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Abstract 

Purpose:  In this work, we address image segmentation in the scope of dosimetry using deep learning and make 
three main contributions: (a) to extend and optimize the architecture of an existing convolutional neural network 
(CNN) in order to obtain a fast, robust and accurate computed tomography (CT)-based organ segmentation method 
for kidneys and livers; (b) to train the CNN with an inhomogeneous set of CT scans and validate the CNN for daily 
dosimetry; and (c) to evaluate dosimetry results obtained using automated organ segmentation in comparison with 
manual segmentation done by two independent experts.

Methods:  We adapted a performant deep learning approach using CT-images to delineate organ boundaries with 
sufficiently high accuracy and adequate processing time. The segmented organs were consequently used as binary 
masks for further convolution with a point spread function to retrieve the activity values from quantitatively recon‑
structed SPECT images for “volumetric”/3D dosimetry. The resulting activities were used to perform dosimetry calcula‑
tions with the kidneys as source organs.

Results:  The computational expense of the algorithm was sufficient for clinical daily routine, required minimum pre-
processing and performed with acceptable accuracy a Dice coefficient of 93% for liver segmentation and of 94% for 
kidney segmentation, respectively. In addition, kidney self-absorbed doses calculated using automated segmentation 
differed by 7% from dosimetry performed by two medical physicists in 8 patients.

Conclusion:  The proposed approach may accelerate volumetric dosimetry of kidneys in molecular radiotherapy with 
177Lu-labelled radiopharmaceuticals such as 177Lu-DOTATOC. However, even though a fully automated segmenta‑
tion methodology based on CT images accelerates organ segmentation and performs with high accuracy, it does 
not remove the need for supervision and corrections by experts, mostly due to misalignments in the co-registration 
between SPECT and CT images.
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Introduction
The molecular radiotherapy (MRT) using tumour-target-
ing peptide pharmacophores, labelled with radioisotopes 
such as Lu-177 or Y-90, is increasingly used for treatment 
of targetable cancers such as neuroendocrine tumours 
(NETs) [1–3], or prostate cancer [4]. MRT has the advan-
tage of offering more personalized cancer treatment as 
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radiopeptides can be designed to the molecular charac-
teristics of a tumour and deliver defined radiation doses 
to a specific targets. To optimize treatment, i.e. in order 
to safely administer MRT agents, various dosimetry 
methodologies have been developed to estimate and cal-
culate the radiation doses delivered to various organs.

Medical Internal Radiation Dose (MIRD) is a com-
monly used method which determines the cumulative 
activity of organs of interest through various compart-
ment models and the absorbed dose, estimated the s-val-
ues of phantom-based models [5]. The phantom-based 
dose estimators, however, lack [6] the specific patient 
and uptake geometry as the organs are standardized and 
a homogeneous activity distribution within each organ 
is assumed. To overcome these limitations, different 
patient-specific dosimetry methods have been adapted 
where the radiation dose is calculated on a voxel-by-voxel 
basis taking into consideration the individual organ shape 
and activity uptake.

Hybrid, also referred to as 2.5-dimensional (2.5D) 
dosimetry [7, 8], uses a series of planar (2D) images to 
generate time activity curves (TACs) for each organ of 
interest, which are subsequently calibrated by organ 
using the 3D effect factor from a single quantitative 
SPECT/CT scan. In 3D dosimetry, organ TAC is deter-
mined based on quantitatively reconstructed SPECT/
CT series [9] using data from delineated organs obtained 
from multiple quantitative SPECT/CT time points. In a 
final step, the delivered dose is calculated by convolution 
of voxel-per-voxel cumulative activity of each organ with 
an energy deposition kernel (Voxel S) [10].

As described above, both 2.5D and 3D methodologies 
rely on delineated organs of interest. Therefore, the final 
estimated radiation dose deposited depends on the accu-
racy of the 3D organ delineation. One proposed way to 
obtain accurate organ boundaries is to perform segmen-
tation on CT images. The resulting mask can further be 
applied to the corresponding SPECT data for activity 
extraction. Furthermore, to compensate the SPECT mask 
for the lower spatial resolution and partial volume effect, 
one adapted method has been to convolve the CT mask 
with a point spread function, prior to its application to 
the SPECT data.

Developing methods to segment organs from CT 
images remains a significant challenge [11]. Today, seg-
mentation of anatomical images is still either done manu-
ally or or semi-automated [12] which is time-consuming, 
error-prone, operator-dependent and requires significant 
human expertise. The manual segmentation of a single 
organ is typically performed slice-by-slice using either an 
available free-hand contouring tool or an interactive seg-
mentation method guiding the operator during the pro-
cess [13].

Kidneys are typical organs of interest in MRT, and rela-
tively easy to visually identify on CT scans, even without 
intravenous contrast [14]. Despite their visibility, kidney 
segmentation still remains a tedious procedure. Sharma 
et al. [15] estimated a duration of 30 min for an expert to 
segment one kidney.

Liver segmentation is an even more challenging task. 
Livers are large, inhomogeneous and vary considerably 
from one patient to another [16]. Standard CT-scans 
of livers suffer from blurry edges, due to partial volume 
effects and motion artifacts induced by breathing and 
heart beats, increasing the level of complexity during 
delineation. Manual or semi-automated segmentation of 
the liver require on average 60 to 120 min from a clinical 
CT scan with a slice thicknesses of 2 to 5 mm [17].

With the development of artificial intelligence (AI), var-
ious deep learning algorithms have been introduced that 
can fully or semi-automatically segment livers and kid-
neys with sufficiently high accuracy [18] but with consid-
erably less human interaction and effort. The most potent 
and accurate of these algorithms operate in 3D, making 
them computationally expensive and therefore unsuitable 
for daily routine practice. Furthermore, it is still unclear 
to what extent delineation errors and discrepancies from 
manual segmentation are transferred to dose calculation 
and consequently impact the calculated absorbed radia-
tion dose to organs.

In this paper we introduce a light-weight, yet robust 
and automated liver and kidney segmentation methodol-
ogy based on the Mask-rcnn algorithm [19] that can be 
adapted to clinical routine practice, and does not require 
any dedicated hardware. We further analyse and discuss 
the impact of method-related error on final absorbed 
dose estimates to the kidneys, using Lu-177 DOTATOC 
treatment as an example.

Materials and methods
In this section, we address datasets, the algorithm, data 
processing and training of the algorithm in details.

Datasets
The CNN used in this work was trained and evaluated 
using databases as per the following: dataset 1, 2 and 3 
were consisting of CT data obtained from various sources 
used individuality to train, evaluate and test the network. 
Dataset 4 consisted of SPECT/CT images intended for 
dosimetry evaluation.

Liver: dataset 1
Dataset 1 consisted of 170 abdominal CT scans from 
a liver CT-image repository, the LiTS dataset (Liver 
Tumour Segmentation Challenge) [20]. The image data 
was acquired with different acquisition protocols, CT 
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scanners and highly variable resolution and image qual-
ity. The dataset was originally acquired by seven hospitals 
and research institutions and manually reviewed by three 
independent radiologists. The CT images had large vari-
ations in the in-plane resolution (0.55–1.0 mm) and slice 
spacing (0.45–6.0  mm). CT scans included a variety of 
pre- and post-therapy images [21].

Kidney: dataset 2
Dataset 2 consisted of multi-phase CT scans with in-
plane resolution and slice thickness ranging from 0.437 
to 1.04 mm and from 0.5 to 5.0 mm, respectively (KiTS19 
Challenge database [22]). This dataset included 200 CT 
scans of patients with kidney tumours (87 female, 123 
male). The dataset provided ground truth with different 
masks for tumour and healthy kidney tissue. During the 
training, we considered the tumour mask as part of the 
kidney. A detailed description of the ground truth seg-
mentation strategy is described by Santini et. al. [23].

Kidney: dataset 3
Dataset 3 consisted of 12 patients with 12 contrast-
enhanced CT scans and 48 low-dose abdominal CT 
scans. The image data was acquired with different acqui-
sition protocols, CT scanners and highly variable reso-
lution and image quality. The dataset was originally 
acquired by six hospitals in 5 different countries under-
going organ dosimetry in the context of a clinical trial 
(internal). The CT scans varied in in-plane resolution 
from 0.45 to 0.9 mm and slice spacing from 0.8 to 4.0 
mm, respectively. The organ segmentation was done by a 
single medical physicist and confirmed by a certified radi-
ologist. One major difference in comparison with dataset 
2 was that dataset 3 did not include the renal pelvis, renal 
artery and renal vein as part of the kidney segmentation 
in contrast-enhanced CT and low-dose CT images.

SPECT/CT: dataset 4
Dataset 4 was used to evaluate the impact of automated 
segmentation on dosimetry outcome. The dataset con-
sisted of images from 8 patients with neuroendocrine 
tumours treated with 1 cycle of 177Lu-DOTATOC 
(7.5 GBq/cycle) undergoing kidney dosimetry in the 
context of a clinical study (internal). Abdominal con-
trast-enhanced CT scans were used to determine the 
volume of both kidneys. Four (4) abdominal SPECT/
CT scans with in-plane SPECT image size of 256× 256 
and Low-Dose CT (LDCT) scans with an in-plane size 
of 512× 512 were acquired at 0.5 h, 6 h, 24 h, 72 h post 
injection (p.i.). Co-registration between the LDCT scans 
and the SPECT scans was verified by two separate medi-
cal imaging experts, and the images were further coregis-
tered manually when needed.

Segmentation
The CNN used in paper was a modified deep learn-
ing model inspired by Mask-rcnn [19] and operated in 
2.5-dimensional (2.5D) mode. In 2.5D mode, a number 
of adjacent 2D axial slices, where the main slice is in the 
middle channel, are used as one input. The modified net-
work algorithm operates in two steps. In the first step, the 
network proposes multiple Regions of Interests (RoIs) 
where the RoIs are given a score and are classified in a 
binary manner. In the second step, the positively classi-
fied RoIs, i.e. the RoIs that contain objects of interest are 
fine-tuned to better include the area where the object of 
interest is located. The objects of interest within the RoIs 
are multi-classified and binary-masked. The algorithm is 
further explained in the following section.

Algorithm design
The Mask-rcnn structure is illustrated in Fig.  1 derived 
from Faster r-cnn [24]. The structure of Mask-rcnn con-
sists of two stages: in the first stage, proposed regions 
where an object of interest might be located are boxed 
and binary-classified (i.e. if a box contains an object or 
not). In this stage, a process called non-maximal suppres-
sion binary-labels the boxes with the highest Intersec-
tion-over-Union (IoU) overlap with a ground-truth for 
further preparation of the training dataset. The training 
dataset, i.e. labelled boxes are then fed into a Regional 
Proposal Network (RPN) for training. The RPN is a 
method using CNN that scans features detected by back-
bone (the main structure of the network) referred to as 
FPN (Feature Proposal Network, the CNN layers where 
features are extracted). Thus, the RPN learns how to iden-
tify and box interesting objects, RoIs, in the input image. 
In the second step, localization of the RoIs is achieved by 
a mechanism called RoI-Align [19], aligning the extracted 
features with the input after the RoIPool [25]. RoIPool 
spatially normalizes the RoI features regardless of their 
size into a pre-defined space, e.g. 7× 7.

In the inference mode, an algorithm trained through 
these steps can predict the bounding boxes, the seg-
mented object as binary mask, the regression score as 
confidentiality score, and the classification. Further 
details of the algorithm are explained in “Appendix A.1”.

Quantitative evaluation of the segmentation process 
described was assessed by the Dice Score Coefficient 
(DSC). The proposed network was evaluated in two dif-
ferent modes. In the first mode, the images in the axial 
plane were fed as input to the algorithm and the accu-
racy was calculated as the global mean DSC for all cor-
responding slices. In the second mode, images in axial, 
sagittal and coronal planes were fed separately to perform 
segmentation prediction individually prior to a pixel-wise 
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consensus procedure. Further details of the method are 
explained in “Appendix A.2”.

The major modifications in the Mask-rcnn struc-
ture were as follows: (I). we changed the input from 2D 
to 2.5D; (II); we increased the size of RoI-pooling from 
7× 7 [27, 24] to 28× 28 ; (III); we decreased the binary 
mask size to 256× 256 from original ground truth size 
512× 512 . (II) was done to increase the precision of the 
error calculation in the first step of the network training 
at the expense of the memory consumption, and (III) was 
done to decrease memory consumption at the expense 
of lower precision for the error calculation in the sec-
ond step of the network training. (IV) we did not use P1 
and C1 for RPN, as we were aware that a kidney or a liver 
would not cover the whole field of view of a CT slice. All 

the modifications empirically showed 20% decrease in 
memory consumption but 4 times reduction in speed for 
the specifications required in this task. The evaluation of 
the network without the modifications for liver segmen-
tation resulted in an average 15% lower test accuracy.

Pre and post processing
Despite the fact that different Hounsfield Unit (HU) val-
ues characterize different organs [28], these values often 
overlap for soft tissues, making the threshold-based dis-
crimination of tissues or organs difficult [29]. To avoid 
the thresholding problem, the CT images were windowed 
by applying a threshold between [−100, 200] HU. This 
thresholding was the only pre-processing performed on 
the datasets.

Fig. 1  Mask-rcnn structure consists of two stages. The object of interest in the input image is artificially wrapped into boxes, binary-classified 
and fine-tuned. These boxes are then fed into the second stage of the network to be further fine-tuned to better fit the area where the object 
is located and multi-classified. Pixels inside the best box are then binary-classified to generate the mask. In this image, RPN stands for regional 
proposal network, FPN stands for feature pyramid network, RoI for region of interest and ALIGN is the RoI-Align mechanism. The head section is 
where 3 separate networks (two FCs, i.e. fully connected neural network and one CNN) generate the output. The rectangular boxes connected to 
the RPN box and Heads box indicate the type of loss functions. C and P represent the CNN layers used to construct the bottom-up and top-down 
architecture of the FPN respectively [26]
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In the mode where no consensus process is applied 
(refer to “Appendix A.2”) the algorithm failed to generate 
masks on LDCTs in an average of 2% of the total num-
ber of single slices for each patient in validation and test 
datasets. By visual inspection of such slices, we observed 
that for liver, the delineation failed with higher probabil-
ity where liver and heart were in the same plane. In kid-
ney segmentation, the failure was not generalizable. In 
those cases, the missing masks were approximated by lin-
ear interpolation of the masks of the adjacent 2D-slices. 
Finally, in the inference mode where the test accuracy 
was calculated, the binary masks were resized using lin-
ear interpolation to the original size of the ground truth, 
i.e. from 256× 256 to 512× 512.

Algorithm training
The network was initially trained on a subset of images 
obtained from imageNet dataset (approx. 1 million non-
medical images gathered for computer vision research 
and 1000 classes) [30] for 100 epochs (i.e. when the 
algorithm has trained on all the images/samples in the 
dataset) in order to train the backbone with the aim of 
learning the low semantic features. The trained algorithm 
(transfer learning [31, 32]) was further trained, evalu-
ated and tested on each of the datasets 1–3 as described 
below. Dataset 4 was reserved for dose calculations and 
was not used during any training or testing. Furthermore, 
to enable the network for consensus mode, after the 
transfer learning process, the network was trained in all 
the 3 orthogonal planes simultaneously after the transfer 
learning process.

Training for the liver segmentation with dataset 1 was 
initially performed for 50 epochs by freezing (no train-
ing) the backbone and training the heads only with a 
learning rate ( α ) of 0.001. This was done because we 
had only two classes in our task instead of 1000 used 
for imageNet training. It was followed by training the 
full network (backbone and heads) for 150 epochs with 
α = 0.0001 . Dataset 1 was used for the training, evalu-
ation and test datasets with the ratio of 70/10/20 % for 
liver segmentation.

Training for kidneys was done in two stages. In the 
first stage, the network was trained for 50 epochs using 
dataset 2 by training the heads (freezing the backbone) 
with a learning rate α = 0.001 . The training was then 
continued with 100 epochs using the full network with 
α = 0.0001 . Up to this stage, 60% of the dataset 2 was 
used for training, 20% for validation and 20% for test. In 
the second stage, using dataset 3, to fine-tune the net-
work, i.e. with the purpose of teaching the network to 
exclude renal pelvis, renal artery and renal vein from 
segmentation, the heads were trained for 50 epochs on 
10 CTs and evaluated on another 10 CTs each including 

2 contrast-enhanced and 8 low-dose CTs belonging to 
2 patients. After the full training, 40 CTs (8 patients) 
in dataset 3 were used for the calculation of the test 
accuracy.

Training time per epoch with a batch size of 2 was 
approximately 20 min using two Nvidia Titan XP GPUs. 
Furthermore, the network was trained, evaluated and 
tested 5 times (K-fold) [33], with random selection of 
the patients for training, validation and test subsets.

Dosimetry
Dosimetric evaluations were performed using QDOSE 
®software suite (ABX-CRO advanced pharmaceutical 
services, Germany). During the evaluations, Dose Vol-
ume Histograms (DVHs) of each kidney [34] were used 
as main measure to summarize the 3D absorbed dose 
distributions and to compare dose calculations between 
the algorithm and the calculations performed by the 
human experts.

The medical physicists, using dataset 4, applied the 
following procedure for safety dosimetry of the kid-
neys: the organ volumes were first determined by seg-
menting left and right kidneys, supervised using one of 
the manually or semi-automatic methods available in 
the software from the diagnostic CT scans. The delin-
eated organs were then further used to calculate the 
masses of the kidneys assuming a density of 1.06 g/
cc. The diagnostic CT scans were taken prior to the 
intravenous injection of 177Lu-DOTATOC. The activ-
ity concentrations in the kidneys at each time point 
post injection were then determined from the quanti-
tative coregistered SPECT/CT images, where the kid-
neys were first delineated on the low-dose CT and then 
convolved with a point-spread function (Gaussian with 
sigma of 3mm ) for border extension. The same proce-
dure was used for the evaluation of the automated seg-
mentation with the network.

During volume determination of kidneys, the medical 
physicists segmented the renal parenchyma, representing 
the kidneys’ functional tissue, excluding the renal artery, 
renal vein and renal pelvis from the contrast-enhanced 
CT scans. For organ activity determination, the high 
activity concentration (renal) filtrate (i.e. urine containing 
the radiopharmaceutical/radioactive metabolites filtrated 
by the kidneys) was excluded when clearly discernible. 
The experts usually excluded the pelvis only at the first 
time point (0.5 h p.i.) when there was a high activity con-
centration in the filtrate.

Two independent experts performed the dosimetry 
calculations. Calculations for 5 patients were performed 
by expert 1 while the dose calculations for the other 3 
patients (patient 5, 6 and 8) were performed by expert 2.
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Dosimetry by expert 1
Expert 1 used the segmentation on the LDCT includ-
ing border extension to obtain activity values from the 
corresponding SPECT images. The segmentation in the 
SPECT images was manually adapted (when needed) to 
avoid the inclusion of activity from other organs with 
high uptake (such as the spleen for some patients) or 
from tumour lesions (mostly hepatic lesions). This meth-
odology was used on 5 patients as shown in the Tables 3 
and 4. To be able to use this methodology, each SPECT 
and CT couple had to be coregistered to avoid mismatch 
between the images due to motion and breathing. The 
activity values obtained from the SPECT scans, 4 sets per 
patient, were fitted to a bi-exponential curve and inte-
grated to calculate the time activity curve and the cumu-
lated activity.

Dosimetry by expert 2
Expert 1 and expert 2 calculated the mass on the diag-
nostic CT images in the same manner. However, for the 
activity retrieval, expert 2 segmented the kidney VoIs 
directly on the SPECT by applying a threshold-based seg-
mentation followed by manual correction when needed. 
Hence, expert 2 removed the necessity of co-registration 
between SPECT and CT for the 4 time points and pro-
vided a better consideration of the spill-out effect. The 
LDCTs were only used for verification purposes.

Dose estimation using AI segmentation
Kidneys were segmented by the network in the diagnostic 
CT to determine the masses for all 4 low-dose CT scans 
on dataset 4 using the network. The masks obtained from 
LDCTs were expanded by 3mm as explained previously 
and imported to QDOSE ®for dose calculations.

Dosimetric procedures to determine the cumula-
tive activity values were identical as the methods used 
by expert 1 in “Dosimetry by expert 1” section, with the 
exception that the SPECT images were not adopted in 
order to avoid the inclusion of activity from other organs 
with high uptake.

Results
Segmentation accuracy expressed as Dice score coeffi-
cient for segmented livers (using dataset 1) and kidneys 
(using dataset 2) is shown in Tables 1 and 2 in compari-
son with other top performing methods reported in the 
literature. An example of a segmented left kidney, using 
dataset 4, for both contrast-enhanced and low-dose CT 
images is shown in Fig.  2. The global Dice-coefficient 
accuracy obtained for the segmented livers was 93.40. 
The kidney accuracies for the first stage (dataset 2) were 
94.10 and 94.60 for the second stage (dataset 3). The 

values reported are for the average of fivefold cross vali-
dations of the datasets. The accuracy achieved in the 
consensus mode shows an increase of up to 1.5% in Dice 
score at the expense of independently running the net-
work 3 times, thus triplication of the computational cost. 
In addition, the training without the transfer learning on 
ImageNet dataset provided on average 8% and 6% drops 
in accuracy on the test data for the liver and kidney, 
respectively, due to early over-fitting [35].

The average CPU time required to segment each of 
the 2.5D slices with the proposed algorithm on a 1.7 
GHz Intel Core i7 was 2.5  s. The average time required 
to segment an entire liver as well as both kidneys using a 
standard gaming GPU (Nvidia GTx 1070) was less than 3 
seconds.

A comparison of kidney masses using automated seg-
mentation, as determined versus those reported by 
experts (as ground truth) based on contrast-enhanced 
CT images from 8 patients (dataset 4), is shown in 
Table 3. The mean absorbed doses in the kidneys (mean 
dose to all voxels in the SPECT kidney masks) are shown 
in Table 4 for the same dataset and patients.

The differences in the mass calculations between AI 
and the experts for both kidneys in the patients 1 and 4 

Table 1  Liver segmentation accuracy

The accuracy reported is an average of 5 runs. The LiTS dataset, used for the 
calculations using the reported method, provides independent masks for the 
hepatic tumours. In our implementation, we combined the tumour masks and 
the liver masks to determine the total liver masks

DL, deep learning algorithm; non-DL, other methods

Method Dice 
coefficient%

Tumour% Method Dataset

[36] 96.30 65.70 DL 1

[37] 95.90 50.01 DL 1

[38] 95.57 59.36 DL 1

[39] 94.30 72.00 DL 1

[40] 86.00 – Non-DL Internal

Our 93.40 – DL 1

Table 2  Kidney segmentation accuracy comparison on KiTS19 
dataset

The reported accuracy is an average of 5 independent runs. The KiTS19 dataset 
provides independent masks for the kidney tumours. In our implementation, 
we combined the tumour masks and the kidney masks to determine the total 
kidney masks

DL, deep learning algorithm; non-DL, other methods

Method Dice 
coefficient%

Tumour % Method Dataset

[23] 98.00 73.00 DL 2

[41] 88.00 – Non-DL Internal

Our 94.10 – DL 2
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Table 3  Calculated left and right kidney masses (g) based on AI (labelled with “AI”) and experts (labelled with “Ex”) segmentation on 
dataset 4

The relative differences (labelled with “Di”), for left, right and average are shown in the last 3 rows. The segmentation is done on the contrast-enhanced CT taken prior 
to the radiopharmaceutical administration

(-) and * represent mass underestimation by the AI and lack of organ in the patient, respectively

Mass/Patient 1 2 3 4 5 6 7 8 Avg.

L Kid Ex(g) 148 102 254 147 99 142 107 184

R Kid Ex(g) 148 166 * 160 122 127 90 178

L Kid AI(g) 169 93 243 125 95 138 102 188

R Kid AI(g) 166 184 * 137 124 104 90 170

L Kid Di(%) 14 (-) 9 (-) 4 (-)15 (-) 4 (-) 3 (-) 5 2

R Kid Di(%) 12 11 * (-)14 2 (-)18 0 (-) 4

Mean Di(%) 13 10 4 14.5 3 10.5 2.5 3 7.5

Table 4  The calculated mean absorbed dose (Gy) deposited to the left and right kidneys resulted from application of the AI 
segmentation (labelled with “AI”) and the dose calculations performed by the experts (labelled with “Ex”)

The relative differences (labelled with “Di”), for left, right and average are shown in the last 3 rows. (-) and * represent mass underestimation by the AI and lack of organ 
in the patient, respectively

Dose/Patient 1 2 3 4 5 6 7 8 Avg.

L Kid Ex(Gy) 1.79 1.72 1.89 1.77 2.83 3.49 2.19 2.00

R Kid Ex(Gy) 1.61 1.50 * 1.57 2.52 3.39 2.66 2.01

L Kid AI(Gy) 1.77 1.56 1.85 1.82 2.82 3.34 1.74 2.16

R Kid AI(Gy) 1.55 1.42 * 1.73 2.54 3.56 1.87 2.08

L Kid Di(%) (-) 1 (-) 9 (-) 2 3 0 (-) 4 (-)20 8

R Kid Di(%) (-) 4 (-) 5 * 10 1 5 (-)30 3

Mean. Di(%) 2.5 7 2 6.5 0.5 4.5 25 5.5 6.7

Fig. 2  Segmented left kidney along axial, sagittal and coronal axis using the AI . The segmentation boundaries are highlighted with red contour on 
a contrast-enhanced CT on the left-hand side and on a low-dose CT on the right-hand side. The red rectangle corresponds to the bounding box 
used in kidney detection by the algorithm and the yellow contour is the 3 mm expanded region for activity retrieval from the SPECT images based 
on the CT-segmentation
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were higher than 12% . Thus, it was important to observe 
how these differences would impact the final calculation 
of the kidney doses.

The kidney doses are shown in Table 4. It can be seen 
that the AI method in patient 1 differed from the ground 
truth by underestimating the dose calculation by 2.5% . 
Similarly, there was an overestimation of 6.5% for patient 
4. In contrast, for patient 7, there was a mass underesti-
mation of 2.5% while the kidney dose was underestimated 
by 25% , which triggered additional analysis (“Discussion” 
section).

The SPECT/CT fused images for the 4 time points for 
patient 7 comparing the AI-based segmentation with the 
segmentation performed by expert 2 is shown in Fig. 3. 
The red contour in the Figure corresponds to the VoI 
segmentation using the CT image and the yellow corre-
sponds to SPECT being used for segmentation.

Discussion
Using AI-based segmentation for organ delineation in 
volumetric dosimetry can be a cost-effective and pow-
erful tool for personalized dosimetry, accelerating the 
dosimetry process from hours to minutes. The accuracy 
of the two-stage AI algorithm used in this paper is com-
parable with state-of-the-art algorithms as it was origi-
nally designed to perform instance segmentation in real 
time. Additionally, it can be run on a single-CPU laptop, 
with reasonable performance, as it is computationally 
cheaper. Another benefit of the two-stage structure pre-
sented here is the elimination of the spatial normalization 
of CT data, which is the normal practice for training deep 
learning algorithms, making the presented method more 
robust and scanner-independent. Training using 5 loss 
functions (“Appendix A.3”) makes the network slower 
during the training but faster during the inference mode 
which is beneficial during for daily practice. By simulta-
neously training the algorithm in the 3 orthogonal planes, 
the run time is threefold, but it allows the network to run 
in consensus mode which increases the robustness of 
the algorithm. In comparison, fully 3D structured CNNs 
such as [42, 43] can better leverage the spatial informa-
tion along the third dimension and result in higher accu-
racy, but they introduce higher computational expense. 
The computational expenses however might not be an 
issue in the near future.

The kidney doses when using DL-organ segmentation 
AI differ from the dose calculations performed by the 
expert by < 3% for ≈ 40% of the patients, and by ≤ 7% 
for ≈ 90% of the patients. However, a deviation of 25% 
for patient 7 was observed between two methods that 
required further analysis.

Further investigation of the deviating case (patient 
7) revealed that the retrieved activities at time point 2 
(Fig. 3d) time point 3 (Fig. 3f ) and time point 4 (Fig. 3g) 
were considerably different. The discrepancy was due to 
the differences in the segmentation procedure between 
expert 2 and the AI-based method for that specific 
patient; while expert 2 considered a larger spill out effect 
than the estimated 3mm, the AI-based method strictly 
used 3mm as spill-out boundary on all CT-derived 
contours.

Furthermore, by investigating the Dose Volume Histo-
grams (DVH) shown in Fig. 4, DVH, it can be seen that 
the DVH-70 and DVH-30, for the right kidney, were 1.6 
and 2.1Gy, respectively, when using AI while the corre-
sponding values when experts performed the segmen-
tation were 2.2 and 3.1Gy. In addition, the decent of 
the slope for the AI method is steeper. For the left kid-
ney, the decent of the slope is more similar between the 
two methods (Fig.  4a). The corresponding DVH-70 and 
DVH-30 for the left kidney were 1.4 and 2.0 Gy for the 
AI method while for the expert, these values were 1.8 
and 2.5 Gy. The differences between the expert and the 
AI could be explained by inter-variability between the 
experts and misalignment between SPECT and LDCT 
due to motion.

To further investigate the misalignment, a spill out 
margin of 6mm was applied when using the AI-based 
segmentation method. The results obtained were a mean 
dose of 2.13 Gy for the left kidney and 2.37 Gy for the 
right kidney, respectively, i.e. 2.73% and 10.90% (average 
6.8% ) underestimation for the left- and right kidneys, 
respectively, which is more consistent with the remaining 
of results reported in table 4.

Although the main limitation of this study is the small 
number of patients in dataset 4, the obtained results are 
promising and indicate that automated segmentation may 
be successfully used for kidney delineation in daily dosim-
etry practice for patients undergoing MRT procedures with 
potentially nephrotox 177Lu-labelled radio-peptide thera-
peutic. Precise co-registration of SPECT images with their 

(See figure on next page.)
Fig. 3  Comparison of the VoI segmentation of the right kidney of patient 7 based on the two different methodologies. Left: segmentation 
performed by expert 2. Right: segmentation when using the AI. The red contours illustrate segmentation on CT while the yellow contours show 
activity segmentation. Underestimated activity areas by the AI algorithm are pointed by a yellow arrow and overestimated activity areas by a white 
arrow
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corresponding LDCT images is required for accurate activ-
ity extraction to minimize the impact of motion artifacts.

Conclusion
We adapted a performant deep learning approach, ini-
tially designed for natural image segmentation, to be 
used on contrast-enhanced and low-dose CT images to 
calculate organ boundaries with acceptable accuracy 
and processing time. The collaboration of 5 loss func-
tions executed in a two-stage network accelerated the 
processing time required and eliminated the need of pre-
processing CT scans. The 2.5D algorithm implemented 
provides a fast and memory-efficient segmentation 
method and the additional voxel-based consensus algo-
rithm presented made the model more robust and less 
error prone providing comparable results to more com-
putationally expensive state-of-the-art 3D DL algorithms.

Our evaluation shows that the proposed approach is a 
promising method that may accelerate volumetric dosim-
etry of kidneys in patients undergoing MRT with renally 
excreted radio-peptides labelled with 177Lutetium. 
However, even though a fully automated segmentation 
methodology based on the CT-images only accelerates 
the organ segmentation burden, it does not fully remove 
the need for the supervised corrections as explained. A 
suggestion to overcome this limitation is to use the func-
tional information (i.e. corresponding SPECT data) as 
complementary information during the training of the 
algorithm. This additional input could be incorporated to 
the AI algorithm as an extra channel of our 2.5D input 
image.

Appendix

A Algorithm
In the following sections, the algorithm is described in 
more details.

A.1 Algorithm design
The Mask-rcnn derives from Faster r-cnn [24] and 
detects different objects in an image or a video, and 
also discriminates different instances of the same object 
(instant segmentation). The main differences between 
Faster-rccn and Mask-rcnn are that the latter generates 
a segmentation mask and localizes the mask more pre-
cisely on the input image. The generation of the mask is 
done by an extra branch, i.e. a connected convolutional 
neural network (CNN) which predicts the mask. Better 
localization than Faster r-cnn is achieved by a mecha-
nism called RoI-Align [19] which properly aligns the 
extracted features with the input after the RoIPool [25]. 
Thus, using the image as an input, the algorithm delivers 
the segmentation, bounding boxes (the coordination of 
the RoI in the input image), regression score as confiden-
tiality score, type of prediction (classes) and masks.

The structure of Mask-rcnn consists of two stages, 
shown in the Fig.  1. In the first stage, proposed regions 
where an object of interest might be located are artifi-
cially boxed, binary classified (if a box contains an object 
of not) and fed into the second stage. In the first stage 
these boxes are generated by drawing random rectangular 

Fig. 4  Dose volume histograms of left and right kidneys for patient 7 with the highest error margin. Red lines represent the dose calculations based 
on expert segmentation and the green lines represent the corresponding dose based on the AI segmentation
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shapes referred to as bonding box in the input image. The 
boxes have different aspect ratios and sizes based on the 
concept of Anchor (predefined bounding boxes of a cer-
tain height and width) [24] and are referenced to a point 
in the image e.g. middle coordination. The boxes are then 
filtered through a mechanism called non-maximal sup-
pression. Non-maximal suppression binary-labels the 
boxes with the highest Intersection-over-Union (IoU) 
overlap with a ground-truth, i.e. boxes with IoU overlap 
higher than 0.7 and lesser than 0.3 with any ground-truth 
are binary labelled as 1 and 0, respectively. The rest of 
the bounding boxes are discarded. Boxes are then deliv-
ered into a Regional Proposal Network (RPN) for train-
ing. The RPN is a mechanism implemented using CNNs 
that scans feature maps (CNN filters) in the backbone 
(the main structure of the network) referred to as Fea-
ture Pyramid Network (FPN) [44, 45]. RPN scans the fea-
ture maps based on the size of the boxes, i.e. for bigger 
size boxes representing the bigger objects in the image 
the RPN referees the higher level of the CNN structure 
with higher semantic features (i.e. meaningful, the higher 
CNN layers have higher abstract features) of the feature 
maps, e.g. P5, while for smaller size boxes, the RPN refer-
ees the lower semantic features in the lower layer e.g. P2. 
These two loss functions are labelled as bonding box and 
binary class in Fig. 1 for RPN.

Feature maps scanned by RPN are generated by FPN. 
FPN is the backbone of the Mask-rcnn structure design, 
in our model designed with the ResNet50 model [46]. 
FPN is a CNN structure generating semantic-rich fea-
ture maps with high resolution objects and spatial infor-
mation. C boxes in the Fig.  1 represent the bottom-up 
CNN layers for Resnet, i.e. down-sampling (max-pooling 
and stride of 2) the input while P boxes represent top-
down (up-sampling) CNN layers [26]. Outer layers in the 
FPN such as P2 structure detect low semantic features 
with high resolution such as edges of a kidney while the 
deeper layers, e.g. P5, detect higher semantic features 
with low resolution such as the whole kidney. The top-
down pathway, P2−P5 are enhanced with feature-lateral 
connections from bottom-up pathway, C2−C5 in Fig. 1. 
The lateral connections ( 1× 1 CNN layer) between top-
down and bottom-up are used for better location of the 
features. We did not use P1 and C1 for RPN in our imple-
mentation as with experimentation we found that it slows 
down the inference mode with no increases in the per-
formance. Since the boxes proposed by RPN have differ-
ent scales, they are then scaled equally by a mechanism 
called RoI pooling which uses max pooling. Max pooling 
converts the features inside any valid RoI box into a fixed 
and smaller feature map, a fixed spatial extent embedded 
with float values [24], in our model 28× 28 dimension, 
i.e. regardless of the RoI box size all RoIs are translated 

into the 28× 28 box size. For our implementation this is 
16 times larger than the value proposed in the original 
paper which resulted in better accuracy but highest com-
putational cost based on our evaluation. The fixed scaled 
feature maps generated by RoI pooling are then better 
aligned by an alignment mechanism (ALIGN in Fig.1) 
which is used to re-align the position of a pixel regarding 
the original image. This is done to overcome the problem 
of shifting pixel positions due to frequent down- and up-
scaling of the image executed in the backbone.

In the second stage, classified boxes acquired from 
the first stage are then refined, multi-classified (in our 
implementation binary-classified), binary-masked and 
are given a confidentiality score. That is, the shape of 
each proposed box from the first stage is fine-tuned (re-
shaped) in order to better cover the RoI, multi-classify 
by instance segmentation of different classes and pro-
vide with a value ∈ [0 100]% to represent how “confident” 
the network is about the classification. We set the confi-
dential score to 90% for the final object detection during 
training and testing i.e. any kidney or liver with a lower 
score is discarded. These 3 different tasks are done with 
3 separate Artificial Neural Networks (ANNs) known as 
heads; a CNN structure for mask classification and two 
different FCNN refereed as FC (Fully Connected) for 
regression and multi-classification, shown in Fig.  1 in 
the “Heads” section. Finally, the dimension of the binary 
mask generated by the heads was set to 256× 256 to 
decrease the computation expenses. These masks then 
were linearly interpolated to 512× 512 for the test data-
set in the inference mode.

A.2 Accuracy calculation
Quantitative evaluation of our segmentation algorithm 
was assessed by the Dice Score Coefficient (DSC) shown 
in Eq.  1. The segmentation predicted by the network 
( SPre ) was pixel-wise compared with the ground truth 
segmentation ( SGT ).

Our network operates in two different modes. In the first 
mode, the images in the axial plane can be fed as input to 
the algorithm and the accuracy is calculated as the global 
mean DSC between all the slices. In the second mode, 
images in axial, sagittal and coronal planes are fed sepa-
rately to perform segmentation prediction individually 
and then a pixel-wise (voxel) consensus procedure Eq. 2 
takes place between all 3 predictions to make a 3D mask. 
Thus, if at least two of the predictions are positive for a 

(1)Dice(SPre, SGT) =
2 · (SPre

⋂

SGT)
∣

∣SPre + SGT
∣

∣
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given voxel (1), then the voxel is set to be positive; other-
wise the voxel is set to be negative (0).

In Eq. 2, x, y, z represent a predicted voxel by feeding 
the network along the axial, sagittal and coronal planes, 
respectively. pxyz is the final result after the consensus 
procedure for that specific pixel.

A.3 Loss
The network includes 5 loss functions which are jointly 
trained. Two loss functions are used in the first stage. 
One of them is to be trained with for fitting the rectan-
gular object proposed boxes around the RoI Lbox1 as a 
regression loss function and the second one to binary-
classify Lcls1 the boxes (e.g. kidney or non-kidney as a 
binary classification loss).

In the second stage of the network, there are 3 loss 
functions. The first one is a categorical cross-entropy for 
multi-classification ( Lcls2 ), the second one is a regression 
loss ( Lbox2 ) and the third one is a binary cross-entropy 
loss ( Lmask ) to calculate the binary mask of the target 
organ. The network’s main loss is a multi-task loss calcu-
lated as L = Lcls + Lbox + Lmask.
Lmask is defined as the average Binary Cross-Entropy 

(BCE) loss and generates masks for every class without 
competition between classes on the boxes received from 
the first stage. The bounding loss is Lbox = Lbox1 + Lbox2 , 
and the classification loss is Lcls = Lcls1 + Lcls2.

The classifications loss values Lcls1 and Lcls2 are depend-
ent on the confidence score of the true class, hence the 
classification loss functions reflect how confident the 
model is when predicting the class labels. The bound-
ing box loss values Lbox1 and Lbox2 reflect the distance 
between the true box parameters (height and width) to 
the predicted ones as a regression loss function and the 
mask loss function Lmask , is similar to the classification 
loss function Lcls1 . It is the binary cross-entropy which 
performs the voxel-wise classification of those voxels 
inside the predicted (learned) box by Lbox2.
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