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A metabolic synthetic lethal strategy with arginine
deprivation and chloroquine leads to cell death in
ASS1-deficient sarcomas

Gregory R Bean1,5, Jeff C Kremer1,5, Bethany C Prudner1, Aaron D Schenone1, Juo-Chin Yao1, Matthew B Schultze1, David Y Chen1,
Munir R Tanas2, Douglas R Adkins1,3, John Bomalaski4, Brian P Rubin2, Loren S. Michel1,3 and Brian A Van Tine*,1,3

Sarcomas comprise a large heterogeneous group of mesenchymal cancers with limited therapeutic options. When treated with
standard cytotoxic chemotherapies, many sarcomas fail to respond completely and rapidly become treatment resistant. A major
problem in the investigation and treatment of sarcomas is the fact that no single gene mutation or alteration has been identified
among the diverse histologic subtypes. We searched for therapeutically druggable targets that are common to a wide range of
histologies and hence could provide alternatives to the conventional chemotherapy. Seven hundred samples comprising 45
separate histologies were examined. We found that almost 90% were arginine auxotrophs, as the expression of argininosuccinate
synthetase 1 was lost or significantly reduced. Arginine auxotrophy confers sensitivity to arginine deprivation, leading temporarily
to starvation and ultimately to cell survival or death under different circumstances. We showed that, in sarcoma, arginine
deprivation therapy with pegylated arginine deiminase (ADI-PEG20) maintains a prolonged state of arginine starvation without
causing cell death. However, when starvation was simultaneously prolonged by ADI-PEG20 while inhibited by the clinically
available drug chloroquine, sarcoma cells died via necroptosis and apoptosis. These results have revealed a novel metabolic
vulnerability in sarcomas and provided the basis for a well-tolerated alternative treatment strategy, potentially applicable to up to
90% of the tumors, regardless of histology.
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Sarcomas are a highly heterogeneous group of diseases
comprising over 100 histological subtypes.1 p53 muta-
tions, which affect approximately ~ 50% of sarcomas,2,3 so
far remain undruggable.4 No other common alterations have
been identified across histologic subtypes.5 Metabolic
abnormalities and dependencies are becoming recognized
as opportunities for treatment,6 but none have yet to be
identified in sarcomas as a high-frequency target. This paucity
has resulted in the continued reliance on cytotoxic che-
motherapies for treatment, and sarcomas remain a difficult-to-
treat cancer with a very poor prognosis.7

Argininosuccinate synthetase 1 (ASS1) is the rate-limiting
enzyme in the conversion of citrulline to arginine in the urea
cycle.8 As arginine is a semi-essential amino acid, the loss of
ASS1 makes cells dependent on extracellular sources of
arginine for survival, a state referred to as arginine auxo-
trophy.9 In patients, this deficiency has grave consequences,
as clearly demonstrated by the childhood disease, called
citrullinemia. Citrullinemia is an autosomal recessive genetic
syndrome where children are born without functional ASS1
and die from the inability to clear ammonia, because of the
nonfunctional urea cycle.10 Cancer cells lacking ASS1 also
become arginine auxotrophs, creating a targetable metabolic

vulnerability across a variety of epithelial and lymphoid
tumors.11–24 ADI-PEG20 (pegylated arginine deiminase), a
stabilized soluble form of arginine deiminase, depletes
available stores of extracellular arginine and induces a
metabolic stress in cells that are deficient in ASS1.9

The consequence of metabolic stress, such as that induced
by ADI-PEG20, is usually transient autophagy, a cell survival
pathway, which, in the case of arginine auxotrophs, acts
primarily as a holding station to apoptosis.21,23,25,26 In pre-
clinical studies, arginine depletion by ADI-PEG20 alone is lethal
in several arginine auxotrophic cancers such as prostate,
breast, T-cell lymphoma and mesothelioma.9,13,14,21,23 Indeed,
clinical trials of ADI-PEG20 are underway in hepatocellular
carcinoma, acute myeloid leukemia, non-small cell lung cancer,
non-Hodgkin’s lymphoma, breast carcinoma, melanoma and
mesothelioma. The treatment of ASS1-deficient cancers is
complicated by the ability of tumors to re-express ASS1, thus
there is a need to identify additional targets for synthetic lethality
based on the ASS1 deficiency.
In a search for common metabolic targets in sarcomas, we

profiled over 700 specimens across 45 of the most common
subtypes and observed a striking absence of ASS1 in ~ 90%
of these tumors irrespective of histology. We also demonstrate
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that, unlike many other tumors where ADI-PEG20 treatment
alone is sufficient to induce cell death, arginine deprivation in
sarcoma cell lines deficient in ASS1 produces a prolonged
starvation. Moreover, by subverting this metabolic cytostasis
through the addition of chloroquine, the dual metabolic stress
induced apoptosis and necroptosis, an unexpected mechan-
ism of non-apoptotic, programmed cell death. These results
point to a unique synthetic lethal strategy for metabolic therapy
that may have immediate clinical application across a broad
swath of sarcomas.

Results

Prevalence and prognostic value of ASS1low in sarcoma
primary tumors and cell lines. In a search for common
metabolic alterations that could provide treatment opportu-
nities for a broad range of sarcomas, we searched the
literature for metabolic genes the expression of which is com-
monly altered in other chemorefractory tumors. Immediately,
we noted that ASS1 expression was commonly lost in such
tumors, including hepatocellular carcinoma, renal cell carci-
noma and platinum refractory ovarian cancer.8 Given the
chemorefractory nature of sarcoma, we decided to perform an
extensive immunohistochemical analyses for ASS1 in 701
primary tumors across 45 of the most common subtypes
(Figure 1a; for the full scoring of the IHC, see Supplementary
Table 1). In collaboration with a sarcoma pathologist, we
applied an intensity score (from 0 to 3) for ASS1 expression
similar to that used for other biomarkers, such as the estrogen
and androgen receptor, and also similar to that used for ASS1
in other tumors where heterogeneous expression is noted with
0 being no staining, +1 being 1–25% staining, +2 being 26–
50% staining and +3 being 50% or greater staining. Positive
and negative controls for ASS1 expression levels were
included with each staining run, in addition vascular structures
served as internal ASS1-positive staining controls. Surpris-
ingly, a great majority of tumors (606/701, 86.4%) diagnosed
as bone (34/39, 87.2%) or soft tissue sarcomas (STSs;
572/662, 86.4%) showed no signal for ASS1 expression
(Figures 1a and b). We then assessed protein expression of
ASS1 by immunoblotting in cancer cell lines derived from
osteosarcoma (U-2 OS, MNNG/HOS, MG-63, NOS-1 and
HuO 9N2), leiomyosarcoma (SK-LMS-1, SK-UT-1 and
SK-UT-1B), synovial sarcoma (SYO-1 and Fuji), chondrosar-
coma (HCH-1), Ewing’s sarcoma (LUPI, RD-ES and SK-ES)
and alveolar soft part sarcoma (ASPS-1). Consistent with the
high degree of ASS1 negativity in primary sarcomas, 86.7% of
the cell lines (13/15) exhibited minimal ASS1 expression
(Figure 1c, see normalized expression levels). Therefore, com-
pared with other tumors where ASS1 expression levels were
observed along a continuum, results from our analyses
indicate that sarcomas as a class are almost uniformly ASS1
negative or highly deficient. Our observation is in contrast to
previous pilot studies in sarcoma showing that only a subset of
tumors exhibited reduced ASS1 expression.13,14

ADI-PEG20 causes growth arrest in ASS1low sarcoma cell
lines. The arginine auxotrophy, because of ASS1 loss in
sarcomas, immediately points to the use of arginine depletion

as a potentially effective therapeutic strategy. To examine the
consequences of targeting this identified arginine auxotrophy
in sarcoma, we measured cell numbers of the 15 sarcoma
cell lines upon treating with a wide range of concentrations of
ADI-PEG20 over a time course of 3 days. As predicted, cell
lines such as MNNG/HOS and SK-LMS-1 with ASS1low

expression responded to arginine deprivation and showed
reduced or static cell growth in a dose-dependent manner,
but cell counts did not decrease, suggesting cytostasis rather
than cell death. In contrast, ASS1high cell lines MG-63 and
NOS continued to proliferate, even at the highest concentra-
tion of ADI-PEG20 tested (Figures 2a and b). The growth
inhibition was then used to calculate the IC50 values for each
of the cell lines. Not surprisingly, ASS1 expression levels
correlated with ADI-PEG20 IC50 values among our panel of
sarcoma cell lines (R2=0.95, 95% CI: 0.89–0.99; Po0.001)
(Figure 2c). There also seemed to be a threshold effect of
ASS1 expression, above which cells no longer responded to
ADI-PEG20 (Figure 2c).
To investigate the mechanism of decreased cell growth, we

performed BrdU incorporation assays and found reduced
S phase entry in Ass1low SK-LMS-1, MNNG/HOS and U-2 OS
cells, but not in the ASS1high MG-63 cells after treatment with
1 μg/ml ADI-PEG20 (Figures 2d and e). Propidium iodide
staining and FACS analysis revealed no evidence of cell death
in any of the cell lines tested (Figure 3a). Thus, unlike other
cancer cell lines deficient in ASS1 expression where treatment
with ADI-PEG20 is lethal, exploitation of arginine auxotrophy
by ADI-PEG20 in sarcoma cell lines results in cytostasis
instead.

Combination ADI-PEG20 and chloroquine causes
synthetic lethality. Metabolic stress caused by arginine
deprivation can trigger a cell survival mechanism either by:
inducing an acute response in autophagy followed by the
rapid re-expression of ASS1 or cell death if ASS1 is not
reactivated. To determine which of these fates occurred in the
case of sarcoma, we performed an in vivo xenograft tumor
experiment using the SK-LMS-1 cell line and measured the
effects of ADI-PEG20 exposure (see Materials and methods
section) on tumor growth and ASS1 expression. Although
ADI-PEG20 significantly retarded tumor growth, a slow and
small increase in tumor size was observed over time. We
harvested the tumor material after 2 months of treatment, and
determined ASS1 levels in protein lysates. In each of the
resistant tumors, ASS1 re-induction was clearly detected,
suggesting that ADI-PEG20 treatment of sarcomas could
ultimately fail because of re-expression of ASS1 (Figure 3b).
Hypermethylation of the transcription promoter is a common
mechanism responsible for the loss of ASS1 expression in
several cancers, and previous data suggests that this is
indeed the mechanism behind ASS1 silencing in myofi-
brosarcomas.14,23 We confirmed that the low ASS1 expres-
sion in SK-LMS-1 cells was also attributable to promoter
hypermethylation by exposing the cells to the demethylating
agent 5-aza-2′-deoxycytidine (5-aza-dC) for 48 h. Although
5 μM 5-aza-dC only slightly increased ASS1 expression, the
added stress of arginine starvation with ADI-PEG20 treat-
ment in combination with 5-aza-dC led to rapid and elevated
re-expression of ASS1 (Figure 3c). We were unable to
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investigate whether the loss of ASS1 expression is also
because of hypermethylation of the promoter in MNNG/HOS
and SK-UT-1 cells, because both cell lines died after
exposure to the combination of ADI-PEG20 and 5-aza-dC.
Together, these data suggest that treatment of sarcoma

cells with ADI-PEG20 may induce a prolonged state of
starvation before re-expression of ASS1. To test this hypoth-
esis, we analyzed markers of autophagy by immunoblotting of
whole-cell lysates over 3 days of ADI-PEG20 treatment in the
ASS1low sarcoma cell line SK-LMS1. The results showed that,
after a treatment with 1 μg/ml ADI-PEG20, there was an
increase in autophagic flux, upon the addition of bafilomycin

as compared with ADI-PEG20 treatment alone (Figure 4a).
This may indicate the process by which sarcoma cells are able
to survive in arginine starvation. We then used lentiviral
expression green fluorescent protein (GFP)-LC3 in SK-LMS-1
cells and treated with ADI-PEG20 for 3 days (Figure 4b).27 We
observed a marked increase in the number of GFP-LC3
puncta, representing autophagosomes, in ADI-PEG20-
treated cells relative to untreated cells.
To verify autophagy induction, we combined ADI-PEG20with

chloroquine, which inhibits the formation of the autophagolyso-
some within the last steps of the autophagy process.28,29

SK-LMS-1 cells were treated with 1 μg/ml ADI-PEG20, 20 μM

Figure 1 ASS1 expression level across sarcoma subtypes. (a) A summary of immunohistochemical detection of ASS1 in 701 primary sarcoma tumors. The tumors
comprising 45 soft tissue and 5 bone sarcoma histological subtypes were examined. In all, 572/662 (86.4%) primary soft tissue and 34/39 (87.2%) bone sarcoma tumors did not
exhibit strong ASS1 signal. (b) Typical examples of IHC. MPNSTASS1+ and ASS1- tumor samples were stained with hematoxylin and eosin (left panels) or with anti-ASS1 and
counter stained with hematoxylin (right panel). Magnification x40. Scale bar= 50 μm. (c) Immunoblotting for ASS1 in a representative panel of sarcoma cells lines. In total, 13/15
(86.7%) lacked strong ASS1 expression. The osteosarcoma cell line MG-63 had the highest ASS1 expression. All ASS1 expression was normalized relative to the ASS1 high
MG-63 cell line and ASS1-negative cell line SK-LMS-1. Actin serves as a loading control to ensure accurate relative ASS1 expression across cell lines
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chloroquine or both. We found that either agent alone retarded
cell growth but caused no significant increase in cell death
relative to the untreated cells. However, simultaneous
exposure to both agents significantly reduced the cell count
(P=0.001) (Figure 4c) and caused extensive cell death
in the SK-LMS-1 ASS1low cell line (Figure 4d). Inhibition of

autophagy by treatment with 50 μM Pepstatin A and 25 μM
E64D also caused a significant increase in cell death when
paired with ADI-PEG20 treatment (Figure 4e). Knockdown of
two proteins essential for basal autophagy, Atg5 and Atg7,
also resulted in significant increases in cell death after ADI-
PEG20 treatment (Figure 4f). Thus, induction of starvation in

Figure 2 Arginine depletion causes growth arrest in ASS1low cell lines. (a) Effects of ADI-PEG20 treatment on the growth of MNNG/HOS, SK-LMS-1 and MG-63 cell at a
range of concentrations from 0 to 1 μg/ml. ADI-PEG20 induced cytostasis in a dose-dependent manner in ASS1low MNNG/HOS and SK-LMS-1 cells, but not in the ASS1high

MG-63 cells. (N= 3). Data represented as mean± S.D. (b) IC50s of ADI-PEG20 in a panel of sarcoma cell lines. ND, not determined, as ADI-PEG20 had no effect on
proliferation. (c) Correlation between ASS1 expression levels and ADI-PEG20 IC50s illustrate a higher expression level of ASS1 correlates with decreased susceptibility to growth
inhibition by ADI-PEG20 treatment. (d) Indirect fluorescence detection of BrdU incorporation into cellular DNA. Growth inhibition as revealed by a reduction in BrdU-positive nuclei
in ADI-PEG20 (at 1 μg/ml) treated ASS1low MNNG/HOS, SK-LMS-1 and U-2 OS cells. ASS1high MG-63 cells were not affected by ADI-PEG20. These data indicate ADI-PEG20
treatment of ASS1low cell lines causes cell cycle arrest. Magnification x40. Scale bar= 20 μm. (e) Quantification of BrdU-positive cells before and after treatment with ADI-PEG20
in MNNG/HOS, SK-LMS-1, U-2 OS and MG-63. (N= 3). Data represented as mean± S.D.
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ASS1low sarcoma cell lines by arginine deprivation concomi-
tant with chloroquine inhibition causes synthetic lethality.

Dual therapy causes synthetic lethality via necroptosis.
Next, we investigated the mechanism of cell death induced
through simultaneous starvation induction with ADI-PEG20
and chloroquine in two ASS1low sarcoma cell lines (SK-
LMS-1 and MNNG/HOS). The cells were treated with 1 μg/ml
ADI-PEG20, 20 μM of chloroquine or both. ZVAD (100 μM),
an inhibitor of apoptosis, or necrostatin (10 μM), an inhibitor of
necroptosis, was added individually or simultaneously in an
attempt to protect against induction of cell death. Although
either ZVAD or necrostatin was capable of partial protection
from cell death induced by ADI-PEG20 plus chloroquine
treatment, necrostatin was more effective (Figure 5a), impli-
cating necroptosis as the dominant form of cell death.
Protection from ADI-PEG20 and chloroquine-induced cell
death also resulted following shRNA-mediated knockdown of
receptor-interacting protein 1 (RIP1) or RIP3, further suggest-
ing necroptosis as the mechanism of cell death upon
treatment with ADI-PEG20 and chloroquine (Figure 5b).
Upon the induction of cell death pathway, a signaling

cascade involving the apoptosis-associated caspase
enzymes and the necroptosis-associated RIP kinases dictate
the specific mechanism of cell death to be initiated. The
signals for the two mechanisms of cell death processes are
intertwined; with apoptosis signaling inhibiting the formation of
the ipoptosome, the protein complex, which, under correct
cellular contexts, can drive formation of the necroptosome.30

RIP1, the first essential necroptosis signaling enzyme in the
ripoptosome, can be ubiquitinated and sent for proteasomal
degradation by cellular inhibitor of apoptosis (cIAP1), priming
cells for the induction of apoptosis upon the cellular decision to
execute programmed cell death.31,32 Although active caspase
8 can signal to downstream effector caspases to induce
apoptosis, it can also cleave and functionally inactivate RIP1
and RIP3 kinases that are essential in signaling the initiation of
necroptosis.33,34 As such, when caspase 8 is functionally
inactive, because of decreased protein abundance, genetic
mutation or pharmacological inhibition by ZVAD, RIP kinases
maintain signal transduction ability, leading to the induction of
necroptosis (Supplementary Figure S1).35,36 Thus, the levels
of various key cell death regulatory enzymes steer the cells
toward different mechanisms of programmed cell death.
Autophagy serves as a form of triage in which the cell

chooses to utilize certain proteins for fuel, which it deems
dispensable during starvation and we suspected that ADI-
PEG20 would alter the complement of proteins in favor of
necroptosis rather than apoptosis. To test this possibility, we
examined by immunoblotting the effects of ADI-PEG20 and
chloroquine on several proteins involved in either apoptosis or
necroptosis pathways. Immunoblots of lysates of cells treated
with ADI-PEG20 alone showed that cleaved poly ADP ribose
polymerase (PARP) and BCL2 remained constant (Supple-
mentary Figure S2). However, there was a decrease in the
abundance of proteins involved in apoptosis, such as cIAP1,
caspase 3, and caspase 8. The loss of cIAP1 primes cells for
ripoptosome formation.31 The decrease in caspase 8, a

Figure 3 ADI-PEG20 treatment inhibits tumor growth until ASS1 re-expression confers resistance. (a) Flow cytometry analysis of cell death induction, as measured by
percentage of cells staining positive for PI, upon treatment with ADI-PEG20. As a single agent, ADI-PEG20 does not induce cell death in these sarcoma cell lines. (N= 3). Data
represented as mean± S.D. (b) Tumor growth of ASS1low SK-LMS-1 cells xenografted into nude mice with or without ADI-PEG20 treatment. Significant tumor growth inhibition
was observed when mice were treated with ADI-PEG20 as compared with tumor growth in PBS-treated mice. Shown below is a western blot of five tumor lysates from five mice
after ADI-PEG20 treatment showing re-expression of ASS1 in tumors, which had gained resistance to ADI-PEG20 mediated growth inhibition. (N= 5 mice per arm). Data
represented as mean tumor volume±S.E.M. (c) Re-expression of ASS1 in SK-LMS-1 cells after treatment with 1 μg/ml ADI-PEG20, 5 μM 5-aza-dC or both, as compared with
untreated cells. After 48 h of combination treatment, ASS1 expression levels have significantly increased above wild-type conditions, as well as either drug individually. (N= 3)
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negative regulator of RIP1 activation, also preferentially led
the cells toward necroptosis (Supplementary Figure S2).34 In
addition, the decrease in cleaved caspase 3 increased the

activation threshold needed to trigger apoptosis. Analysis of
protein levels at 24, 48 and 72 h of ADI-PEG20 and
chloroquine treatment showed a significant decrease in
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cIAP1, full length and cleaved caspase 3, and full length and
cleaved RIP1 (Figure 5c). Decreases in cleaved caspase 3
and cleaved RIP1 further indicate induction of necroptosis.
The different protein patterns detected between the MNNG/
HOS and SK-LMS-1 cell lines when treated with chloroquine
alone likely reflect variant levels of basal autophagy activation.
Interestingly, the protein levels seen in cells treated with the
combination of ADI-PEG20 and chloroquine on day 3 were
virtually identical to those present in cells treated with
ADI-PEG20 alone (Supplementary Figure S2). The protein
levels reflect contents of cells that have survived the
combination drug treatment and were in the autophagic state.
Alternatively, the literature suggested that chloroquine may
have chemosensitization properites independent of autop-
hagy, which may play into the effect we observe.37

In order to substantiate ripoptosome formation, we per-
formed immunoprecipitation of RIP1 from SK-LMS-1 cells to
determine RIP1-associated proteins after the different treat-
ment conditions (Figure 5d). Importantly, there was a
significant increase in the abundance of associated RIP3,
along with a decrease in caspase 8, indicating the formation of
the active ripoptosome, the complex that initiates the cellular
process of necroptosis. Taken together, these observations
demonstrate necroptosis as the primary mechanism of cell
death (Supplementary Figure S1), similar to previous studies
showing induction of necroptosis resulting from simultaneous
inhibition of mTOR and autophagy.38

Therapeutic efficacy of combination treatment. We next
investigated the potential utility of combined ADI-PEG20 and
chloroquine as a therapeutic strategy. First, we performed
classic colony-forming assays whereby cells were plated at a
low density, exposed to either chloroquine, ADI-PEG20 or both
for 1 week, and then allowed to grow in the absence of the
compounds for another week (Figure 6a). In the ASS1-
deficient cell line SK-LMS-1, treatment with ADI-PEG20
reduced colony number by approximately 30% while simulta-
neously causing very small colonies, because of the cytostatic
effect of ADI-PEG20. The effects of chloroquine treatment on
colony formation varied depending on the working concentra-
tion used. Although 10 μM chloroquine inhibits autophagy in
low serum conditions, 20 μM is required for inhibition of
autophagy in the presence of serum.39 Consistent with these
results, treatment with 10 μM of chloroquine had no effect on
either ASS1-positive or -negative cells when cultured in our

standard serum-containing media. There was a minor but
significant effect on colony number and size when cells were
treated with 20 μM chloroquine, regardless of the ASS1 status
(Figures 6a and b). In contrast, when cells were treated with
ADI-PEG20, the presence of 10 μM chloroquine further
reduced the size and number of colonies in the ASS1low cell
line SK-LMS-1. The effects were even more pronounced when
chloroquine was used at 20 μM (Figure 6a). The reduction in
colony number and size in the ASS1high cell line MG-63 treated
with both agents was moderate and primarily attributable to
chloroquine alone (Figure 6b).
The above observations suggested that both ADI-PEG20

and chloroquine would be needed to produce an antitumor
effect in vivo. Therefore, we performed a proof-of-principle
experiment by using subcutaneous xenografts of osteo-
sarcoma-derived ASS1low MNNG/HOS cells (Figure 6c) into
the flanks of immunodeficient nude mice. This cell line was
chosen for its higher basal ASS1 level of expression when
compared with SK-LMS-1 or SK-UT-1, allowing for a quicker
escape from ADI-PEG20 treatment compared with the SK-
LMS-1 xenografts utilized in Figure 3a. This model would
inform on improved treatment regimen to control tumors in
future pre-clinical studies. After injection of the MNNG/HOS
osteosarcoma cell line, mice were treated with PBS control,
ADI-PEG20, chloroquine or a combination of the two for
24 days. We found that, at doses effective for other tumors,39

single-agent chloroquine had no effect on sarcoma tumor
growth, whereas the single-agent treatment with ADI-PEG20
delayed and reduced tumor growth. However, the dual-agent
therapy was able to decrease tumor volumes (Po0.001)
significantly (Figure 6c). These in vivo data confirm the
efficacy of combining ADI-PEG20 with chloroquine. Additional
studies will be necessary to optimize the treatment regimen to
improve efficacy.

Discussion

The last 20 years have ushered in explosive progress in the
treatment of most solid tumors with the notable exception of
sarcoma, outside gastrointestinal stromal tumors. A major
reason for this lack of progress is the heterogeneity and
presumed lack of common lesions that can be exploited for
therapeutic purposes in this disease. We now show that
sarcoma as a disease is characterized by arginine auxotrophy
owing to the loss of ASS1 expression. This realization led us to
test strategies exploiting this vulnerability. We show that a

Figure 4 Arginine deprivation leads to a dependence on autophagy for continued cellular survival. (a) Cells were treated with ADI-PEG (3 days) or rapamycin (500 nM for 5 h)
with or without bafilomycin A1 (100 nM) for an additional 4 h. Cell lysates were analyzed by immunoblot analysis. A representative western and bar graph, presented as
means±S.D., are shown; n= 3 (***Po0.0001). (b) Autophagosome formation as revealed by GFP-LC3 puncta. Lentiviral expression of GFP-LC3 was transduced into SK-
LMS-1 cells that were then treated with 1 μg/ml ADI-PEG20 for 3 days. A significant increase in LC3-GFP puncta demonstrates the induction of autophagy by 1 μg/ml ADI-PEG20
mediated arginine deprivation in ASS1 low cells. Magnification x60. Scale bar= 10 μm. (c) SK-LMS-1 cell counts over a course of 3 days when left untreated, as well as treatment
with 1 μg/ml ADI-PEG20, 20 μM chloroquine and both. Either agent retarded cell growth; the combination treatment significantly reduced the cell number by day 3 (P= 0.001).
(N= 3). Data represented as mean± S.D. (d) Measurements of cell death upon treatment of SK-LMS-1 cells with the agents individually and together. Cell death was measured
on day 3 by propidium iodide staining followed by flow cytometric analyses of treated or untreated cells. Only treatment with both agents induced significantly cell death
(Po0.001). (N= 3). Data represented as mean±S.D. (e) Measurements of cell death upon treatment of SK-LMS-1 cells with 1 μg/ml ADI-PEG20, 50 μM pepstatin A and
25 μM E64D, individually and together. Cell death was measured on day 3 by propidium iodide staining followed by flow cytometric analyses of treated or untreated cells. Only
treatment with both agents induced significantly cell death. (N= 3). Measurements of cell death of SK-LMS-1 cells with shRNA knockdowns upon treatment with 1 μg/ml ADI-
PEG20 for 3 days. (N= 3). Data represented as mean±S.D. (f) Measurements of cell death of SK-LMS-1 cells transduced with Luc, ATG5 or ATG7 stable knockdowns. Cell
death was measured by propridium iodide staining followed by flow cytometric analyses on day 3 of ADI-PEG20 treatment
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Figure 5 Induction of necroptosis upon simultaneous arginine deprivation and chloroquine treatment. (a) Cell death as measured by FACS analysis after propidium iodide
uptake. MNNG/HOS (left) and SK-LMS-1 (right) cells treated with 1 μg/ml ADI-PEG20, 20 μM chloroquine, both, or in combination with 100 μM ZVAD (an apoptosis inhibitor) or
10 μM necrostatin (a necroptosis inhibitor). Protection of cell death was more effective with necrostatin, indicating cell death is occurring primarily via necroptosis. (N= 3). Data
represented as mean±S.D. (b) Cell death as measured by FACS analysis after propidium iodide uptake in wild type, shRIP1 or shRIP3 SK-LMS-1 cells after treatment with 1 μg/
ml ADI-PEG20 with or without 20 μM chloroquine. RIP kinase knockdown protected from induction of cell death, indicating necroptosis induction upon dual agent treatment. Data
represented as mean±S.D. (N= 2). (c) Western blots of SK-LMS-1 and MNNG/HOS cells untreated, or treated with ADI-PEG20 and chloroquine for 24, 48 or 72 h. In the
presence of chloroquine and ADI-PEG20, the loss of the proapoptotic cleaved caspase 3 and the anti-necroptotic cIAP1 increases the threshold for apoptosis signaling while
priming cells for death by necroptosis. Decrease in levels of cleaved RIP1 further suggest necroptosis induction (d). RIP1 co-IP. SK-LMS-1 ASS1low cells were treated with ADI-
PEG20, chloroquine or both for 3 days. A significant RIP3 co-precipitation was observed upon exposure to 1 μg/ml ADI-PEG20 and 20 μM chloroquine, whereas caspase 8,
which is negative regulator of ripoptosome formation, was reduced. Collectively, these observations are indicative of active ripoptosome formation and subsequent cell death
executed preferentially by necroptosis
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combination of different metabolic stresses can exert a
significant effect on tumor growth via necroptosis activation,
in addition to slightly lower levels of apoptosis activation,
without the need for cytotoxic conventional chemotherapy.
These results open up an enormous avenue for basic and
clinical investigation in treating sarcomas.
Sarcomas consist of 70 different tumor subtypes that can be

divided into bone and STSs depending on the cell of origin.1

Genetically, sarcomas frequently have mutations in p53
(50%), Rb (to a lesser extent) and occasional PI3K mutations
(o1%), but none of the mutations identified in sarcoma (other
than gastrointestinal stromal tumor (GIST) with cKIT and
PDGF mutations) is either druggable or is high-frequency

treatment targets.2,3,40 Sarcomas often have complex cyto-
genetics or can be translocation driven, and among the latter
are hybrid transcription factors like EWS-Fli in Ewing’s
sarcoma, SYT-SSX in synovial sarcoma, Pax3/7:FKHD in
rhabdomyosarcoma, ASPL:TFE3 in alveolar soft part sar-
coma and FUS:CHOP is myxoid liposarcoma.5,41 However,
these translocations are only represented in a very small
minority of tumors and by and large do not provide treatment
opportunities. In this context, our finding of a near universal
ASS1 loss provides the first druggable genetic alteration in
sarcoma that encompasses all histologies.
Based on our data, sarcomas now can be defined as a

cancer, which is auxotrophic for arginine, but the

Figure 6 In vivo efficacy of synthetic lethal therapeutic targeting strategy. (a and b) Colony formation upon treatment with 1 μg/ml ADI-PEG20, 10 μM or 20 μM chloroquine
or both. (a) Combination treatment of SK-LMS-1 ASS1low cells significantly inhibited long-term colony formation and colony size, especially when the chloroquine was used at
20 μM (P= 0.001). (N= 3). Data represented as mean±S.D. (b) The effects on MG-63 ASS1high cells were moderate and were attributable to chloroquine alone, whereas ADI-
PEG20 had little effect. (N= 3). Data represented as mean±S.D. (c) Tumor volumes of ASS1low MNNG/HOS osteosarcoma cells xenografted into nude mice. Combination
ADI-PEG20 and chloroquine treatment significantly inhibited tumor growth versus PBS, ADI-PEG20, or chloroquine treatment alone. Data represented as mean tumor
volume±S.E.M. (N= 5 mice per arm)
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consequences of this auxotrophy are different frommost other
tumor types. Most commonly, single-agent treatment of ASS1-
deficient cancer cells with ADI-PEG20 induces apoptosis.
Representative tumors that exhibit this biology are T-lympho-
blastic leukemia, melanoma and small cell lung cancer.18,23,42

ADI-PEG20 treatment of prostate cancer is unique in that
arginine starvation in these tumor cells causes chromato-
phagy, a form of autophagy in which cells start incorporating
chromatin into autophagosomes, followed by cell death.42,43 In
contrast, sarcoma cells are able to use sustained autophagy
until they reprogram and re-express ASS1, a change that
renders single-agent ADI-PEG20 treatment ineffective. How-
ever, this starvation primes the cells for induction of
necroptosis because of the loss of anti-ripoptosome regula-
tory proteins, as well as caspase 3, a rate-limiting protein that
initiates apoptosis. These altered death protein compositions
are likely the consequence of autophagy, and dictate that
necroptosis will be the preferential mechanism of cell death
upon chloroquine treatment. Therefore, by arresting the
completion of autophagy with chloroquine, the cell can no
longer engage this survival mechanism, and necroptotic death
preferentially ensues. These data are the first demonstration
of a metabolic therapy leading to necroptosis.
In sum, we have identified a translatable, well-tolerated,

metabolic approach to treat an essentially untreatable
disease. The full extent of the metabolic changes induced by
ADI-PEG20-dependent starvation in these mesenchymal
arginine auxotrophs needs to be further characterized to
exploit fully and to refine this therapeutic opportunity. Evolving
proteomics approaches should enable a detailed analysis of
the cellular protein compositions that are altered during
arginine starvation. This information will yield further insight
into buildingmulti-agent metabolic treatments for sarcoma that
can avoid the need for chemotherapy, or potentially increase
the efficacy of traditional chemotherapy. Moreover, this
approach can serve as a model for evolving therapies for
other difficult-to-treat cancers.

Materials and Methods
Primary tumor immunohistochemistry. In all, 701 tumors from patients
diagnosed with sarcoma, including 45 histologic soft tissue subtypes, were
examined for ASS1 protein expression by immunohistochemistry. After initial
excision, tumor samples were fixed in 10% neutral buffered formalin and embedded
in paraffin. Blocks were sectioned to 5 μm for immunohistochemical detection of
ASS1 protein expression levels. The anti-ASS1 antibody was a gift from Polaris
Pharmaceuticals, Inc. (San Diego, CA, USA) Glass sections were digitally scanned
using the Aperio ScanScope CS System (Aperio, Vista, CA, USA) and analyzed.

Cell lines and reagents. All cell lines were obtained from the American Type
Culture Collection (Chicago, IL, USA), with the following exceptions: HCH-1 was
from the laboratory of Dr. Linda Sandell at Washington University in St. Louis, MO,
USA, and ASPS-1 was from the laboratory of Dr. Robert Shoemaker at the National
Cancer Institute (Bethesda, MD, USA). SK-LMS-1, MNNG/HOS, MG-63, SK-UT-1
and SK-UT-1B cells were maintained in minimum essential media (Invitrogen,
Waltham, MA, USA). Fuji, RD-ES, LUPI, NOS-1, HuO 9N2, HCH-1 and SK-ES cells
were maintained in RPMI (Invitrogen). U-2 OS cells were maintained in McCoy’s
medium (Invitrogen). ASPS-1 cells were maintained in DMEM/F12 (Invitrogen).
293 T and SYO-1 cells were maintained in DMEM (Invitrogen). All media were
supplemented with 10% fetal bovine serum (Invitrogen) and penicillin–streptomycin
(Invitrogen). Chloroquine (used at 10 and 20 μM), 5-aza-dC (5 μM), necrostatin
(10 μM) and ZVAD-FMK (100 μM) were obtained from Sigma Aldrich (St. Louis,
MO, USA). Pepstatin A (used at 50 μM) and E64D (used at 25 μM) were obtained
from Enzo Life Sciences (Farmingdale, NY, USA). ADI-PEG20 (used at 0.01, 0.05,

0.1, 0.5 and 1 μg/ml for dose-response curve, and at 1 μg/ml for all other in vitro
experiments) was obtained from Polaris Pharmaceuticals, Inc. Lentiviral GFP-LC3
was a generous gift from Conrad Weihl (Washington University in St. Louis).27

Viability assays. Cell death was quantified by annexin-V (BioVision, Milpitas, CA,
USA) or propidium iodide (Sigma, St. Louis, MO, USA) staining, followed by flow
cytometric analyses. Flow cytometry was performed using a FACSCalibur (BD
Biosciences, San Jose, CA, USA). Data were analyzed using FloJo software (Ashland,
OR, USA). P-values for statistical analyses were obtained using Student's t-test.

Xenograft mouse model. All animal experiments were approved by the
IACUC at Washington University in St. Louis. One million ASS1low MNNG/HOS cell
(Figure 5c) or SK-LMS-1 cells (Figure 3b) were injected subcutaneously in the rear
flank fat pad of immune-deficient nude mice. Treatment was initiated on day 1. Mice
were treated with PBS, ADI-PEG20, chloroquine or the combination of ADI-PEG20
and chloroquine. Chloroquine was given subcutaneously at 60 mg/kg daily.39 In all,
320 IU/m2 (29.1 mg/m2) ADI-PEG20 was intramuscularly injected biweekly. Starting
on day 6, tumors were measured every other day and tumor volumes were
calculated by 1/2 x (length x width2). Mice were killed when tumors in the control
arm reached a maximum size of 2000 mm3.

Immunoblotting and co-immunoprecipitation (co-IP). Antibodies
used for immunoblots were as follows: anti-ASS1 (Polaris, San Diego, CA, USA),
anti-LC3 (Sigma), anti-p62 (Sigma), anti-RIP1 (Cell Signaling), anti-caspase 8 (Cell
Signaling), anti-BCL-2 (Cell Signaling), anti-cIAP1 (Cell Signaling), anti-cleaved
PARP (Cell Signaling), anti-caspase 3 (Imgenex, San Diego, CA, USA), anti-RIP3
(Abcam, Cambridge, MA, USA), anti-Atg5 (Santa Cruz, Dallas, TX, USA), anti-Atg7
(Microbiology Laboratories, Woburn, MA, USA), and anti-actin (Sigma). Cells were
lysed in RIPA buffer and protein concentrations were determined by BCA kit (Pierce,
Waltham, MA, USA). In all, 25–40 μg of proteins was resolved by NuPAGE
(Invitrogen) and transferred onto PVDF membranes (Immobilon-P, Millipore,
Darmstadt, Germany). Antibody detection was accomplished using enhanced
chemiluminescence (Western Lightning, PerkinElmer, Melville, NY, USA).
For co-IP, SK-LMS-1 cells were treated with PBS, 1 μg/ml ADI-PEG20, 20 μM

chloroquine, or both for 3 days. Following treatment, cells were lysed in 0.2% NP-40
buffer and protein concentration was determined by BCA kit (Pierce). Lysates were
incubated with anti-RIP1 (Cell Signaling) and protein A/G beads (Pierce). The
immunoprecipitates were subsequently immunoblotted with anti-RIP3 (Abcam), anti-
RIP1 (Cell Signaling), anti-caspase 8 (Cell Signaling) and anti-actin (Sigma) as
described above.
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