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ABSTRACT: 

Growing evidence shows that lysine methylation is a widespread protein post-translational 

modification that regulates protein function on histone and non-histone proteins. Numerous 

studies have demonstrated that dysregulation of lysine methylation mediators contributes to 

cancer growth and chemotherapeutic resistance. While changes in histone methylation are well 

documented with extensive analytical techniques available, there is a lack of high-throughput 

methods to reproducibly quantify changes in the abundances of the mediators of lysine 

methylation and non-histone lysine methylation (Kme) simultaneously across multiple samples. 

Recent studies by our group and others have demonstrated that antibody enrichment is not 

required to detect lysine methylation, prompting us to investigate the use of Tandem Mass Tag 

(TMT) labeling for global Kme quantification sans antibody enrichment in four different breast 

cancer cell lines (MCF-7, MDA-MB-231, HCC1806, and MCF10A). To improve the 

quantification of KDMs, we incorporated a lysine demethylase (KDM) isobaric trigger channel, 
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which enabled 96% of all KDMs to be quantified while simultaneously quantifying 326 Kme 

sites. Overall, 142 differentially abundant Kme sites and eight differentially abundant KDMs 

were identified between the four cell lines, revealing cell line-specific patterning.  
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INTRODUCTION: 

 Lysine methylation (Kme) is a common post-translational modification (PTM) that 

occurs when one to three methyl groups are added to the ε- amine of a lysine sidechain by 

lysine methyltransferases (KMTs). Kme is a reversible PTM, and its removal is mediated by 

lysine demethylases (KDMs). Proteins with a characterized methyllysine recognition domain 

(readers) interact with Kme sites and perform downstream molecular functions. The role of 

Kme has been predominantly studied as an epigenetic regulator in the context of histone 

proteins but work over the past two decades has uncovered over 10,000 Kme sites on close 

to 5,000 proteins in the human proteome1. Characterized non-histone Kme sites regulate 

protein-protein interactions, subcellular localization, DNA-protein interactions, RNA-protein 

interactions, activity, and stability2. 

 In addition to recent developments characterizing the molecular function of Kme, many 

studies have shown a clear connection between Kme site dysregulation and human diseases, 

including breast cancer3–6. Breast cancer is the second leading cause of cancer death in 

women7. The amplification or loss of KMTs and KDMs has been shown to contribute to breast 

cancer growth and drug resistance8–10. Considerable efforts to target KMTs and KDMs have 

shown promise in preclinical studies. For example, inhibitors of the KMTs SUV39H2 and 

EZH2 were shown to reduce the proliferation of breast cancer cells11–13. Modulation of Kme 

on histone proteins is typically the objective in these studies, but substantial evidence 

indicates that Kme sites on non-histone proteins play a significant role in breast cancer 
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progression and metastasis. For example, the KMT SMYD2 regulates breast cancer 

metastasis by methylating BCAR3 and modulating lamellipodia14. Another group 

demonstrated that breast cancer metastasis is controlled by KMT5A-mediated 

monomethylation of SNIP115. Despite these findings, no systematic efforts have been made 

to quantify the changes in non-histone lysine methylation in breast cancer cells.  

 The ability to reproducibly identify and quantify Kme sites in a high-throughput manner 

across entire proteomes remains a significant challenge, hindering our understanding of the 

functional consequences of specific Kme sites. Most efforts have relied on affinity reagents to 

enrich methylated proteins or methylated peptides16–20. Relative quantitation has been 

accomplished by coupling enrichment with isobaric labeling using stable isotope labeling by 

amino acids (SILAC) or tandem-mass tags (TMT)20–22. We recently compared several sample 

preparation strategies for globally profiling lysine methylation and found that enrichment of 

methylated proteins or peptides by affinity reagents is not required1. Bypassing the 

enrichment step reduces the sample material requirements and enables the characterization 

of the levels of the enzymes responsible for regulating Kme sites in the same experiment.  

 Connecting KMTs and KDMs to specific lysine methylation sites remains challenging. 

Many groups have found success by manipulating the expression of KMTs and KDMs in cells 

or lysates followed by enrichment of methylated proteins or peptides and tandem MS 

analysis. For example, SMYD2 substrates were discovered by enriching them with pan-

methyllysine antibodies in differentially SILAC-labeled cell lines with upregulated or 

downregulated SMYD2 expression20. Using an alternative approach, SILAC-labeled lysates 

were used as substrates for SMYD2 reactions, followed by enrichment with a pan 

methyllysine reader protein (3xMBT)14. Quantifying KMTs and KDMs simultaneously with 

lysine methylation sites would capture any network effects perturbations have on the entire 

methylation signaling network. Recently, isobaric trigger channels have been employed to 
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boost the number of defined peptides in isobaric labeling-based quantitative MS approaches, 

allowing confident identification and quantification of targeted peptides or proteins in an 

untargeted proteomics experiment23–27. In this proof-of-principle study, we build upon our 

finding that enrichment is not required for deep lysine methylome coverage and demonstrate 

that tandem mass tag (TMT) labeling combined with a KDM isobaric trigger channel enables 

relative quantification of lysine methylation sites and lysine demethylases (KDMs) 

simultaneously in various breast cancer cell lines.  

 

MATERIALS AND METHODS 

Cell Culture and Transfections 

 MDA-MB-231 and HCC1806 cell lines were cultured in Dulbecco’s Modified Eagle 

Media (DMEM)(Corning) supplemented with 10% (v/v) fetal bovine serum (Sigma) and 1x 

Penicillin/Streptomycin (Corning). MCF7 and HEK293T cells were cultured in RPMI media 

supplemented with 10% (v/v) fetal bovine serum and 1x Penicillin/Streptomycin. MCF10A was 

cultured in DMEM F-12 SILAC media with 5% Horse Serum, 20 ng/µL EGF (Peprotech), 0.5 

mg/mL Hydrocortisone (Sigma #H-0888), 100 ng/µL Cholera Toxin, 10 µg/mL Insulin, and 1x 

Pen/Strep. All cells were incubated at 37 °C with 5% CO2. For GFP-KDM transfections,10 µg 

of an individual GFP-KDM with 30 µL of PEI were transfected into a 10 cm HEK293T dish. 

Cells were collected after 24 hrs. 

Western Blotting 

 Cells were grown until 90% confluent and resuspended in lysis buffer (10 mM Pipes pH 

7, 300 mM sucrose, 100 mM NaCl, 3 mM MgCl2, 0.1% Triton X-100, protease inhibitor, 

universal nuclease (Pierce)). Lysates were run on a 6% SDS-PAGE and probed with anti-GFP  

(ProteinTech Catalog #50430-2-AP, 1:1000 dilution) or anti-Tubulin (Proteintech #66240-1-Ig, 

1:20,000). 
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Immunoprecipitation of the GFP-KDMs 

 Cell lysates were normalized according to the western blot results. Lysate was 

combined with 10 µL of GFP-Trap Agarose Magnetic beads with a final volume of 250 µL of IP 

Buffer (10 mM Tris pH 7.5, 150 mM NaCl, 0.5M EDTA) and incubated for 1 hr at 4°C with 

rotation. Beads were washed 5 times for 5 minutes with the IP Dilution buffer. Before the last 

wash, the beads were combined for the last wash. 

IP LC-MS/MS Sample Preparation 

Beads were covered with 30 µL 8 M urea in 100 mM Tris, pH 8.5 with 5 mM tris (2-

carboxyethyl)phosphine hydrochloride (Sigma-Aldrich Cat No: C4706) for 30 min at 35°C. The 

beads were then treated with 10 mM chloroacetamide (final concentration, Sigma Aldrich Cat 

No: C0267) for 30 min at room temperature in the dark. Samples were diluted with 50 mM Tris 

pH 8.5 (Sigma-Aldrich Cat No: 10812846001) to a final urea concentration of 2 M for 

overnight Trypsin/Lys-C digestion at 35°C (1 µg protease used, Mass Spectrometry grade, 

Promega Corporation, Cat No: V5072). After acidification, the sample was desalted by Sep-

Pak (50 mg, Waters™ Cat No: WAT054955) with a wash of 1 mL 0.1% trifluoroacetic acid 

(TFA) followed by elution in 0.6 mL of 70% acetonitrile 0.1% formic acid (FA). Peptides were 

dried by speed vacuum and resuspended in 100 µL 0.1% FA for initial IP-MS analysis. 

IP LC-MS/MS and data analysis 

 Mass spectrometry was performed utilizing an EASY-nLC 1200 HPLC system (SCR: 

014993, Thermo Fisher Scientific) coupled to Exploris 480™ mass spectrometer with 

FAIMSpro interface (High Field Asymmetric Ion Mobility, Thermo Fisher Scientific). 1/20th of 

the IP was loaded onto a 25 cm EasySpray column (ES902, Thermo Fisher Scientific) at 350 

nL/min. The gradient was held at 5% B for 5 minutes (Mobile phases A: 0.1% formic acid 
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(FA), water; B: 0.1% FA, 80% Acetonitrile (Thermo Fisher Scientific Cat No:  LS122500)), then 

increased from 4-30%B over 98 minutes; 30-80% B over 10 mins; held at 80% for 2 minutes; 

and dropping from 80-4% B over the final 5 min. The mass spectrometer was operated in 

positive ion mode, default charge state of 2, advanced peak determination on, and lock mass 

of 445.12003. Three FAIMS CVs were utilized (-40 CV; -55 CV; -70CV) each with a cycle time 

of 1.3 s and with identical MS and MS2 parameters. Precursor scans (m/z 375-1500) were 

done with an Orbitrap resolution of 120000, radio frequency  lens% 40, automatic maximum 

inject time, standard automatic gain control (AGC) target, minimum MS2 intensity threshold of 

5e3, monoisotopic precursor selection (MIPS) mode to peptide, including charges of 2 to 7 for 

fragmentation with 30 sec dynamic exclusion. MS2 scans were performed with a quadrupole 

isolation window of 1.6 m/z, normalized HCD of 30, 15000 Orbitrap resolution, standard AGC 

target, automatic maximum injection time (IT), fixed first mass of 110 m/z.   

Data were analyzed in Proteome Discoverer 2.5 using a reviewed Homo sapiens 

proteome UniProt FASTA (downloaded 05/13/22; 20,292 sequences) plus common 

contaminants (71 sequences).  SEQUEST HT searches were conducted with a maximum 

number of 4 missed cleavages; precursor mass tolerance of 10 ppm; and a fragment mass 

tolerance of 0.02 Da. The maximum number of modifications per peptide was set to 3. 

Dynamic modifications used for the search were 1) carbamidomethylation on cysteine (C) 

residues, 2) oxidation of methionine, 3) acetylation, 4) methionine loss, or 5) acetylation with 

methionine loss on protein N-termini. Percolator False Discovery Rate (FDR) was set to a 

strict setting of 0.01 and a relaxed setting of 0.05. 

Quantitative Proteomics Sample Preparation and Labeling 

 Cell pellets (n=4, total of 16 samples) were resuspended in 400 µL 8 M urea, in 100 

mM Tris, pH 8.5. Samples were then sonicated on a Bioruptor® sonication system 
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(Diagenode Inc. United States, North America Cat No: B01020001) with 30 s/30 s on/off 

cycles for 20 min in a water bath at 4°C. Samples were treated with 2 units of MilliporeSigma 

Benzonase 1016540001) and then sonication was repeated. After subsequent centrifugation 

at 12,000 rcf for 30 min, protein concentrations were determined by Bradford protein assay 

(BioRad Cat No: 5000006). 80 µg equivalent of protein from each sample were then treated 

with 5 mM tris (2-carboxyethyl)phosphine hydrochloride (Sigma-Aldrich Cat No: C4706) to 

reduce disulfide bonds for 30 min at 35 °C, then resulting free cysteine thiols were alkylated 

with 10 mM chloroacetamide (final concentration, Sigma Aldrich Cat No: C0267) for 30 min at 

room temperature in the dark. Samples were diluted with 50 mM Tris pH 8.5 (Sigma-Aldrich 

Cat No: 10812846001) to a final urea concentration of 2 M for overnight Trypsin/Lys-C 

digestion at 35°C (1:50 protease:substrate ratio, Mass Spectrometry grade, Promega 

Corporation, Cat No: V5072). 

Digestion was halted by addition of 0.5% final v/v trifluoroacetic acid (TFA), and 

peptides were desalted on Waters Sep-Pak® Vac cartridges (50 mg, Waters™ Cat No: 

WAT054955) with a wash of 1 mL 0.1% TFA followed by elution in 0.6 mL of 70% acetonitrile 

0.1% formic acid (FA). Peptides were dried by speed vacuum and resuspended in 25 µL 100 

mM triethylammonium bicarbonate, pH 8.5. Each sample was then labeled for 2 hours at 

room temperature with 0.5 mg Tandem Mass Tag Pro (TMTpro) reagent (TMTpro Cat No: 

44520, Lot no XK347989). Samples were checked to ensure labeling efficiency of >90 % and 

then quenched with 0.3% hydroxylamine (final v/v) at room temperature for 15 min. Labeled 

peptides were then mixed and dried by speed vacuum. 

Approximately 1/3rd of the labeled peptide mixture was fractionated using the TMT 

fractionation protocol of Pierce high pH basic reversed-phase peptide fractionation kit 

(Thermo Fisher Scientific™ Cat no 84858; with a wash of 5% acetonitrile, 0.1% triethylamine 
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(TEA) followed by elution in 12.5%, 15%, 17.5%, 20%, 22.5%, 25%, 30%, and 70% 

acetonitrile, all with 0.1% triethylamine (TEA)). 

 

Quantitative Proteomics LC-MS/MS  

 1/4th of each global peptide fraction was injected using an EasyNano LC1200 coupled 

with 25cm Aurora column (Ionopticks AUR3-25075C18-TS) on an Exploris 480 Orbitrap mass 

spectrometer (Thermo Fisher Scientific) with FAIMSpro installed. Peptides were eluted over a 

180-minute method: Solvent B was increased from 8%-38% over 160 min, to 90% B over 10 

min, held at 90% B for 5 min and decreased 8% B over 5 min (Solvent A: water, 0.1% formic 

acid; Solvent B: 80% acetonitrile, 0.1% formic acid).  The mass spectrometer was operated in 

positive ion mode, advanced peak determination on, and a user-defined lock mass of 

445.12003, with 3 FAIMS CVs (-45, -55, -65). A cycle time of 2 s was used for each CV and 

RF lens was set to 40%. MS1 parameters for each cycle were: Orbitrap resolution of 60,000, 

scan range of 375-1500 m/z, normalized AGC target of 300%, 50 ms max IT, minimum 

intensity of 5 x 10-4, charge state 2-8, 60 sec dynamic exclusion and excluding isotopes from 

fragmentation.  MS2 settings were isolation of 0.7 m/z, fixed HCD of 32, Orbitrap resolution of 

45,000, fixed first mass of 100, AGC target of 200%, and max IT of 120 ms. 

Quantitative Proteomics Database Searching 

 Data were analyzed in Proteome Discoverer 2.5 using a reviewed Homo sapiens 

proteome UniProt FASTA (downloaded 05/13/22; 20,292 sequences) plus common 

contaminants (71 sequences).  SEQUEST HT searches were conducted with a maximum 

number of 5 missed cleavages; precursor mass tolerance of 10 ppm; and a fragment mass 

tolerance of 0.02 Da. The maximum number of modifications per peptide was set to 5. Static 

modifications used for the search were 1) carbamidomethylation on cysteine (C) residues. 
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Dynamic modifications used for the search were 1) oxidation of methionine, 2) deamidation of 

arginine and asparagine, 3) methylation on lysine or arginine, 4) dimethylation on lysine, 5) 

trimethylation on lysine, 6) TMT label on lysine. Dynamic peptide and protein terminus 

modifications included 1) TMT label and 2) acetylation on the N-termini of peptides, 3) 

methionine loss or 4) acetylation with methionine loss on protein N-termini. Percolator False 

Discovery Rate was set to a strict setting of 0.01 and a relaxed setting of 0.05. IMP-ptm-RS 

node was used for all modification site localization scores. Values from both unique and razor 

peptides were used for quantification. In the consensus workflows, peptides were normalized 

by total peptide amount with no scaling. Quantification methods utilized isotopic impurity 

levels available from Thermo Fisher Scientific (lot numbers above). Reporter ion quantification 

was allowed with signal-to-noise threshold of 6 and co-isolation threshold of 30%. Resulting 

grouped abundance values for each sample type, abundance ratio (AR) values; and 

respective p-values (individual protein, ANOVA) from Proteome Discover™ were exported to 

Microsoft Excel for downstream pathway analysis. 

KDM Trigger Channel Proteomics LC-MS/MS 

 Half of the total IP digest was labeled with TMTpro label 134C as described for cell 

lines above. An estimated 2 µg of labeled IP peptides were mixed with one of the 1/3rd 

unfractionated TMTpro mix from the initial cell line study (approximately 1:50). This sample 

was then high pH basic fractionated into 8 fractions (as described above) and each fraction 

was run on the Exploris 480 mass spectrometer with parameters as described above. A 

technical replicate was also run with the same instrument settings, but FAIMS CVs adjusted 

to -50, -60 and -70 V. Data analysis of the 17-plex containing trigger channel was performed 

as described above. Data were examined with and without the 134C channel used in the 

analysis. 
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Data Analysis 

 All downstream analysis was done using R v.4.3.1. Proteins were filtered for a high 

FDR with more than one unique peptide, and a pseudo count of 0.01 was added to the 

normalized abundances to mitigate data analysis run errors. Lysine methylated peptides were 

filtered for a Site Localization Score (ptmRS module) greater than 0.9 and unambiguous. The 

Kme peptide normalized abundance values were normalized to the protein normalized 

abundance values for each replicate. Differentially abundance proteins and normalized Kme 

sites were identified using an ANOVA (p < 0.05) followed by Tukey pair-wise comparisons (p 

<0.05). Fold change cut-offs of |1.25| were applied. PhosphoSitePlus© data was accessed in 

May 202432. The following packages were used for the indicated analysis: clusterprofiler (GO 

term analysis)46, ggplot2 (bargraphs), ggpubr (stats on bargraphs), pheatmaps (heatmaps), 

VennDiagram (venn diagrams). The WGCNA R package was used for co-expression network 

analysis using a signed network approach47. A soft-threshold power of 20 (for protein 

WGCNA) or 16 (for Kme sites) was used. Modules with a minimum size of 30 (protein) or 20 

(Kme sites) were identified using a hierarchical cluster. The output of data anlaysis is 

available in Table S3. 

 

RESULTS: 

Generating a lysine demethylase isobaric trigger channel. 

 Previous studies have shown that incorporating purified target proteins into an isobaric 

trigger channel enhances peptide levels beyond the MS1 threshold needed for selection using 

data-dependent acquisition (DDA) with little impact on the overall proteome coverage or 

quantitation23–27. Given the low abundance of lysine demethylases, we sought to create an 

isobaric trigger channel as a proof-of-concept to boost the detection and quantification of 

KDMs while still characterizing global lysine methylation (Fig. 1A). To generate the trigger 
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channel, all 27 human KDMs were exogenously expressed as N-terminal GFP fusions in 

HEK293T cells. Immunoblot analysis was used to confirm expression and normalize the 

amount of lysate used in immunoprecipitation experiments (Fig. 1B). KDM5B was the only 

KDM without a visible band at the expected size. Individual KDMs were immunoprecipitated 

Figure 1: Comparison of the breast cancer proteomes with and without a lysine 
demethylase trigger channel. 
A. Breast cancer cell lines (MCF-7, MDA-MB-231, HCC1806, or MCF10A; n = 4) were 
collected, lysed, and trypsin/Lys-C digested. Samples were then multiplexed using tandem 
mass tag (TMT) labels (16-plex). The trigger channel also received its own TMT label, 
which was then added in a 1:50 ratio to part of the 16-plex, resulting in one 16-plex and 
one 17-plex. Multiplexes were subjected to high pH offline fractionation and run on the LC-
MS/MS. Proteome Discoverer (2.5) was used for database searching. B. Western Blot of 
the exogenous expression of all GFP-tagged KDMs. Green boxes indicate bands at the 
predicted molecular weight. C. Bar graph depicting the number of PSMs detected for each 
KDM detected in the IP-MS experiment. D. Venn Diagram of the quantified protein groups 
identified with and without the trigger channel. E. Pearson correlation of the log10 average 
protein abundances observed with (x-axis) and without (y-axis) the trigger channel. Plots 
are shown by cell line and KDMs quantified in both experiments are shown as blue points. 
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using magnetic GFP-Trap beads, and then all 27 KDM immunoprecipitations (IPs) were 

combined before on-bead trypsin digestion.  The GFP-KDM IP was analyzed by LC-MS/MS, 

resulting in the detection of all KDMs except KDM5B (n = 26/27) (Fig. 1C).  

 

Adding the lysine demethylase trigger channel does not impact protein quantification. 

Given the successful detection of KDMs, we then inquired if the addition of the KDM trigger 

channel could boost the detection of KDMs without impacting the relative quantification of the 

whole proteome. We collected lysates (n = 4) from two basal-like triple-negative breast cancer 

(TNBC) cell lines (HCC1806 and MDA-MB-231), a Luminal A breast cancer cell line (MCF-7), 

and a non-cancerous, epithelial, mammary cell line (MCF10A). Each biological replicate 

received a tandem mass tag (TMT) label, resulting in a 16-plex sample. To test the efficacy of 

the KDM trigger channel, two µg of the KDM IP was TMT labeled and added to 100 μg of the 

16-plex, resulting in a 17-plex sample. This ratio has been used by others and is low enough 

of a ratio to trigger detection but not enough to impact protein quantification. The non-trigger 

and KDM trigger channel experiments were fractionated offline before tandem mass 

spectrometry analysis (Fig 1A). Without the trigger channel, 142,475 peptide spectral 

matches (PSMs), 54,727 peptides, 4,200 detected proteins, and 4,131 quantified proteins 

were identified. A similar number of PSMs (126,891), peptides (47,699), detected proteins 

(4,384), and quantified proteins (4,311) were identified with the addition of the trigger channel 

(Table S1). Most quantified proteins (85-88%, n = 3,671) were identified in both experiments 

(Fig 1D). 

 We then compared the protein abundances between the two experiments to ensure 

that the inclusion of the trigger channel had no impact on the relative quantification levels of 

proteins. The protein abundance of the biological replicates in both experiments had a 

Pearson correlation coefficient equal to or greater than 0.8, demonstrating a high degree of 
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reproducibility within each experiment (p< 0.05) (Fig S1A & B).  Pearson correlation analysis 

of the averaged protein abundances from each cell line revealed a high degree of 

reproducibility between the two experiments (n = 3,671; R > 0.8, p < 0.05) (Fig 1E). Principal 

component analysis (PCA) of the protein abundances showed similar distinct clusters of the 

replicates for each cell line, regardless of the inclusion of the trigger channel. Notably, the 

three mammary epithelial cell lines (MDA-MB-231, HCC1806, and MCF10A) remained 

segregated from the ER+ cell line (MCF-7) (Fig S1C & D). Taken together, these analyses 

suggest the addition of the KDM trigger channel had little impact on the quantitation of the 

breast cancer proteomes. 

 

WGCNA uncovered significant differences in protein expression profiles between cell 

lines.   

 We reasoned that the three distinct cell subtypes (non-cancerous, basal-like TNBC, 

and ER+ breast cancer) used in the MS experiments would have differentially regulated 

proteomes. We conducted a weighted gene correlation network analysis (WGCNA) on the 

differentially abundant proteins to identify clusters and characterize sub-type differences. 

Since the two MS experiments (with and without the trigger channel) had similar relative 

abundances for the proteins in common, the following proteome analysis was only conducted 

using the trigger channel dataset. Across the four samples, 2,290 proteins were differentially 

abundant (ANOVA, p < 0.05). In total, seventeen modules were identified (Fig S2A & B). 

Interestingly, the TNBC cell lines were markedly distinct and clustered the furthest from each 

other (Fig S2C). Furthermore, HCC1806 and MCF10A were clustered within their own 

branch. Previous proteomics studies have shown that HCC1806 and MCF10A cluster 

together, while MDA-MB-231 falls within a different cluster28.  
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 Gene Ontology (GO) enrichment analysis was then performed on the most significant 

modules for each cell line (Fig S2D). Proteins associated with HCC1806 (brown module) 

were enriched for components of the extracellular matrixes and various fatty acid metabolic 

processes, including the amino acid transporter heterodimer components SLC7A5 and 

SLC3A2. These transporters have previously been shown to be essential for TNBC 

tumorigenesis due to the increased need for glutamine29,30. MCF10A (black module) had an 

enrichment of ribosomal subunits, and MCF-7 (turquoise module) had an enrichment for 

chromatin and protein-DNA complex proteins. Finally, we observed an enrichment for proteins 

involved in cell junction and immune response pathways within the MDA-MB-231 (green and 

blue) modules. Interestingly, p53 was upregulated in MDA-MB-231 when compared to the 

other three cell lines, consistent with previous proteomic profiling of these cell lines28,31, and is 

vital for MDA-MB-231 survival31.  

 

Relative quantification of KDM abundance in breast cancer cell lines. 

Next, we compared the quantification of KDMs with and without the KDM trigger 

channel. Without the trigger channel, only seven KDMs (7/27), or 26% of all KDMs, were 

quantified (Fig 2A). With the addition of the trigger channel, 27 KDMs (100%) were detected, 

and 26 (96%) were quantified (Fig 2B). Seven KDMs were quantified in both experiments 

(JMJD6, KDM2A, NO66/RIOX1, MINA/RIOX2, KDM1A, KDM3B, KDM5B), and their relative 

protein abundance was consistent between the two experiments (Fig 1E). Three of the seven 

KDMs quantified in both datasets had a similar number of detected PSMs with or without the 

trigger channel (KDM1A, KDM3B, and KDM5B). This similarity can be attributed to identical 

annotated peptide sequences detected in both experiments. However, a close inspection 

showed that most of the annotated sequences were unique in each experiment. It is also 
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important to note that KDM5B was not detected in the initial GFP-KDM IP emphasizing that 

stochasticity plays a role in data dependent acquisition mass spectrometry.  

Figure 2: Quantification of lysine demethylases in breast cancer cell lines.  
A. Bar graph depicting the number of PSMs observed with (blue) and without (black) the 
KDM trigger channel for the indicated KDM. B. Heatmap of the z-score of the differentially 
abundant average protein abundance. Rows are the indicated KDM, while columns are the 
indicated cell line. Columns and rows are clustered via hierarchical clustering (euclidean 
distance). C. Matrix of the quantified KDMs and KMTs in the trigger channel experiment 
depicting significant positive (orange) and negative (blue) Pearson correlations of the 
average protein abundance. 
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The relative abundance of each KDM within the trigger channel dataset was compared 

across all four cell lines. Eight KDMs were differentially abundant between the four cell lines 

(KDM1A, KDM3A, KDM4B, KDM4C, KDM5A, KDM5C, KDM5D, and JMJD5) (ANOVA; p < 

0.05) (Fig 2B). Furthermore, KDM3A, KDM4B, and KDM5C were upregulated in MDA-MB-

231, and KDM1A was upregulated in MCF-7 compared to the other three cell lines. The KDM 

protein abundance in the three cancer cell lines was compared with publicly available mRNA 

expression (DepMap).  Only one positive correlation (RIOX2) was observed between the 

protein abundance and mRNA expression (Fig S3).  

Multiple KMTs and KDMs have the same substrate. Therefore, if a cell line has a higher 

KDM expression, a KMT that methylates the same substrate could be higher to maintain 

homeostasis. This balance may not occur for all KMTs and KDMs for various reasons, such 

as disease-related abnormal protein expression.  Eight KMTs were quantified and were 

included in the analysis to make connections between KMT and KDM expression. The 

expression of several KDMs significantly correlated with one another (Fig 2C, R> |0.9|; p < 

0.05). For example, KDM1B negatively correlated with KDM3B and positively correlated with 

KDM6A, PHF2, JMJD6, KDM4C, and HR. We also observed a positive correlation between 

some KMTs and KDMs, including EHMT2 and KDM1A. Interestingly, EHMT2 methylates 

H3K9me1/2 while KDM1A demethylates the same site, suggesting similar expression levels 

between these two proteins due to their activity on a shared substrate. In addition, EZH2 

positively correlated with two KDMs (KDM6A and JARID2) that demethylate H3K27me3, the 

product of EZH2. This is expected, as JARID2 and EZH2 are components of the polycomb 

repressive complex 2 (PRC2). The observed correlations between KMT and KDM expression 

showcase the potential utility of the trigger channel to discover and validate KMT and KDM 

signaling networks.  
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TMT labeling enables the quantification of hundreds of lysine methylation sites within 

a single mass spectrometry experiment. 

 After the characterization of protein abundances, we focused on detecting and 

quantifying Kme sites. Previous work demonstrated that antibody enrichment is unnecessary 

for detecting Kme sites. This study investigated whether detection and quantification of Kme 

sites within a TMT-based proteomics workflow was feasible. For this analysis, we looked at all 

Kme sites identified and quantified in both experiments (with and without the KDM trigger 

channel). In total, 608 unique Kme sites on 387 unique proteins were detected, with 578 

Figure 3: Characterization of the quantified lysine methylation sites. Venn diagram of 
previously observed Kme sites from PhosphoSitePlus© and those detected (A) or quantified 
(B) within this study. C. Percent of quantified Kme sites that either share the same site 
(position = 0) with or are within nine amino acids (position = 1-9) from observed acetylation, 
ubiquitination, sumoylation, or phosphorylation sites as annotated in PhosphoSitePlus© D. 
STRING network diagrams of domains enriched for lysine methylation. Orange circles 
represent proteins with a quantified Kme site within this study.  
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being novel (PhosphoSitePlus©)32 (Fig 3A). From the 608 detected Kme sites, 326 unique 

Kme peptides were quantified from 203 unique proteins, of which 303 were novel (Fig 3B).   

 Next, we compared how the addition of the isobaric KDM trigger channel impacted the 

detection or quantification of Kme sites. More sites were detected and quantified without the 

inclusion of the trigger channel, though a substantial number of sites were still identified with 

the addition of the trigger channel (408 vs. 340 identified; 239 vs. 173 Kme sites quantified). A 

total of 53 Kme sites were quantified in both datasets. A Pearson correlation analysis between 

the two experiments revealed adequate correlation (R > 0.4; p < 0.05), suggesting 

reproducible Kme site quantification (Fig S4A). Overall, these data suggest that the isobaric 

KDM trigger channel did not significantly impact the detection and quantitation of lysine 

methylation sites.  

 In addition to methylation, lysine can be modified by other PTMs, including acetylation, 

sumoylation, or ubiquitination. Other studies have noted the antagonistic or symbiotic 

relationship, depending on the cellular context, between lysine and phosphorylation 33,34. We, 

therefore, queried how many Kme sites had reported phosphorylation, sumoylation, 

ubiquitination, or acetylation site either on that same lysine or within nine amino acids of the 

methylated lysine (PhosphoSitePlus©) (Fig 3C). In our study, 40% of the lysines with a 

quantified Kme site also have been observed to be acetylated, while 10% have been 

observed to be sumoylated. Interestingly, 70% can also be ubiquitinated, suggesting a strong 

potential connection between methylation and ubiquitination. Phosphorylation has an equal 

distribution across all nine sites, with an average of 10% of Kme sites with a neighboring 

phosphorylation site.  

 Next, we performed a Gene Ontology enrichment analysis on all the lysine methylated 

proteins. There was an enrichment for proteins involved in protein folding, cytoskeletal 

organization, and junctions, all of which are terms that have been previously associated with 
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lysine methylation (Fig S4B). Interestingly, two ATP binding domains had an enrichment for 

methylated proteins: actin (6/18) and HSP70 C-term (8/13) domains (Fig 3D). While most of 

these Kme sites are novel, their roles are consistent with previously profiled Kme sites 

observed in different cell types. These findings emphasize the integral and diverse role of 

lysine methylation. 

 

Breast cancer cell lines have unique non-histone lysine methylome signatures. 

 Histone lysine methylation sites have unique profiles across different breast cancer 

subtypes35. We investigated if the same was true for non-histone lysine methylation sites. To 

identify differentially abundant Kme sites, the Kme peptide abundance was normalized to the 

protein abundance. Of the 326 unique Kme sites, 142 were significantly differentially 

abundant between all four cell lines (ANOVA, p > 0.05) (Fig 4). WGCNA was conducted on 

the differentially abundant sites. Three distinct clusters were identified: blue, brown, and 

turquoise (Fig. S5 A & B). Proteins involved in protein folding, secretion, and cytoskeletal 

structure were enriched in MDA-MB-231 (turquoise and brown), while cytoskeletal and cell 

junction proteins were enriched in MCF7 (blue) (GO term analysis) (Fig 4.). Therefore, similar 

to histone lysine methylation sites, non-histone sites have unique and cell type-specific 

profiles.  

 Overall, 52 Kme sites were significantly upregulated or downregulated within a 

particular cell line (Fig S6). MCF-7 and MDA-MB-231 cells contained the largest number of 

upregulated sites. A few sites were downregulated in MCF10A, but no single site was more 

abundant in MCF10A compared to the three other cell lines. Interestingly, two sites were 

upregulated in all the breast cancer cell lines: ADAR K384-me2 and GPX8 K182-me2 (Fig 5A 

& B). Double-stranded RNA-specific adenosine deaminase (ADAR) is a deaminase that 

catalyzes the hydrolytic deamination of adenosine to inosine, which has been shown to 
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Figure 4: Lysine methylation has distinct profiles across breast cancer cell lines.  
Heatmap of the differentially expressed Kme sites (n =142). Colors represent the z-
score of the normalized Kme peptide abundance. Rows (Kme sites) and columns (cell 
line) are clustered by euclidian distance. Module colors indicate the module to which 
the Kme site belongs. Enriched GO terms found in the indicated modules are depicted 
on the left (blue, turquoise, brown) (p<0.05).  
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impact overall RNA regulation and downstream protein expression. Intriguingly, there have 

been studies connecting the overexpression of ADAR to breast cancer progression36.  

Knockdown of ADAR led to a decrease in triple-negative breast cancer cell proliferation and 

overall transformation and tumorigenesis in TNBC xenograft models32. GPX8 (Probable 

glutathione peroxidase 8) has been connected to breast cancer metastasis, with a recent 

Figure 5: Comparison of normalized Kme site abundances and correlation with KDM 
levels. 
A. Boxplots of the normalized Kme site abundances (y-axis) of ADAR K384-me2 and GPX8 
K128-me2 in HCC1806 (purple), MCF10A (red), MCF-7 (red), and MDA-MB-231 (green). 
Shapes represent different biological replicates. B. Correlation between the protein 
abundance for indicated KDMs (KDM1A or PHF8) and normalized Kme peptide abundance 
as indicated (gray box).  
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study showing MDA-MB-231 cells lacking GPX8 were less invasive and reverted from a 

mesenchymal to an epithelial state37.  

 To explore potential regulatory mechanisms, we investigated whether any KDMs 

correlated with specific Kme sites. Since KDMs demethylate Kme sites, we reasoned that 

focus should be placed on sites that negatively correlated with a KDM, as a greater 

abundance of the KDM would lead to a lower abundance of a methylated substrate. All 26 

KDMs negatively correlated with at least one Kme site (Fig S7). For example, KDM1A (LSD1) 

negatively correlated with CFL1 K144 (Cofilin-1) and EEF1A2 K55 (Elongation factor 1-alpha 

2), with higher abundance in MCF-7 and lower abundance in MDA-MB-231 or MCF10A (Fig 

5C). EEF1A1/2 K55-me2 is catalyzed by the KMT METTl13 and is associated with tumor 

proliferation in lung and pancreatic cancer cells3,38. PHF8 negatively correlated with AHNAK 

K4761 me1 (Neuroblast differentiation-associated protein AHNAK), CALM1 K116 me3 

(Calmodulin-1), ITGB1 K105 (Integrin beta-1), LGALS1 K64 (Galectin-1), and VIM K334 me3 

(Vimentin), which all have a higher expression within MCF10A and MDA-MB-231 and the 

lowest expression in HCC1806 (Fig 5D). However, the motifs of the negatively correlated 

sites did not have any striking similarities (Table S2). Future work capturing the expression of 

KMTs, KDMs, and Kme sites in additional cell lines and tissues will help create a systems-

level understanding of lysine methylation signaling networks and facilitate the identification of 

putative enzyme-substrate connections.  

 

DISCUSSION 

 In this work, we simultaneously profile the abundance of lysine demethylases and 

lysine methylation sites utilizing Tandem Mass Tag labels and a novel KDM isobaric trigger 

channel. Previous attempts to connect methyl regulators and Kme sites relied on SILAC and 

antibody enrichment. While successful, this required an appreciable amount of material per 
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enrichment (20 milligrams), expensive enrichment reagents, and an individual MS run for 

each enriched fraction, making it more costly and less reproducible. Furthermore, the addition 

of an isobaric trigger channel to quantify KDMs simultaneously is not feasible in such a 

workflow. To ensure that methyl mediators are reproducibly detected and quantified, we 

generated a KDM isobaric trigger channel. Others have demonstrated the effective use of 

trigger channels to boost the detection of low-abundance proteins using MS19-21. Indeed, 

using the KDM trigger channel enabled the quantification of 96% (26 of 27) of all human 

KDMs compared to 26% (7 of 27) without the trigger channel. The use of the trigger channel 

revealed a higher abundance of KDM3A, KDM4B, and KDM5C within MDA-MB-231 and 

KDM1A in MCF7. Previous studies have shown these KDMs are integral to breast cancer 

tumorigenesis39–44. Furthermore, one group demonstrated that KDM3A has one non-histone 

target in the MDA-MB-231 cell line: p53 K372 me139. While we did not detect p53 K372 within 

this study, this workflow can be used to expand our current understanding of KDMs and their 

non-histone substrates.  

 Previous work from our lab and others has demonstrated successful detection of Kme 

sites without antibody enrichment1,45. Using TMT labeling, we demonstrate that Kme sites can 

be quantitatively profiled sans antibody enrichment within a single MS run. When combining 

both MS experiments (with and without the trigger channel), 326 total Kme sites were 

quantified. Over 50 of the same Kme sites were quantified in both experiments. While this 

constitutes only a 30% overlap between the two runs, previous work using antibody 

enrichment observed only a 20% overlap between enrichment strategies1. With the ability to 

quantify Kme sites across multiple samples within a single MS run, we reveal that, similar to 

histone Kme sites, breast cancer cell lines have unique non-histone Kme site profiles. The 

quantified Kme sites are found on proteins involved in processes previously connected to 

regulation by lysine methylation, including scaffolding proteins and molecules involved in 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2024. ; https://doi.org/10.1101/2024.09.18.613658doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.18.613658
http://creativecommons.org/licenses/by-nc-nd/4.0/


protein folding. Interestingly, there is an enrichment for Kme sites involved in distinct 

processes in the individual cell lines. In conjunction with the observed KDM profile, this 

suggests cell-type specific lysine methylation signaling networks.  

  Given the ability to profile both KDMs and Kme sites across four lines, we also show 

that the abundance of different KDMs negatively correlates with different Kme sites. While 

more work needs to be done to delineate whether these are putative substrates, using this 

platform in various cell lines and with various conditions, including drug treatments, can aid in 

connecting lysine methylation regulators and their putative non-histone substrates. 

Furthermore, this workflow can be applied to observe Kme site abundance changes and 

potential compensatory mechanisms upon genetic manipulation or inhibition of specific lysine 

methylation mediators.  
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