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ABSTRACT 
 
Background: Synthetic microbial communities offer an opportunity to conduct reductionist 
research in tractable model systems. However, deriving abundances of highly related strains 
within these communities is currently unreliable. 16S rRNA gene sequencing does not resolve 
abundance at the strain level, standard methods for analysis of shotgun metagenomic 
sequencing do not account for ambiguous mapping between closely related strains, and other 
methods such as quantitative PCR (qPCR) scale poorly and are resource prohibitive for complex 
communities. We present StrainR2, which utilizes shotgun metagenomic sequencing paired with 
a k-mer-based normalization strategy to provide high accuracy strain-level abundances for all 
members of a synthetic community, provided their genomes. 
Results: Both in silico, and using sequencing data derived from gnotobiotic mice colonized with 
a synthetic fecal microbiota, StrainR2 resolves strain abundances with greater accuracy than 
other tools utilizing shotgun metagenomic sequencing reads and can resolve complex mixtures 
of highly related strains. Through experimental validation and benchmarking, we demonstrate 
that StrainR2’s accuracy is comparable to that of qPCR on a subset of strains resolved using 
absolute quantification. Further, it is capable of scaling to communities of hundreds of strains 
and efficiently utilizes memory being capable of running both on personal computers and high-
performance computing nodes. 
Conclusions: Using shotgun metagenomic sequencing reads is a viable method for determining 
accurate strain-level abundances in synthetic communities using StrainR2. 
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BACKGROUND 
 
Most metagenomic tools are unable to quantitatively resolve strain-level abundances; however, 
variation at the strain level is a crucial determinant of microbiome function and host-microbe 
interactions [1–3]. For example, some Escherichia coli strains are pathogens causing severe 
diarrhea, while others are described as probiotics used in treating diarrhea [4]. Strains of the 
same species (clonal populations within the species often represented by a cultured isolate) 
share a small proportion of their genome referred to as the core genome. However, many of the 
genes which drive important phenotypes are found in the variable, or accessory, portion of the 
genome [5]. Understanding the role that intra-species (infraspecific) variation plays in 
microbiome function, and the competitive interactions within these species are crucial for 
advancing our knowledge of how complex microbial communities assemble and function. 
 
Synthetic communities offer a powerful tool that balance experimental reductionism with a 
biologically relevant scale across multiple systems [6–10]. These experiments are providing 
important insights into the assembly and function of microbial communities across a range of 
ecosystems and indications including crop health, infectious disease, and autoimmunity. An 
important part of these experiments is understanding how abundant and prevalent the strains 
within the community are. A unique property of these synthetic communities is that they are 
normally constructed from genome-sequenced constituents which provides a constrained 
reference for the set of reads that may arise from metagenomic sequencing. 
 
Traditional methods for quantifying organism abundances, such as 16S rRNA gene sequencing, 
usually lack the resolution to differentiate strains and are limited to generalizing to the species, 
genus, or higher taxonomic levels as a function of divergence within the clade of interest [11]. 
Much sequencing data, including shotgun metagenomic sequencing, is often quantified using 
the metric mapped fragments per kilobase per million reads (FPKM). The limitation of this 
approach for strain-resolved abundances is how to deal with reads that map to multiple strains, 
or ambiguous reads. Partially or randomly assigning ambiguous reads to all genomes that they 
map to introduces noise and inflates the abundance of low abundance and/or absent strains. 
Ignoring these reads, on the other hand, may lead to a bias where genomes that are more similar 
to each other have artificially reduced observed abundances. As such, NinjaMap [7] and StrainR 
[12], here referred to as StrainR1, were developed to address these challenges in a 119-member 
community of diverse gut microbes, and a 22-member community of entirely Eggerthella lenta 
strains [12], respectively. Both approaches explicitly include a normalization strategy to correct 
for the uniqueness of the target genome; though, they differ significantly in their implementations.  
 
NinjaMap tackles the problem by using the proportion of uniquely mapped reads to partially 
assign ambiguously mapped reads to optimize use of all the reads available from a sequencing 
run. In addition, reads are generated in silico as part of the pipeline to assess and normalize for 
strain uniqueness. This does not necessarily solve the bias observed from uniquely mapped 
reads preferring more unique genomes, as the bias may be propagated to the assignment of 
ambiguously mapped reads. NinjaMap, therefore, exhibits some of the same problems as data 
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which has not been normalized for unique mapping sites, as demonstrated in our analyses. 
Furthermore, this approach may lead to high false positive rates as it becomes likely that a 
genome has at some number of uniquely mapped reads through either sequencing error, trace 
cross contamination with input communities, or index hopping/barcode switching [13,14]. 
Another problem faced by NinjaMap is that it scales non-linearly, requiring extensive resources 
for complex communities and quickly running out of the resources required to run for larger 
communities.  StrainR1 was developed to address the same issue. Unlike NinjaMap, it aims to 
only use uniquely mapped reads and normalize the bias towards more unique genomes directly 
by using the number of unique k-mers within each genome. Unfortunately, the implementation 
of StrainR1 fell short of being able to scale to larger and more diverse communities requiring 
excessive computational resources. This presents a need for a tool that can scale well enough 
that it can run in most computing environments for large synthetic communities while still 
maintaining the same, or better, accuracy.  
 
Other tools for consideration include Strainer [15], which was designed to detect the presence 
or absence of strains implanted into an undefined community using fecal microbiota transplants 
(FMTs); however, it is not appropriate for use in the analysis of synthetic communities due to its 
intended application in undefined communities to find informative k-mers against a background 
community. Another alternative for determining presence or absence of strains which may be 
applied to synthetic communities is YACHT [16]: a tool that determines strain presence based 
on metagenomic sequencing reads. Neither of these approaches is designed for quantitative 
analysis of strains, but can still be applied to benchmark the presence/absence detection of 
StrainR2. 
 
In this manuscript, we introduce and benchmark StrainR2 which quantifies strain abundances to 
a higher degree of accuracy than other methods relying on shotgun metagenomic sequencing 
data while maintaining scalable and lightweight run times and resource usage. StrainR2 can run 
both in a high-performance computing environment and on a personal computer. In our 
analyses, we find that the currently available tools derive inaccurate abundances, particularly for 
cases of low abundance organisms or communities that contain highly similar strains. We further 
validate the superior accuracy of StrainR2 by benchmarking against real samples which were 
characterized using strain-specific qPCR against synthetic communities colonizing gnotobiotic 
animals. StrainR2 will facilitate synthetic microbial community research of increasing complexity 
as it scales to study complex host-associated microbiomes like the mammalian gut. 
 
IMPLEMENTATION 
 
StrainR2 has two steps: (i) preprocessing (PreProcessR) and (ii) normalization (StrainR, Figure 
1). In short, the preprocessing step first splits every genome’s contigs into subcontigs such that 
each genome has a comparable build quality. The number of unique k-mers in each subcontig 
is then calculated as a measure of a strain’s uniqueness. This measure is used in the 
normalization step for part of a modified FPKM formula termed fragments per thousand unique 
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k-mers per million reads mapped (FUKM). A user-configurable weighted percentile of all 
subcontig FUKMs in a genome is used as the final measure of abundance. FUKM is directly 
analogous to FPKM, with the difference of normalizing the uniquely mappable sites of the 
genome rather than the total genome size. 
 
Preprocessing. The preprocessing step is almost entirely written in C to maximize efficiency. It 
starts by splitting contigs of all genomes into similarly sized pieces to ensure the build quality for 
all genomes is comparable. This eliminates bias towards build quality and also ensures there are 
sufficient subcontigs for use in the normalization step by providing multiple estimates of strain 
abundances and thereby normalizing out the effects of highly unique multi-copy elements such 
as plasmids and transposons. By default, the smallest N50 build quality for all provided genomes 
is used as the maximum possible size of subcontigs. StrainR2 maximizes subcontig size given 
the constraint of the smallest N50 being the upper bound. Subcontigs also have a 500 base 
overlap with the preceding and proceeding subcontigs to ensure reads in between subcontigs 
are mapped. Contigs under a minimum size, set to 10 kbp by default, are excluded from the final 
calculation for FUKM but will still have their k-mers marked as non-unique. These small contigs 
could represent multi-copy elements and therefore bias read mappings if their k-mers are 
considered unique. 
 
Canonical k-mers are generated and represented as 64-bit hashes for the sake of computational 
speed. K-mers are always made to be odd so that no k-mer can be the same as its reverse 
complement. The non-cryptographic MurMurHash is used as the hashing function due to its 
speed. The default k-mer size matches the total number of bases in both paired-end reads with 
the logic that the number of unique k-mers is an approximation of the number of sites a read can 
uniquely map to. Unique hashes (or k-mers) in a subcontig are measured as being unique with 
respect to all genomes in the community. To determine which k-mers are unique in each 
subcontig, StrainR2 iteratively adds each k-mer’s hash to a hash table of all hashes encountered 
in the community thus far. As this is done, a count for the number of unique hashes in each 
subcontig is maintained and counts are only correct given the k-mer hashes processed so far. 
This means that if a k-mer hash is encountered that was previously considered unique, it is 
marked as non-unique and the unique k-mer count for its respective subcontig is decremented 
by one. The hash table is implemented with open addressing and a linear probe collision policy, 
as hash table entries are relatively small. The hash table is resized to powers of two whenever 
the load factor exceeds 0.75 after the hashes for a subcontig are added. 
 
One caveat to using hashes in place of k-mers is the possibility that two k-mers may have the 
same hash (collision). Assuming 150 base paired-end-reads are used (leading to the default use 
of 301-mers), that indicates that 1.7e181 possible k-mers will map to 1.8e19 possible hashes. 
However, a typical synthetic community has on the order of 10s or 100s of millions of different 
k-mers, meaning the probability of different k-mers having the same hash is low and the effect 
is negligible.  
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The preprocessing step only needs to be performed once per community, with the normalization 
step using the values found in preprocessing to normalize each set of reads. 
 
Normalization. In the normalization step, reads are trimmed using fastp [17] with the options: 
trim_poly_g, length_required=50, n_base_limit=0. BBMap [18] is subsequently used to obtain 
the count of fragments that perfectly and unambiguously map to each subcontig, with the 
options: perfectmode=t, local=f, ambiguous=toss, pairedonly=t. Finally, FUKM  is calculated 
using the formula: !"##$%	'(")*$+,-

(/+012$	3"-4$-	/	6$7)	∗	(:;,"<	!"##$%	'(")*$+,-	/	6$=)
. To obtain a singular value for 

the abundance of a strain, a user-configurable percentile of subcontig FUKMs is recommended. 
The percentiles are also weighted by the number of unique k-mers in the subcontig so that 
percentiles are more representative of areas of the genome that were more likely to be uniquely 
mapped to. The weighted percentile of FUKMs for each strain is abbreviated wpFUKM, and the 
median FUKM is abbreviated mFUKM.  
 
Unit testing. The stability and reproducibility of StrainR2 is validated by automated testing 
(GitHub workflow) to ensure that the output at each step of the workflow is reproducible and 
deterministic. Testing includes running PreProcessR and StrainR as shell commands in a conda 
environment, as well as running individual components of each command separately. For 
PreProcessR, this includes testing that genome contigs are correctly and completely divided into 
subcontigs, as well as ensuring that unique k-mer hash counts are correct. For StrainR, the 
calculation for FUKM is validated. This testing also ensures that StrainR2’s output remains 
consistent through updates to itself or its environment, as testing is triggered on any change to 
the source code. 
 
In silico read generation. For the purpose of assessing accuracy and speed, InSilicoSeq [19] 
was used to generate 20 million reads for varying distributions across two different communities. 
The coverage option was used with predetermined coverages to simulate these distributions 
(Figure S1, Tables S1-4). Reads from a NovaSeq 6000 S4 flow cell, which generated later 
experimental validation data, were used to create a custom error model for all in silico reads.  
 
Tool analyses. Unless otherwise noted, StrainR2 was always run with default options: a 
weighted percentile of 60; max subcontig size of the lowest N50 in all input genomes; minimum 
subcontig size of 10Kb; read size of 150; no subcontig filtering. NinjaMap was also run with 
default options. 
 
FPKM values were taken from the same mapping data that StrainR2 normalizes. More 
specifically, BBMap was run with the options: perfectmode=t, local=f, ambiguous=toss, 
pairedonly=t, and nodisk=t. All other options were left to default. The FPKM was then calculated 
by summing the mapped fragments for each contig belonging to a strain in the .rpkm file and 
normalizing it by kilobases and millions of total reads. 
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To test StrainR2’s ability to determine strain presence/absence, it was benchmarked against 
YACHT [16]. While it does not provide abundances, it can still be benchmarked against StrainR2 
based on if StrainR2 provides an abundance of 0 or not. YACHT was run with k-mers of size 31 
with the scaled option set to 100. Significance was set to 0.99 and a minimum coverage of 0.01 
was used.  
 
Resource expenditure profiling. Tool preprocessing steps were tested on varying input sizes 
of random genomes belonging to human gut microbes from our in-house strain collection: 
between 10 and 200 genomes, as well as varying input sizes of the 22 E. lenta strains. Testing 
was done on an Ubuntu server with dual Intel Xeon Silver 4214 CPUs and 384 GiB of memory. 
When resource usage for any tool became too large to be run with the computing resources 
available, or if the tool threw an error, testing was stopped.  
 
Experimental validation. Mice (strain C57BL/6J) aged 8-17 weeks were given ad libitum Lab 
Diet 5021 and had a 12-hour light/dark cycle. Mice were housed inside Class Biologically Clean 
germ-free isolators in the gnotobiotic animal facility at Pennsylvania State University. Synthetic 
communities were assembled by pooling approximately equal cell densities of individual strains 
described elsewhere (Table S1)[9]. Mouse fecal samples were extracted following the 
International Human Microbiome Consortium Protocol Q [20]. Briefly, samples were 
homogenized through bead disruption before isopropanol precipitation and extraction using the 
Qiagen Stool DNA kit. Libraries were prepared using the Illumina Library Preparation kit and 
analyzed using a NovaSeq 6000 (Novogene USA). Data is available for download at 
PRJNA1038784. Negative controls and fecal material from germ-free animals were also prepared 
and pooled for sequencing despite failing library construction QC. Reads from these 
communities were mapped primarily to the mouse genome and/or common reagent 
contaminants. 
 
Strain abundances were quantified using qPCR for JEB00023, JEB00029, JEB00174, and 
JEB00254 (Table S1). Primers were designed using PrimerBLAST to be specific to unique 
portions of each target genome. Primers were validated in silico and experimentally using gDNA 
from the pure culture members of the sFMT1+Cs community via qPCR to ensure a lack of cross 
reactivity. The primers used are as follows: JEB00023 forward primer: 
GGCACTCATCGGAGGTTTCA, JEB00023 reverse primer: CGTTGGGCTTGTCACCAAAG 
JEB00029 forward primer: TCATGGCCGTGTACTTGCTT, JEB00029 reverse primer: 
AGCGGATATCTGCCAGGTTG, JEB00174 forward primer: TGGAGTTCGGCGTAGCTTTT, 
JEB00174 reverse primer: TCTCGGCATTCCAACCAGAC JEB00254 forward primer: 
ACAGGCTTTGGCATTGGAGA, and JEB00254 reverse primer TGTGGTTAATGGCCTTGCAT, 
with the concentration of each being 200 nM. Samples were amplified with iTaq Universal SYBR 
Green Supermix (Biorad 1725122) at 95˚C for 3 minutes, followed by 40 cycles of 5 seconds at 
95˚C and 30 seconds at 60˚C using a Biorad CFX384 Opus. Strains were quantified against 
standard curves of pure gDNA and normalized by extracted sample mass to calculate absolute 
abundance. 
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RESULTS AND DISCUSSION 
 
Throughout analysis, two communities of strains were used to generate reads in silico across 6 
abundance distributions that represent various scenarios (Figure S1, Tables S1-S4). The first 
community, sFMT1+Cs, represents a more realistic scenario for a synthetic community where 
most strains are not very similar but with five of the species having two or more strains each  
(Figure 2A, Table S1). As in the development of StrainR1, a mock community of 22 E. lenta 
strains were also used to represent an extreme scenario where the number of unique k-mers 
would be at a minimum (Figure 2B).  
 
To evaluate StrainR2’s improvement over using FPKM values in the case of uniformly abundant 
strains, the coefficient of variation was used as a benchmark, as lower coefficients of variation 
are closer to a uniform distribution. In the case of the sFMT1+Cs community with uniformly 
abundant strains, StrainR2’s wpFUKM was able to normalize the reads such that the coefficient 
of variation was 1.69% as compared to FPKM with a coefficient of variation of 17.44% (Figure 
2A). In the case of uniformly abundant E. lenta strains, the coefficients of variation were 3.93% 
and 86.82% for wpFUKM and FPKM, respectively (Figure 2B). Using StrainR2, this corresponds 
to fold change differences of 1.085 and 1.159 between the highest and lowest reported 
abundances for wpFUKM on sFMT1+Cs and E. lenta strains, respectively. Despite the high 
similarity between strains, wpFUKM still resembled a uniform distribution unlike FPKM. FPKM 
tended to underestimate the abundance of strains with higher similarity, whereas wpFUKM 
remained unbiased. 
 
With uniformly abundant E. lenta reads, StrainR2’s wpFUKM best followed a uniform distribution 
out of all methods tested as determined by coefficients of variation (Figure S2A). While median 
FUKM (mFUKM) is the only abundance estimate provided by StrainR1, StrainR2 is still able to 
quantitatively improve on this measure, with the coefficient of variation decreasing from 6.22% 
to 5.53%. Specifically, StrainR2 achieves this by including overlaps between subcontigs, using 
larger k-mers, and marking k-mers from excluded subcontigs as non-unique. Furthermore, 
NinjaMap showed the worst performance out of all the methods tested, with several cases of 
strain abundances being off by more than tenfold (Figure S2B). 
 
To further assess the accuracy examined the recovery of strain abundances across 6 different 
distributions (Figure S1, Tables S3 and S4). Jensen-Shannon divergence between true and 
predicted abundances was used. All measures of abundance were first converted to be a 
percentage of the total abundance so that all measures of abundance were comparable, then 
the Jensen-Shannon divergence was calculated. Resulting values can be between 0 and 1, 
where 0 represents the least divergence. Across all types of distributions, StrainR2 had a Jensen-
Shannon divergence at least two magnitudes smaller than either NinjaMap or FPKM (Figure 3A).  
 
Across each distribution, StrainR2 consistently provided the most accurate recovery of relative 
abundances (Figure 3B). NinjaMap’s abundance predictions were less accurate than using 
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FPKM in all community distributions, which results from high abundance predictions for the 
strains with the lowest abundances. Its accuracy degraded significantly when spanning strains 
with orders of magnitude difference in abundance. Moreover, the E. lenta community decreased 
the accuracy of all tools, but StrainR2 observed the smallest decrease in accuracy. As a 
representative example, StrainR2 more closely correlates with true abundances in a log-normal 
distribution of sFMT1+Cs strains than other methods. StrainR2 had the highest Pearson 
correlation, with an R2=0.9996, whereas NinjaMap and unnormalized FPKM reported correlations 
of R2=0.6098 and R2=0.9723, respectively. In the log-normal distribution of E. lenta strains, the 
R2 values are decreased to 0.9944 (StrainR2), 0.1497 (FPKM), and 0.0314 (NinjaMap). The 
scatterplots for other distributions and communities show a similar trend with NinjaMap and 
FPKM performing far worse with E. lenta strains, whereas StrainR2 maintains high correlations 
(R2>0.9944) (Figure 3B). 
 
The frequency of log2(fold changes) from the true abundance summed across all 6 distributions 
for each tool shows that StrainR2 has the largest peak around 0 with few abundance predictions 
more than two fold different from the true abundance (Figure 3C). NinjaMap had the largest 
amount of predictions at more than a 4 fold change from the true abundance, which mostly 
arises from low abundance organisms. These could be a result of NinjaMap’s use of reads that 
map ambiguously, which inflates abundances in the case where most ambiguously mapped 
reads originate from another organism. StrainR2 has similar such cases for very low abundance 
strains, but at a significantly reduced rate. 
 
StrainR2 can also be used to test the presence or absence of a strain depending on if it outputs 
zero as an abundance. The rate of false positives and negatives heavily depends on which 
weighted percentile is used as the final abundance (Figure S3A). Using a higher weighted 
percentile increases false positives, whereas lower weighted percentiles increase false 
negatives, usually in the case of low abundance organisms. A weighted percentile of 60 was 
chosen to compare StrainR2’s strain presence or absence predictive ability. F1 scores of 
StrainR2 and three other tools reveal that StrainR2 predicted presence with the highest accuracy 
(Figure S3B). Only three distributions are shown as these are the only distributions that 
contained absent strains.  These results suggest that StrainR2 performs slightly better than 
YACHT for predicting the presence or absence of strains with recommended parameters, and 
shows a large improvement over NinjaMap and FPKM. To further test the presence/absence 
prediction of these tools, the tools were run on ten replicates of the zero-inflated log-normal 
community, each with different strain abundances, with StrainR2 still showing the best 
performance (Figure S3C). 
 
To assess how StrainR2 scales with synthetic community complexity, the memory in GB and run 
times of the computationally intensive database generation steps of StrainR2, StrainR1, and 
NinjaMap were gathered as described in the implementation section on an Ubuntu server with 
dual Intel Xeon Silver 4214 CPUs and 384 GiB of memory (Figure 4). Run times for StrainR2 
grew linearly and remained low for all inputs as compared to StrainR1 (Figure 4A) and the 
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memory usage showed similar trends (Figure 4C). To test if the trend would hold for highly 
similar inputs, runs were performed on one through 22 of the E. lenta strains. StrainR2 maintained 
its low run times, whereas StrainR1 and Ninjamap’s run times grew non-linearly (Figure 4B). 
Memory usage on the E. lenta strains is also shown (Figure 4D). StrainR2 run times scale closely 
with the number of unique k-mers there are in a community, meaning it is unaffected by highly 
similar communities (Figure S4). To validate function outside of a high-performance computing 
environment, the sFMT1+Cs community was profiled through a StrainR2 Bioconda installation 
on a personal computer. The system was running OS X Ventura 13.1 with an Apple M1 Pro 
processor and 16Gb of RAM. The run times were 1 minute 31 seconds, and 6 minutes 56 
seconds for PreProcessR and StrainR respectively for 51.9 million reads (7.8 Gbases) of paired-
end NovaSeq 6000 data with 8 threads. This highlights that StrainR2 does not require high 
performance computing nodes, and is a tangible strategy available to most research groups. 
 
While StrainR2 was shown to have the best accuracy in silico, we sought to validate its function 
using experimental samples and a gold-standard method for strain quantification: qPCR with 
strain-specific probes. Shotgun metagenomic sequencing data was obtained from 17 fecal 
samples of gnotobiotic mice colonized with sFMT1 or sFMT1+Cs. As a control, two of the mice 
were also germ-free. To determine the true abundance of strains, qPCR was performed on 
samples from the same mice for four of the strains present in sFMT1 (JEB00023, JEB00029, 
JEB00174, and JEB00254). JEB00023 and JEB00174 were selected as they are both strains of 
the species Bacteroides uniformis and represent an important use case of StrainR2. JEB00029 
was selected as our previous experiments had suggested it could not colonize the mice, while 
JEB00254 was capable of colonization at low abundances [9]. To compare abundances from 
each method, the fold change from the geometric mean of strain abundances within a sample 
was calculated.  
 
StrainR2 maintained a close relationship with the results obtained from qPCR, as well as 
correctly predicting when strains were absent, as was the case with JEB00029 and the two 
germ-free mice (Figure 5A). NinjaMap showed a weaker correlation with the data from qPCR, 
and was inconsistent with predicting abundances of strains between samples (Figure 5B), with 
FPKM having similar results (Figure 5C). FPKM and NinjaMap both incorrectly assigned 
abundances to JEB00029 and strains in the germ-free mice, showing that another strength of 
StrainR2 is more accurate presence/absence prediction, as it was the only tool to agree with 
qPCR on the absence of strains. Per-strain correlations with each tool are described in Figure 
5D. Pearson correlation values for StrainR2, NinjaMap, and FPKM versus copies/g across all 
strains are R2=0.9432, R2=0.3139, and R2=0.3559, respectively. 
 
CONCLUSIONS 
Through analysis of data both in silico and experimental data, we demonstrate that StrainR2 
provides highly accurate strain abundances and prevalences using a fraction of the 
computational resources of previous approaches. StrainR2 makes shotgun metagenomic 
sequencing reads a viable tool for accurate strain abundances in synthetic communities without 
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the need for high performance computing. This may eliminate the need for more time consuming 
or expensive methods to assess strain abundance, such as qPCR to which it provides 
comparable abundances. StrainR2 is also able to provide abundances in scenarios where 
designing primers for qPCR would be extremely difficult or impossible, as would be the case for 
the E. lenta community. StrainR2 is available via GitHub, Bioconda, and as a Docker container. 
 
AVAILABILITY AND REQUIREMENTS 
Project name: StrainR2 
Project home page: https://github.com/BisanzLab/StrainR2 
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License: MIT License 
Any restrictions to use by non-academics: See license 
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qPCR: Quantitative polymerase chain reaction 
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FMT: Fecal microbiota transplant 
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FIGURES 
 

 
Figure 1. Schematic of the StrainR2 workflow. Genomes are split into subcontigs no larger 
than the smallest N50 in the set of genomes ensuring consistent assembly qualities. The number 
of unique k-mers (which are computed as hashes for efficiency) is used to normalize FPKM in a 
metric normalized for genome uniqueness (FUKM). A user-configurable weighted percentile of 
all subcontig FUKMs belonging to a genome is used as a point estimate of abundance.  
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Figure 2. StrainR2 normalization corrects quantitative errors resulting from variable strain-
relatedness. Dendrograms of strain similarities are shown for (A) sFMT1+Cs members and (B) 
22 E. lenta strains. Reads were generated in silico such that all community members have a 
uniform abundance. StrainR2 resolves abundances much closer to the uniform abundance than 
by measuring FPKM. FPKM values for E. lenta strains were less accurate than with the 
sFMT1+Cs community due to an increased bias towards unique community members. StrainR2-
calculated wpFUKM had a coefficient of variation of 1.69% for the sFMT1+Cs strains and 3.93% 
for the E. lenta strains despite the high strain similarity, whereas when using FPKM the coefficient 
of variation was 17.44% and 86.82% for the communities, respectively. Dendrograms are based 
on Jaccard Similarity of k-mer profiles between strains.  
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Figure 3. StrainR2 provides accurate strain abundances across varied community 
compositions. (A) Jensen-Shannon divergence between true community composition and 
estimated abundance are much closer to 0 than when using NinjaMap or FPKM. *** denotes a 
significance of less than 0.001, as determined by ANOVA and TukeyHSD. Reads were generated 
in silico across multiple community compositions and distributions (Figure S1). (B) Scatterplots 
for the correlation between estimated abundances and true community compositions are shown 
for all mock community distributions in sFMT1+Cs and E. lenta strains. Inset values represent 
the Pearson correlation for each tool. The uniform and missing distributions are omitted as most 
or all strains have the same true abundance render the scatterplots non-informative. (C) A 
frequency plot of the fold change from the true abundance shows that StrainR2 rarely predicts 
an abundance far from the true abundance. Data shown is the sum of all 6 mock community 
distributions both for sFMT1+Cs and E. lenta strains. 
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Figure 4. StrainR2 uses fewer system resources while scaling linearly. Run times for 
database generation for (A) 200 random genomes and (B) E. lenta strains show StrainR2 
following a linear growth. StrainR2’s final run times were 3 minutes and 50 seconds, and 32 
seconds, respectively at maximum community complexity for random genomes and E. lenta 
respectively. Memory usage for (C) the 200 genome input and (D) the E. lenta community again 
shows StrainR2 using the least resources, with final memory usages of 16.8 GB and 1.4 GB, 
respectively.  
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Figure 5. StrainR2 accurately recovers abundances measured by qPCR. (A) StrainR2 
predicts abundances between samples and strains with the highest degree of accuracy as 
compared to (B) NinjaMap and (C) FPKM. (D) StrainR2’s predicted abundances are most  closely 
correlated with the absolute abundance predicted by qPCR. It was also the only tool to correctly 
predict the absence of JEB00029 in all cases. All abundances are scaled as log10(fold change) 
from the geometric mean of strain abundances. Pearson correlations for all samples/strains in 
panels A, B, and C are R2=0.9432, R2=0.3139, and R2=0.3559, respectively. Each point 
represents the quantification of a single strain in a single animal with linear regressions drawn on 
a per-strain basis. 
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Figure S1. Mock reads simulate a variety of distributions. The 6 predefined in silico read 
distributions were designed to test the performance of tools in predicting presence/absence and 
scenarios where strains had low abundances or were not present. Abundances are defined as 
the read coverage depth of each strain. Strain coverages are reported in Tables S3 and S4.  
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Figure S2. StrainR2 improves upon abundance estimation of E. lenta strains when 
compared to StrainR1. (A) Estimated abundances for a uniformly abundant community of E. 
lenta strains shows that StrainR2’s wpFUKM most closely follows a uniform distribution. 
Percentages shown to the right indicate coefficient of variation. (B) Accuracy as measured by 
log2(fold-change) demonstrates that StrainR2 is able to correct abundances to a high degree of 
accuracy, whereas NinjaMap and FPKM perform with much lower accuracy.  
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Figure S3. StrainR2 predicts presence or absence of strains with improved accuracy 
compared to other tools. (A) The average percentage of false positives or negatives across the 
6 read distributions of sFMT1+Cs and E. lenta across different weighted percentiles of FUKM. 
(B) StrainR2 has the highest F1 scores across 3 of the read distributions and for the four tools. 
(C) Across ten replicates of the zero-inflated log-normal distribution, StrainR2 consistently has 
improved presence/absence prediction.  
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Figure S4. StrainR2 run times scale closely with the number of unique hashes in the input. 
Run times are plotted on varying input sizes from genomes in the sFMT1+Cs community. Total 
unique hash counts are shown, which estimate how many unique k-mers there are in the inputted 
genomes. Run times scale closely with unique hashes, meaning the more similar a community 
is, the better the run time will scale. 
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Table S1. Genome accessions for sFMT strains  
LabID Species Strain ID Genome Accession 
JEB00015 Escherichia coli DSM 18039 GCA_000005845.2 
JEB00017 Bacteroides thetaiotaomicron DSM 2079 GCA_014131755.1 
JEB00022 Bacteroides ovatus DSM 1896 GCA_001314995.1 
JEB00023 Bacteroides uniformis DSM 6597 JBEUMQ000000000 
JEB00024 Bacteroides vulgatus DSM 1447 GCA_000012825.1 
JEB00025 Parabacteroides merdae DSM 19495 GCA_900445495.1 
JEB00028 Enterocloster asparagiformis DSM 15981 GCA_000158075.1 
JEB00029 Dorea longicatena DSM 13814 GCA_000154065.1 
JEB00030 Agathobacter rectalis DSM 17629 GCA_000209935.1 
JEB00031 Clostridium scindens DSM 5676 GCA_004295125.1 
JEB00032 Lachnospira eligens DSM 3376 GCA_000146185.1 
JEB00035 Bacteroides stercoris DSM 19555 GCA_900106605.1 
JEB00036 Bacteroides xylanisolvens DSM 18836 GCA_000210075.1 
JEB00037 Anaerobutyricum hallii DSM 3353 GCA_000173975.1 
JEB00040 Lactonifactor longoviformis DSM 17459 GCA_002915525.1 
JEB00041 Faecalibacterium prausnitzii DSM 17677 GCA_010509575.1 
JEB00042 Blautia producta DSM 3507 GCA_002915535.1 
JEB00045 Dorea formicigenerans DSM 3992 GCA_000169235.1 
JEB00046 Blautia obeum DSM 25238 GCA_000153905.1 
JEB00052 Blautia producta DSM 2950 GCA_010669205.1 
JEB00065 Clostridium spiroforme DSM 1552 GCA_000154805.1 
JEB00090 Eggerthella lenta DSM 2243 GCA_003339945.1 
JEB00113 Eubacterium hadrus DSM 3319 GCA_000332875.2 
JEB00117 Clostridium orbiscindens NCBI 1_3_50AFAAA GCA_000760655.1 
JEB00122 Clostridium symbiosum NCBI WAL-14673 GCA_000189615.1 
JEB00125 Bacteroides ovatus NCBI D2 GCA_000159075.2 
JEB00126 Bifidobacterium longum NCBI 35B GCA_000261225.1 
JEB00128 Bacteroides caccae NCBI CL03T12C61 GCA_000273725.1 
JEB00133 Bacteroides cellulosilyticus NCBI CL02T12C19 GCA_000273015.1 
JEB00140 Bacteroides vulgatus NCBI CL09T03C04 GCA_000273295.1 
JEB00144 Bacteroides ovatus NCBI 3_8_47FAA GCA_000218325.1 
JEB00153 Bacteroides dorei NCBI CL03T12C01 GCA_000273075.1 
JEB00169 Bacteroides xylanisolvens 2_1_22 GCA_000162155.1 
JEB00173 Bacteroides finegoldii NCBI CL09T03C10 GCA_000304195.1 
JEB00174 Bacteroides uniformis 4_1_36 GCA_000185585.1 
JEB00229 Parabacteroides sp. D13 GCA_000162275.1 
JEB00254 Peptostreptococcus anaerobius CC14N SAMN42012254 
JEB00274 Sutterella wadsworthensis NCBI HGA0223 GCA_000411515.1 
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Table S2. Genome accessions for E. lenta strains 
Lab ID Strain GenBank Accession 
JEB00066 Eggerthella lenta 1356FAA GCA_000185625.1 
JEB00067 Eggerthella lenta 11C GCA_003340245.1 
JEB00068 Eggerthella lenta 14A GCA_003340255.1 
JEB00069 Eggerthella lenta 22C GCA_003340195.1 
JEB00070 Eggerthella lenta 28B GCA_003340165.1 
JEB00072 Eggerthella lenta DSM11767 GCA_003340045.1 
JEB00073 Eggerthella lenta DSM11863 GCA_003340015.1 
JEB00074 Eggerthella lenta DSM15644 GCA_003340005.1 
JEB00075 Eggerthella lenta UCSF2243 GCA_003339975.1 
JEB00076 Eggerthella lenta Valencia GCA_003339885.1 
JEB00077 Eggerthella lenta AN51LG GCA_003340155.1 
JEB00078 Eggerthella lenta MR1n12 GCA_003339935.1 
JEB00079 Eggerthella lenta 1160AFAAUCSF GCA_003340395.1 
JEB00080 Eggerthella lenta 326I6NA GCA_003340465.1 
JEB00081 Eggerthella lenta AB8n2 GCA_003340145.1 
JEB00082 Eggerthella lenta AB12n2 GCA_003340445.1 
JEB00083 Eggerthella lenta CC82BHI2 GCA_003340075.1 
JEB00084 Eggerthella lenta RC46F GCA_003339915.1 
JEB00085 Eggerthella lenta CC75D52 GCA_003340405.1 
JEB00086 Eggerthella lenta CC86D54 GCA_003340065.1 
JEB00087 Eggerthella lenta W1BHI6 GCA_003339875.1 
JEB00088 Eggerthella lenta A2 GCA_003340125.1 
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Table S3. Strain coverages in mock sFMT distributions   

StrainID Exponential 
Log 
step 

Log-
normal 

Missing 
Strain 

Zero inflated log-
normal Uniform 

JEB00015 32.73 0.00 9.21 39.00 63.99 34.03 
JEB00017 4.09 0.00 29.03 0.00 0.00 34.03 
JEB00022 5.90 0.00 33.94 39.00 29.96 34.03 
JEB00023 54.00 0.02 13.66 39.00 0.00 34.03 
JEB00024 12.21 0.02 46.10 39.00 17.24 34.03 
JEB00025 30.24 0.02 4.19 39.00 66.11 34.03 
JEB00028 77.30 0.02 16.30 0.00 38.21 34.03 
JEB00029 12.71 0.02 42.78 39.00 0.00 34.03 
JEB00030 0.97 0.02 17.43 39.00 0.00 34.03 
JEB00031 11.37 0.02 36.12 39.00 0.00 34.03 
JEB00032 83.98 0.17 13.88 39.00 0.00 34.03 
JEB00035 11.69 0.17 25.15 39.00 65.34 34.03 
JEB00036 32.79 0.17 20.43 39.00 44.11 34.03 
JEB00037 1.53 0.17 92.80 39.00 0.00 34.03 
JEB00040 54.97 0.17 19.03 0.00 19.09 34.03 
JEB00041 22.48 0.17 52.49 39.00 64.35 34.03 
JEB00042 81.15 0.17 12.20 39.00 49.57 34.03 
JEB00045 18.94 1.66 58.98 39.00 0.00 34.03 
JEB00046 56.17 1.66 11.58 39.00 10.34 34.03 
JEB00052 12.71 1.66 61.60 39.00 46.74 34.03 
JEB00065 53.66 1.66 21.90 39.00 0.00 34.03 
JEB00090 12.80 1.66 20.52 0.00 12.49 34.03 
JEB00113 0.40 1.66 30.21 39.00 32.90 34.03 
JEB00117 17.33 1.66 75.89 39.00 0.00 34.03 
JEB00122 59.77 16.61 29.59 39.00 13.04 34.03 
JEB00125 29.75 16.61 43.12 39.00 29.71 34.03 
JEB00126 80.07 16.61 82.83 39.00 15.78 34.03 
JEB00128 38.29 16.61 23.25 39.00 47.56 34.03 
JEB00133 24.44 16.61 18.76 39.00 231.90 34.03 
JEB00140 59.55 16.61 5.84 39.00 0.00 34.03 
JEB00144 7.02 16.61 43.00 39.00 0.00 34.03 
JEB00153 21.05 166.12 21.10 39.00 25.83 34.03 
JEB00169 21.26 166.12 43.07 0.00 35.83 34.03 
JEB00173 100.42 166.12 101.61 39.00 6.19 34.03 
JEB00174 44.96 166.12 36.63 39.00 56.75 34.03 
JEB00229 31.39 166.12 25.81 39.00 0.00 34.03 
JEB00254 79.39 166.12 114.89 39.00 45.92 34.03 
JEB00274 7.20 166.12 13.17 39.00 53.74 34.03 
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Table S4. Strain coverages in mock E. lenta distributions   

StrainID Exponential 
Log 
step 

Log-
normal 

Missing 
Strain 

Zero inflated log-
normal Uniform 

JEB00079 80.48 0.00 23.89 94.28 139.19 77.14 
JEB00067 10.06 0.00 75.27 94.28 71.80 77.14 
JEB00066 14.50 0.04 88.01 0.00 10.12 77.14 
JEB00068 132.77 0.04 35.42 94.28 0.00 77.14 
JEB00069 30.02 0.04 119.53 94.28 104.47 77.14 
JEB00070 74.35 0.04 10.86 0.00 186.78 77.14 
JEB00080 190.05 0.38 42.27 94.28 86.06 77.14 
JEB00088 31.25 0.38 110.91 94.28 10.06 77.14 
JEB00082 2.38 0.38 45.20 94.28 0.00 77.14 
JEB00081 27.95 0.38 93.66 94.28 357.17 77.14 
JEB00077 206.48 3.82 35.98 94.28 74.48 77.14 
JEB00085 28.74 3.82 65.21 94.28 76.55 77.14 
JEB00083 80.62 3.82 52.97 0.00 76.00 77.14 
JEB00086 3.75 3.82 240.63 94.28 23.11 77.14 
JEB00072 135.15 38.18 49.35 94.28 79.58 77.14 
JEB00073 55.29 38.18 136.11 94.28 82.98 77.14 
JEB00074 199.54 38.18 31.63 0.00 17.91 77.14 
JEB00078 46.56 38.18 152.92 94.28 45.08 77.14 
JEB00084 138.10 381.83 30.02 94.28 0.00 77.14 
JEB00075 31.25 381.83 159.73 94.28 89.21 77.14 
JEB00076 131.93 381.83 56.79 94.28 100.41 77.14 
JEB00087 31.48 381.83 53.20 94.28 82.90 77.14 
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