2A, B red). We next
generated Tg(six4b:mCh;mpx:GFP) animals and let them grow to
adulthood. Sectioned tissue of the OE revealed a subset of six4b:
mCh+ cells that were also mpx:GFP+ (Figure 2B, inset). These
cells lie at the interface of ns epithelia (Figure 2B, boxed area) in
the distal LOE and further studies are needed to carefully
characterize this class of mpx:GFP+ cells.

To confirm that the neutrophils observed in the whole mount
OE (Figure 1G, green) were within the OE as opposed to coating
superficial layers, a z-stack analysis was performed (Figures 1G,
H) showing that the mpx:GFP+ cells are within the OE tissue.
Thus the adult OOs are unique because they are the only regions
of the adult brain where neutrophils are found under
normal conditions.
May 2022 | Volume 13 | Article 881702
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FIGURE 1 | Neutrophils are found only in the olfactory organs of the adult brain. (A) Wholemount brain of Tg(omp:RFP);Tg(mpx:GFP) adult: neutrophils (green) are only
present in the OO (OE/EN); Tel: telencephalon; pi: pineal. Scale bars A, B = 200 mm. (B) OO (from A) contains a large population of neutrophils (green, n=487 neutrophils).
omp:RFP+ OSNs are located only in sensory epithelia (ss, red) not in non-sensory epithelia (ns). ON: olfactory nerve. (C) Neutrophils with a rounded shape, (nt1, arrow:
circularity index 0.7 or greater) and amoeboid shape (nt2, arrow: circularity index of 0.4-0.6; F) were observed in the LOE. (D) Neutrophils with an amoeboid shape (nt2, arrow)
were located throughout the OE and EN. (D1) Sustentacular-like cells (D1), circularity index 0.2, lie at ns-ss epithelia interface (see Figure 2). (E) Total number of neutrophils in
the OO. The non-sensory (ns) tissues (respiratory epithelia + NE, blue) have more neutrophils than sensory epithelia (ss, red), n= 3 OE from 3 different fish. (E) **indicates
significant statistical differences between means with a p-value < 0.002, paired t-test.. (F) Frequency distribution of nt1 and nt2 cells (n= 53 neutrophils from brain shown in C).
(G) Maximal projection of whole mount Tg(mpx:GFP) adult OE: Neutrophils (green); autofluorescence (gray). (H) Neutrophils (from G) were color-coded based on (H) Z-stack
depth. Total depth= 550mm. Scale bars A, B = 200 mm; C = 60 mm; D, D1 = 20 mm; G, H =100 mm. (A, B) 9 brains imaged; (C, D) 6 brains sectioned.
FIGURE 2 | Sustentacular cells in the OE are associated with markers for neutrophils. (A, B) Cryosections of adult olfactory epithelia. (A) Adult olfactory rosette (OE) from Tg
(six4b:mCh) line showing sustentacular cells (red) that are distributed within the lamellae of the OE where some areas have denser clusters (boxed area). EN: Epineurium; mr:
midline raphe. Scale bar = 100 mm. (B) Sectioned OE of Tg(six4b:mCh;mpx:GFP) Six4b:mCh+ SCs (red) and mpx:GFP+ neutrophils(green) are found in the respiratory
OE near the tips of the lamellae (boxed area). Scale bar = 50 mm. Inset B:. A small subset on cells are positive are both mpx:GFP+ and Six4b:mCh+ positive (arrows).
(A) 1 sectioned brain, (B) 2 sectioned brains.
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Neutrophil Response to Damage in the
Adult Olfactory Sensory System
Inorder to investigate the neutrophil response todamage of theOE,
weexposedTg(mpx:GFP);Tg(omp:RFP) adultfish to10mMCuSO4.
Because of the challenges of live imagingwholemount adult brains,
adults were sacrificed at different times after copper exposure to
follow the dynamics of neutrophil response over time. In untreated
control animals, and consistent with previous results, neutrophils
(Figure 3, green) were observed only in the OO (Figure 3A,
arrowhead, A’) and were absent from the brain (Figure 3A).
After four hours of copper exposure, an increase in neutrophils
was observed in the OO (Figure 3B, green, arrowhead, B’, B’’).
Within the OO the ns and ss OE as well as the EN (Supplementary
Figures 1F, H) showed an increase in neutrophils in response to
damage. Additionally neutrophils were observed in the
Frontiers in Immunology | www.frontiersin.org 6
ventromedial OB, along the telencephalic ventricle (Figure 3B,
OB, V) and in the ventral telencephalon (Figure 3B, green, arrows).
Fish left to recover for one day post-treatment still showed elevated
numbers ofneutrophils in theventralOB(Figure3C, green, arrows,
D) and the OO (Figure 3C’, green). The increased numbers of
neutrophils in the OOs and subsequent appearance of neutrophils
in the ventralOBand ventral telencephalon (Figures 3D, E, vCNS),
suggests that neutrophils may move from the OOs into the ventral
CNS in response to peripheral damage.

To further investigate this possibility we used the Tg(mpx:
Dendra2) line that expresses a phtotoconvertible (green to red)
Dendra2 protein in neutrophils (47). The left olfactory organ (OO)
of six anesthetized young (2.5monthold) adultfishwere exposed to
activating light (DAPIfilter) (Supplementary Figures 2,A,A’) and
allowed to recover. Twomale and 2 females were exposed to 10mM
FIGURE 3 | Exposure to copper is correlated with increased neutrophils in the peripheral and central nervous system. (A–C) Ventral views of whole mount adult
brains from Tg(mpx:GFP). Scale bars: A-C; A’-C’= 100 mm. (A, A’) Control with neutrophils found only in OO (arrowhead; A’). (B, B’, B”) After four-hour exposure to
copper, there was an increase in the number of neutrophils in the OO (B, arrowhead, B’, B”). In addition, neutrophils were observed in the ventral OB, along the
ventricle (V) and in the ventral telencephalon (B, arrows) (C, C’) One day post treatment neutrophils were still present in OO (C’), the OB (arrows) and the ventral
telencephalon. (D) Neutrophils appear over time in an anterior to posterior spatial pattern: olfactory nerve (ON), olfactory bulb (OB), posterior Telencephalon (pTel),
and anterior diencephalon; (the numbers for OO are not plotted because number is out of range (average ~1,500, see E). (E) Copper exposure was correlated with
increased neutrophils in OE and ventral CNS. ****: Two-way ANOVA, Tukey’s multiple comparison test, p < 0.05). (****P, 0.0001). (A–C, A’–C’) Preparations were
selected for imaging based on whether they were intact and the signal to noise of the labeling. (D) 1 brain was analyzed per timepoint. (E) 3 brains were examined
per treatment.
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CuSO4 for four hours and sacrificed. Tissue was fixed and the CNS
examined for the presence of red PC Mpx : Dendra2 positive
neutrophils. Four animals, one control (Supplementary
Figures 2 C, C’, C’’) and three experimental animals
(Supplemental Figures 2D, E) had red neutrophils in the region
of the ventricle. The control animal also showed red
photoconverted (PC) Mpx : Dendra2 positive neutrophils in the
left posteriorOB (Supplementary Figure 2C’). The presence of red
PCMpx : Dendra2 positive neutrophils in both control and copper
exposed animals suggested that a treatment common to both
groups may induce inflammation.

Damage Induced Changes in Cell Cycle
Dynamics in the Olfactory Sensory System
To further investigate the cellular dynamics of the neutrophil
response to copper-induced damage in the adult, we repeated the
experiments with copper using Tg(mpx:GFP) animals in the
presence of BrdU. When viewed in flattened whole mount
preparations (Figures 4A–C), the OE of the adult is organized
as a “rosette”, with the central region midline raphe (mr)
surrounded by ss and the outer regions of the rosette (tips of
the lamellae) containing the ns or respiratory epithelia. In control
animals (Figure 4A, viewed looking into the rosette) BrdU
labeling was observed, consistent with the mitogenic nature of
the olfactory system (60, 61). After four hours of copper exposure,
Frontiers in Immunology | www.frontiersin.org 7
BrdU labeling increased significantly in the mr (Figure 4B, white,
arrow), and in the ns epithelia extending to the EN. In contrast,
one day post treatment (dpt) significant increases in BrdU labeling
were observed in the ss epithelia (Figures 4C, F), consistent with
the renewal of OSN in the OE after damage (62). In addition, the
neutrophils now lined LOE (Figure 4C, green) possibly in
association with the BV (Figure 4D, green). The number of
neutrophils showed significant increases at 4 hours post-
treatment (hpt) and remained high in the ss epithelia one dpt
(Figure 4E; 444.67 ± 31.39 and 373.33 ± 32.32 neutrophils in 4
hpt, red, and 1 dpt, green). Significant increases in BrdU labeling at
both 4 hpt and 1 dpt were observed only in the ss epithelia
(Figure 4F; 480 ± 241.76 and 786 ± 211.6, respectively). Analysis
of cells expressing both mpx:GFP and BrdU showed a significant
increase compared to control animals (Figure 4G, control: 9 ± 1, 4
hpt: 26 ± 6, 1 dpt: 22 ± 5.29). The frequency of rounded (see
Figure 4C, green, nt1; ci 0.7 or greater) and amoeboid-like (see
Figure 1C, green, nt2; ci 0.4-0.6) neutrophils, potentially
representing “resting” and activated neutrophils respectively,
increased in the OE post-damage (Figure 4H; Table 1). The
columnar shaped cells (ci 0.1-0.3) increased in frequency at one
dpt in the sensory region (Figure 4H, green, 0.2 -0.3 green bars)
but remained as the least common morphology. Damage to the
OE resulted in an increased number of rounded neutrophils of
which a small but significant number were double labeled for
FIGURE 4 | Damage induces cell proliferation of OSN and of neutrophil precursors in the adult olfactory organ. (A–C) BrdU labeled cells (white), neutrophils (green) in whole
mount OO of adult fish. Scale bars A-C = 50 mm (A). Prior to copper exposure BrdU labeling and scattered neutrophils were observed in the medial raphe (mr), sensory (ss),
and non-sensory (ns) epithelia. n= 3 OE. (B) After four hours of exposure to copper, intense BrdU labeling was observed in the mr. n= 3 OE. (C) One day post recovery,
neutrophils lined the lamellae and intense BrdU labeling was observed in ss and LOE-EN. n= 3 OE. (D) Section of Tg(fli1a:EGFP) adult OE showing extensions of blood
vasculature (green) within the OE. Scale bar = 100 mm. n= 3 sectioned heads. (E) Significant increases in neutrophil number were observed after 4 hour copper exposure (red)
in both the ns and ss epithelia when compared to control (grey). At one dpt (green) only the number of labeled ss cells remained significantly greater than controls. n= 3 OE.
(F) Damage induced changes in the number of BrdU-positive cells were significant in the ss epithelia but not the ns at 4 hour copper exposure (red) and one dpt (green). n= 3
OE. (G) A small but significant increase in mpx:GFP+ cells double labeled for BrdU scored in the OE. (E-G, n=3 adult OE from different fish; Two-way ANOVA, Tukey multiple
comparison test, p < 0.05). (*P, 0.05, **P, 0.01, ***P, 0.001). n= 3 OE. (H) Four hours of copper exposure (orange) and one day post-treatment (green), an increase in
rounded (nt1; circularity index 0.7 or greater see Figure 5) and amoeboid (nt2; circularity index 0.4-0.6) neutrophils were observed. Two-way ANOVA, Tukey’s multiple
comparison test, p < 0.05). (*P, 0.05, **P, 0.01, ***P, 0.001, ****P, 0.0001, ns: non significant).
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BrdU. Thus the majority of the increase in neutrophils was likely
due to migration as opposed to proliferation.

The Adult Olfactory Sensory System has
Extensive Lymphatic Vasculature
We have previously shown that the lymphatic vasculature (LV)
associated with the developing olfactory organs is first evident at 14
Frontiers in Immunology | www.frontiersin.org 8
days post fertilization (dpf), in the ventrolateral side of the organ
(26) To better understand the LV system in the olfactory sensory
system of the adult, we dissected brains with olfactory organs
attached from Tg(lyve1b:EGFP;omp:RFP) animals (Figure 5). The
olfactory organs (OO) are made up of sensory epithelia containing
the omp:RFP+ sensory neurons (Figures 5A–D, F, red) and
respiratory epithelia, surrounded by what appears to be an
TABLE 1 | The area under the curve (AUC) and statistical significance of circularity frequency in control, copper, and 1-day post-treatment animals.

Circularity Index Control Cu 1 dp Cu

0.1 0.33 0.00 0.00
0.2 2.67 0.00 4.67
0.3 7.00 6.67 24.33
0.4 7.67 30.67 46.67
0.5 13.67 39.33 52.33
0.6 12.67 61.33 76.67
0.7 6.00 64.67 74.00
0.8 5.67 80.67 72.33
0.9 1.67 52.33 55.67
1.0 1.67 40.33 41.00
AUC 5.80 c 35.58 b 41.72 a
May 2022 | Volume 13 | Articl
Different letters indicate statistical differences between mean values (p<0.05, 1-way ANOVA; a > b > c).
FIGURE 5 | The olfactory organs have an extensive lymphatic vasculature. (A-F) Whole mount brains of adult lyve1b:EGFP;omp:RFP animals showing OSN (red)
and lymphatic vasculature (green). (A) The OE and OBs but not dorsal the telencephalon (Tel) showed extensive lymphatic vasculature (LV, green). (B) Higher
magnification of OO in A with the epineurium (EN, arrow) seen wrapping around the outer surface of lamella of the OE (LOE). Lymphatic cells were found in OO
(arrowheads) and OB. (C) The LV extended centrally from the OO/OB along the ventral telencephalon (vTel) and posteriorly to the ventral diencephalon. (D) Higher
magnification of OO in (B). LV (arrowheads) is associated with the olfactory nerve (ON, red) and covers the ventral surface of the OB (green, arrows). (E) Lyve1b:
EGF+ cells in the tips of the LOE resemble High Endothelial Venules (HEVs). (F) Putative Mural lymphatic endothelial cells (MuLECs) wrap the OB (arrows).
Representative images selected from detailed analysis of 9 brains. DAPI (blue). (A, C)= 200 mm; (B, D) = 100 mm; (C, F) = 50 mm.
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extension of the epineurium (EN) of the olfactory nerve
(Figures 5A–D, EN). At this point it is not clear where exactly
the meningeal membranes fuse with the epineurium after crossing
the cribriform plate (28). Viewed from the dorsal side, lyve1b:
EGFP+ LV were found in the OO (Figure 5A, OO, green, B, green,
arrowheads), the olfactory bulb (Figure 5A, OB, green, arrow) and
the diencephalon (Figure 1A, TeO, green, arrow), but not in the
telencephalon. In the dorsal OO the lyve1b:EGFP+ cells (Figure 1B,
green, arrowheads) line the lamellae of the OE (Figure 5B, LOE). In
contrast, when viewed from the ventral side there was an apparently
continuous network of LV extending from the OO to the OB and
along ventral telencephalon (Figures 5C, D, green). The lyve1b:
EGFP+ cells were also evident in the ventral OO associated with the
olfactory nerve (Figure 5D, ON, red). Twomorphologically distinct
lymphatic cell types were observed. Within the OO thick tubular
lyve1b:EGFP+ cells were associated with the LOE (Figures 5B, D,
arrowheads), and resemble High Endothelial Venules (HEV-like,
HEV-L; Figure 1E) that control lymphocyte trafficking inmammals
(63); to date these cells have not been described in the peripheral
olfactory sensory system. And in the OB, smaller lyve1b:EGFP+ cells
Frontiers in Immunology | www.frontiersin.org 9
covering the dorsal OB and ventral telencephalon, apparently
connected by fine processes, resembled Mural Lymphatic
Endothelial Cells (muLEC-L) after Bower (36) (Figure 1D,
arrows, green, F, muLEC-L, green). This cell type was also
observed in the OO (Figures 5, 6). In contrast to the cells
described by Bower, the muLEC-L appeared to be connected by
fine processes (Figures 5, F, arrows) and not separate cells like the
BV-associated muLECs (36). At this time it is not clear whether
these connections have a lumen. Thus, in adult zebrafish there is an
extensive LV system associated with the olfactory sensory system
(Figure 5) wrapping the OE (HEV-L), encompassing the olfactory
bulb (muLEC-L) with apparently continuous connections along the
ventral telencephalon (Figure 5C).

To investigate the association of the lymphatic vasculature
(LV) with blood vasculature (BV) in the OOs, Tg(lyve1b:DsRed;
fli1a:EGFP) animals were used to visualize the LV (red) and BV
(green) (Figure 6). We found extensive BV (fli1a:EGFP+)
surrounding the OE associated with the EN in both the dorsal
(Figure 6A, green) and ventral (Figure 6B, green) OO and OB.
The BV (Figures 6A, B, green) and LV (Figures 6A, B, red) form
FIGURE 6 | Blood (BV) and Lymphatic (LV) Vasculature wrap the olfactory organs (OO). (A, B) Whole mount Tg(fli1a:EGFP;lyve1b:DsRed) of the adult OO
connected to OB with BV (fli1a:EGFP, green) and LV (lyve1b:DsRed, red). Dorsal (A) and ventral (B) views; DAPI (blue), Scale Bars: (A, B) = 200 mm. (C) BV (red)
and LV (green) density is greater in olfactory system (OS = OE and OB) than telencephalon (Tel); (SE, P-value <0.05, unpaired t-test; n = 6 adult brains. One-way
ANOVA, Tukey multiple comparison test, P < 0.05). Representative images selected from detailed analysis of least 6 brains. (D) Transmitted light image of fixed
whole mount OO. Boxed area corresponds to area where LOE connects with EN. Scale bar = 100 mm, (E). The LV (red) meet the BV (green) at the distal tips of
each lamellae (boxed area; asterisks). Scale bar = 100 mm, (F). Cells express both lyve1b:DsRed and fli1a:EGFP (arrows). Scale bar = 25 mm. (A, B), (E, F): Analysis
of 9 brains. Two-way ANOVA, Tukey’s multiple comparison test, p < 0.05). (*P, 0.05, ***P, 0.001, ns: non significant).
May 2022 | Volume 13 | Article 881702

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Palominos et al. Olfactory Neuro-Immune Interactions
an extensive network extending along the lamellae of the dorsal
and ventral OE. In comparing the density of BV and LV in the
dorsal brain, the OE have a greater density of BV and LV than
the OB and telencephalon (Figure 6C; Table 2, fli1a) in contrast
to the LV (Figure 6C; Table 2, lyve1b) where the OB has greater
density than the OE. The BV (Figures 6A, B, E, F, green) and LV
(Figures 6A, B, E, F, red) extend along the EN that surrounds
the LOE (Figures 6D, E) and meet at the tips of the LOE where
muLEC-L like cells were observed (Figure 6E boxed area, red, F
arrows). Thus the extensive BV and LV associated with the EN
and OE connect along the distal lamellae where distinct BV
morphologies are associated with the EN and LOE (Figure 6F).
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In mammals, the olfactory lymphatic route crosses the
cribriform plate (CP), which separates the OBs and the OOs,
draining cerebral spinal fluid (CSF) through the perineural space
surrounding the olfactory nerve (40). This connection to nasal
lymphatics carries lymphatic endothelial cells, T, B lymphocytes
and antigen presenting cells (APCs) toward the cervical lymph
nodes (64). To characterize the LV structure crossing the
cribriform plate we sectioned intact, decalcified heads from Tg
(lyve1b:DsRed;fli1a:EGFP) animals to determine whether the
muLEC-L cells or HEV-L cells extended across the cribriform
plate (Figure 7, CP). Dorsal to, and at the site of, ON crossing
(Figures 7A, B), the OE was populated primarily by fli1a:EGFP+
FIGURE 7 | Blood vasculature extends through cribriform plate with muLEC-like lymphatic cells. (A–E) Sections from Tg(lyve1b:DsRed;fli1a:EGFP) adult brains (n=6
brains examined). (A) I. n dorsal sections the OB is separated from the OE by the cribriform plate (CP). The OB has extensive BV (green) extending into the lamellae
of the OE and muLEC-like cells (red) on the surface of the OB (arrow). (A–D) = 100 mm (B). The ON passes through the CP accompanied by extensive BV (green).
muLEC-like cells are on the medial surface (red, arrow) of the OB. (C). The muLEC-like cells (red, arrow) line the ventral side of the ON. (D) muLEC-like cells line the
basal OE (red, arrows) in the most ventral region of the OO. (E) muLEC-like cells on the BV extending across the CP and many are positive for both lyvel1:DsRed
and fli1a:EGFP (arrows). DAPI: white. Scale bar = 50 mm. (F) Diagram depicting olfactory organ with sensory (ss) and non-sensory (ns) epithelia that have extensive
BV (green). The lamellae of the OE contain HEV-like LV (red) that do not extend across the cribriform plate (CP). muLEC-like cells (orange) line the BV and extend
from the olfactory bulb across the CP to the basal OE. Scale bars: A-D = 100 mm, E = 50 mm.
TABLE 2 | Mean, standard deviation, and statistical significance of blood and lymphatic vasculature in the olfactory organs (OO), olfactory bulbs (OB), and ventral
telencephalon (Tel).

Tissue Mean SD n

fli1a:EGFP OO 0.581 a 0.163 6
fli1a:EGFP OB 0.293 b 0.083 6
fli1a:EGFP Tel 0.268 b 0.055 4
lyve1b:DsRed OO 0.289 b 0.041 6
lyve1b:DsRed OB 0.584 a 0.082 6
lyve1b:DsRed Tel 0.164 c 0.012 4
May 2022 | Volume 13 | Article 88170
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BV. The lyve1b:DsRed+ LV (Figure 7C, red, arrowhead) is
associated with the fli1a:EGFP+ BV surrounding the ON
(Figure 7C, green) as it crosses the CP and lines the basal
region of the OE (Figures 7C, D, red, arrows). The muLEC-like
cells of the LV lined the BV both on the intra-cranial (Figure 7E,
arrows) and extra-cranial side (Figure 7E, arrowheads) of the
ethmoid bone. We never observed HEV-L cells (Figure 5E)
crossing the CP or on the intra-cranial side of the ethmoid bone.
Thus the muLEC-L lymphatic cells associated with the BV were
found wrapping the exterior surface of the OB (Figures 5D, F),
crossing the CP (Figure 7) and extending along the EN
(Figures 7A, B) where they were associated with the HEV-L
LV of the olfactory organ (Figure 7F).
DISCUSSION

In this study we have shown that the olfactory sensory system has
a unique “immune architecture” where neutrophils permanently
populate the olfactory sensory organs in association with a
complex network of BV-LV. These neutrophils mount a rapid
response to copper-induced damage to the OE, populating not
only the tissues of the OE and associated EN, but also appearing
in tracts extending posteriorly along the ventral CNS. These data
demonstrate a role for neutrophils in the olfactory sensory
system and suggest that the nasal lymphatic pathway may be a
potential site of entry for immune cells into the CNS.
Frontiers in Immunology | www.frontiersin.org 11
Neutrophils
It has recently been shown that neutrophils, in addition to their
role as the first line of defense in the innate immune response, also
transport antigens and populate lymph nodes via HEVs where
they coordinate early adaptive immune responses (19, 65, 66).
Neutrophils are found in many tissues and each such
subpopulation performs many functions (67) for instance, the
lung is known to retain neutrophils as a host defense niche
(68, 69). In mammals the OE is reported to have B
lymphocytes, lactoferrin, and lysozyme in the Bowman’s glands
(70) and neutrophils in the non-sensory epithelium of the
vomeronasal organ (71). In teleosts, limited morphological
studies have shown scattered myeloid and lymphoid cells within
the OE and lamina propria (31, 72, 73). Most recently, in the OO,
neutrophils infiltrate and later express neurogenesis-related genes
in response to inflammation, suggesting a potential role for
neutrophils in the ongoing neurogenesis of the OE (24).

The neutrophils we observed in the OOs were striking not
only in their number but also in their limited distribution: they
were found only in the OOs and not in the CNS (brain) under
normal conditions. After copper exposure there was a large
increase in the number of neutrophils in the OE/EN and
subsequently neutrophils appeared in the CNS, initially in the
ON and ventral lateral OB, and then extending posteriorly along
the ventral telencephalon, although far fewer neutrophils were
observed in the CNS. This ventral tract from OOs contains a rich
network of LV (Figure 5), and has previously been suggested as a
route for immune cell influx through the basal forebrain in mice
(74) and mesenchymal stem cell migration cell from the
periphery to the OB (75). Thus, the pattern of neutrophils
observed is suggestive of neutrophil migration into the brain
from the periphery, along the ON, ventral OB, and
ventral telencephalon.

Neutrophils in CNS
Experiments using the Tg(mpx:Dendra2) l ine where
photoconversion was limited to the OO resulted in red (converted)
neutrophils in the ventricular region of the telencephalon (Figure 8,
red cells), support the hypothesis that neutrophils migrate from the
OO into the brain. Yet, the presence of red PC-neutrophils in the
ventricle region was not specific to copper exposure, as it was
observed in both control and experimental animals. Because all
animals were anesthetized for the photoconversion process, the
most likely explanation is that tricaine (tricaine methanesulfonate/
MS-222; the only FDA-approved anesthetic for use in fish in the
USA),mayaffect theOOwhen the anesthesia is bathapplied.Because
tricaine is associated with several physiological changes, such as
bradycardia, an increased resistance to blood flow through the gill
lamellae, and erythrocyte swelling (76), itmay have notable effects on
theOOswhich also contain respiratory tissue. Furthermore, hypoxia,
an effect of tricaine anesthesia, has been shown in mammals to
promote the infiltration of peripheral immune cells into the brain
(77). Thus our results support amodel where the olfactory nerve and
associated blood-vasculature (26) can serve as a point of entry to the
CNS for neutrophils from the OOs. This movement is most likely
triggered in response to inflammationbut perhaps also in response to
FIGURE 8 | Olfactory organs have unique neutrophil population. Schematic
of olfactory organs (OOs), olfactory bulbs (OB) and telencephalon highlighting
the association of the neutrophils (green) with the olfactory sensory neurons
(purple). Neutrophils PC in the OO appeared in the CNS associated with
posterior OB and ventricle.
May 2022 | Volume 13 | Article 881702

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Palominos et al. Olfactory Neuro-Immune Interactions
odor stimuli. While PC-neutrophils originating in the OO were
observed in the region of the ventricle, more experiments are needed
to better understand the dynamics of the CNS neutrophils.
Deciphering the effects of anesthesia as well as those of odors used
in olfactory imprinting (10) on the neural immune response of the
OO is a focus of current studies in our lab.

Lymphatic Vasculature
Evidence supporting a connection between the subarachnoid
space of the brain and cervical lymph nodes via the nasal
mucosa was first proposed over a century ago ]for review see
(27, 28)]. In descriptions of the olfactory/nasal drainage in
mammals, the LV is generally depicted with terminations at the
extra-cranial side of the cribriform plate. Here we found two types
of lyve1b:EGFP+ LV: one having muLEC like structure where the
cells line the BV (36, 37), appeared to be connected, and were
found on both the intracranial and extra cranial side of the
cribriform plate (Figure 7).

A recent study using mouse has confirmed the outflow path of
cerebral spinal fluid (CSF) along the olfactory nerves and showed
chemical ablation of the OSNs did not increase intracranial
pressure suggesting an effect on CSF drainage or production
(30). An alternate possibility is that the LV because of its close
association with the skull, was unaffected by OSN ablation (see
below). Recent studies in zebrafish have described a dorsal
meningeal lymphatic network that, like observed in mammals,
drains interstitial fluid from the brain and is a route for
neutrophil migration, although they move more slowly than
when associated with BV (78).

Similar to the tubular lymphatic described in the meninges, we
observed a second lyve1b:EGFP+ LV with tubular morphology
similar to HEVs, in association with the OE/EN on the extra-
cranial side of the cribriform plate localized to the distal tips of the
LOE. These tubular LV have connections leading away from the
region of the respiratory epithelia as has beendescribed formammals
(79) and are severed during our dissections. Preliminary imaging
suggests this LV extends across the face of the adult fish and
terminates in a region posterior to the eye, and like the dorsal
meningeal lymphatic network (78) may also be a candidate region
for an (as-yet-undiscovered) analogue of cervical lymph nodes of
mammals. Whether these tubular LV observed in the OOs are
connected to the skull-associated meninges described in zebrafish is
currently unknown.

In mammals the nasal lymphatic route that drains into the
cervical lymph nodes through the cribriform plate, carry immune
cells such as monocytes, dendritic cells, and T cells (80, 81).
Moreover, recently (82) confirmed that cribriform plate
lymphatics are a prime site for immune cell drainage and
crosstalk upon neuroinflammation (as experimental autoimmune
encephalomyelitis), supporting our results on the conserved
function of the olfactory lymphatics in regulating immunity. In
addition, mammals have Nasal-Associated Lymphoid Tissue
(NALT) also referred to as Waldeyer’s lymphatic ring,
surrounding the naso/oropharynx. This tissue contains lymphatic
vessels and HEVs, which are specialized post-capillary venous
swellings, enable lymphocytes circulating in the blood to directly
enter a lymph node (by crossing through the HEV).
Frontiers in Immunology | www.frontiersin.org 12
Recently tissue described as NALT has been reported in fish
(83, 84), yet fish do not have lymph nodes. Thus a distinction is
made between “organized” NALT and “diffuse NALT” (84) or
NALT versus non-NALT (for murine nasal dendritic cells (85)
where teleost fish have diffuse-NALT/non-NALT in the olfactory
organs. Here we found that the OE/EN has an extensive blood
vasculature associated with lyve1b:EGFP+ lymphatic endothelial
cells resembling high endothelial venules (HEVs) of the lymph
nodes in mammals. The HEV-like cells were localized to the tips
of the LOE extending on the external side of the EN to the base,
terminating in the region where the meningeal membranes fuse
on the extra-cranial side of the cribriform plate. The structures
observed raise the possibility that in spite of lacking lymph
nodes, the zebrafish OOs shows similarities with mammalian
lymph node organization, thus suggesting the existence of an
organized secondary lymphoid tissue in the OO.

CONCLUSIONS

The surprising finding of neutrophils in the adult olfactory organs
resulted from our search to better understand the link between the
formationof olfactorymemory, as in the case of olfactory imprinting,
and its correlationwith transcriptional changes in immuneassociated
genes. The extensive network of blood lymphatic vasculature
enveloping the OO is associated with neutrophils that appear to
traffic within the ventral CNS. Yet neutrophils were also observed
within the OOs, including the neural epithelia. The presence of
neutrophils in the OOsmay be related to the regenerative properties
of the OE as the OSNs undergo constant replacement, and/or may
represent a special population of secondary lymphoid tissue capable
of mounting a rapid immune response. Additionally, perhaps the
infiltrationofneutrophils canbe triggeredby specific odorswhere the
communication of horizontal basal cells with infiltrating
inflammatory cells (neutrophils) plays a more generalized role
in odor recognition and memory.
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supported by the Millennium Scientific Initiative of the
Ministerio de Ciencia (KEW, MFP); CONICYT Doctoral
Fellowship (ANID) 21161437 (MFP). The funding bodies did not
take part in the design of the study, the collection, analysis, and
interpretation of data, or in the writing of the manuscript.
ACKNOWLEDGMENTS

We would like to acknowledge Andrea Moscoso and Maria
Trinidad Ordenes for excellent management of the zebrafish
facility. We thank Dr. Martín Montecinos of the Universidad
Andres Bello for assistance with the analysis.
Frontiers in Immunology | www.frontiersin.org 13
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2022.
881702/full#supplementary-material

Supplementary Figure 1 | Copper exposure induces rapid increase in
neutrophils in the OOs. (A) OSNs (red) in control animal populate the sensory
epithelia of the OE. (B) Neutrophils in control animal extend up the lamellae and are
found in the EN (arrow). (C) DAPI labeling in control animal. (D) Merge of A-C. 9
brains imaged: representative image from 1 brain. (E) Reduced omp:RFP labeling in
OO copper exposed animals as neurons die. (F) Increase in number of neutrophils
in sensory epithelia (ss), non-sensory epithelia (ns) and EN (arrow) of in copper
exposed animals. (G) DAPI in copper exposed animals. (H) Merge of E-G. 9 brains
imaged: representative image from 1 brain. Scale bar = 100 mm.

Supplementary Figure 2 | Photoconverted (PC) neutrophils in Tg(mpx:Dendra2)
adult fish were observed in the central nervous system. (A) Expression of non-
photoconverted (non-PC) Mpx : Dendra2 and A’ photoconverted (PC) Mpx:
dendra2 expressing neutrophils (red) in the left olfactory organ (OO). (B) Ventral view
of whole mount adult brain from Tg(mpx:GFP) from , four-hour exposure to copper.
(C) Ventral view of whole mount Tg(mpx:Dendra2) adult brain showing PC
neutrophils (red) in the posterior olfactory bulb (C’, OB) and ventricle (C’’, V). (D) PC
neutrophils (red, arrow) partially obscured by pigment cell (asterisk). (E)Group of PC
neutrophils (bracket) in region of ventricle. (F) Right OO, Control. Expression of non-
PC Mpx : Dendra2 positive neutrophils (green) in wholemount OO. (F’) Same
preparation viewed in red channel. (G) Left OO, PC. Expression Mpx : Dendra2 in
wholemount OO showing neutrophils (green) before PC. (G’) After PC neutrophils in
OO are red. Scale bars: A, A’, F-G’ = 75 mm; B, C= 100 mm; C’-E = 75 mm.
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