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Abstract

Motivation: Metabolic networks have evolved to reduce the disruption of key metabolic pathways

by the establishment of redundant genes/reactions. Synthetic lethals in metabolic networks pro-

vide a window to study these functional redundancies. While synthetic lethals have been previous-

ly studied in different organisms, there has been no study on how the synthetic lethals are shaped

during adaptation/evolution.

Results: To understand the adaptive functional redundancies that exist in metabolic networks, we

here explore a vast space of ‘random’ metabolic networks evolved on a glucose environment. We

examine essential and synthetic lethal reactions in these random metabolic networks, evaluating

over 39 billion phenotypes using an efficient algorithm previously developed in our lab, Fast-SL.

We establish that nature tends to harbour higher levels of functional redundancies compared with

random networks. We then examined the propensity for different reactions to compensate for one

another and show that certain key metabolic reactions that are necessary for growth in a particular

growth medium show much higher redundancies, and can partner with hundreds of different reac-

tions across the metabolic networks that we studied. We also observe that certain redundancies

are unique to environments while some others are observed in all environments. Interestingly, we

observe that even very diverse reactions, such as those belonging to distant pathways, show syn-

thetic lethality, illustrating the distributed nature of robustness in metabolism. Our study paves the

way for understanding the evolution of redundancy in metabolic networks, and sheds light on the

varied compensation mechanisms that serve to enhance robustness.

Contact: kraman@iitm.ac.in

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biological systems are highly robust against perturbations, which

includes loss of gene function (Wagner, 2005). Robustness against

null mutations in living systems is carried out by many different

mechanisms, one of them being redundancy (Hartman et al., 2001).

Redundant genes or functionally redundant pathways tend to cope

up for any perturbations in the system. Although there exist a few

genes that are indispensable to the survival of the organism, dupli-

cate genes are often retained during evolution in order to combat

mutations (Papp et al., 2004). Some genes might be inactive in cer-

tain environmental conditions but become active in a different con-

dition to compensate. Even though duplicate genes exist, some

alternate metabolic pathways also play a role in establishing robust-

ness (Mahadevan and Lovley, 2008). These perform distinct func-

tional roles and are not redundant in all environmental conditions

(Harrison et al., 2007; Ihmels et al., 2004). Adaptation also facili-

tates the addition of new functional associations, which do not arise

to overcome mutational effects per se but are evolutionary by-

products and later enable robustness against deleterious mutations

(Pál et al., 2005; Wang and Zhang, 2010).

Metabolism forms the core of all cellular processes, building up

components required for the growth and survival of organisms.

Metabolic networks play a key role in synthesizing components ne-

cessary for growth from the nutrients available to the organism.

Perturbations to key enzymatic pathways often abolish growth, thus

causing lethality. A comprehensive understanding of the metabolic

reactions in an organism establishes that some fraction of the reac-

tion functions/pathways is redundant, to enable robustness against

single mutations (Wang and Zhang, 2009). Metabolic networks

are highly robust against perturbations and utilize the backup
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reactions/pathways that exist to compensate any lethal damage to

the organism (Behre et al., 2008).

Synthetic lethality refers to functional associations that exist be-

tween genes/reactions that compensate for one another upon single

gene deletions (Hartman et al., 2001). Synthetic lethals refer to a

pair of reactions that perform distinct functionalities although they

enable organisms to combat lethal perturbations in the system. A

synthetic double lethal (DL), therefore, consists of a pair of reac-

tions, which when deleted individually enable the organism to sur-

vive, but when deleted together results in lethality. Synthetic DLs

enable an organism to survive single mutations/knock-outs, thus

enhancing the robustness of the metabolic networks. In a majority

of the cases, one reaction involves in a key metabolic pathway and

upon deletion of the reaction, fluxes are re-routed through the lethal

pair to enable the growth of the organism (Ghim et al., 2005; Güell

et al., 2014). Synthetic lethals play an important role in providing

backup functions, thus, helps the organism sustain perturbations.

Experimental identification of these synthetic lethals through high-

throughput techniques is still difficult (Kaelin Jr, 2005). Therefore,

many computational methods, based on flux balance analysis

(FBA) (Varma and Palsson, 1994; Kauffman et al., 2003), have been

developed in the past, viz. SL Finder (Suthers et al., 2009),

MCSEnumerator (von Kamp and Klamt, 2014) and Fast-SL

(Pratapa et al., 2015). Of these, Fast-SL, developed previously in our

laboratory, provides a very efficient way to predict synthetic lethals

in a large number of networks, under different growth conditions.

With the above perspective, we aimed to address some of the key

questions: How do metabolic networks evolve to acquire new func-

tional redundancies? How do reactions compensate for one another

under perturbation? Do the redundancies vary based on the environ-

mental conditions? Does evolution retain native functional redun-

dancies? We build on a previously reported methodology to evolve

metabolic networks in silico (Barve and Wagner, 2013) to answer

these questions. We generated 2000 metabolic networks in minimal

glucose environment and identified single lethals and DLs in these

random metabolic networks. We show that across networks, many

reactions compensate for one another under various environmental

conditions. We observed that key functional reactions evolve to ac-

quire new redundancies and that they tend to partner with a higher

number of reactions. We also noticed that real networks possess a

significantly higher number of essential reactions and redundant

reactions when compared with random networks. We further found

that reactions which play very different functional roles can form

redundancies in different environmental conditions. Our results also

suggest that some of the functional redundancies are environment

specific and some compensate for one another in all environmental

conditions. Overall, our approach builds towards a much better

understanding of the evolution of functional redundancies in

metabolism.

2 Methods

2.1 Universe of possible reactions
The ‘universe’ of possible reactions is the set of all the biochemical

reactions that are known to occur in organisms. The reaction uni-

verse was adapted from a previously described, pruned dataset from

Szappanos et al. (2016), which is based on the ModelSEED database

(Henry et al., 2010). This universal set of reactions consists of 5162

reactions, including exchange and transport reactions, comprising

2805 metabolites.

2.2 Flux balance analysis
The cornerstone of our analyses is the ability to predict the growth

phenotype of any given metabolic network. For this, we employ

FBA, which is a widely used constraint-based approach to identify

an optimized flux distribution, for a given metabolic network, based

on maximizing/minimizing a given (linear) objective function

(Varma and Palsson, 1994; Kauffman et al., 2003). FBA solves a lin-

ear programming problem to identify a flux distribution, assuming

that the network is in steady state. The formulation of FBA is as

below:

max cTv s:t: Sv ¼ 0 (1)

where c denotes the objective function, v is the vector of fluxes of all

the biochemical reactions and S corresponds to the stoichiometric

matrix, of dimensions m� r that encodes the stoichiometry of all m

metabolites in r reactions present in the network. FBA is a reliable

method to predict the growth rate of organisms in many conditions

(Blank et al., 2005; Papp et al., 2004; Harrison et al., 2007;

Szappanos et al., 2016) and has been previously used for studying

metabolic network robustness and plasticity (Barve et al., 2012;

Almaas et al., 2005; Barve and Wagner, 2013; Güell et al., 2014).

2.3 Generation of random networks
Random networks were generated using a modification of the previ-

ously devised method developed by Barve and Wagner (2013). The

method uses a Markov-chain Monte Carlo (MCMC) approach to

swap a random reaction from a known genome-scale metabolic net-

work with a randomly selected reaction from the universe. At each

random swap, an FBA was performed to evaluate the growth of the

generated network on a given carbon source. The threshold for iden-

tifying growth on a particular carbon source was set to 5% of the

wild-type flux, i.e. the biomass flux of E.coli in that particular car-

bon source. We generated 2000 such random networks starting

from the E.coli iAF1260 metabolic network (1983 reactions þ 303

exchange reactions), with each random network produced as a re-

sult of 5000 such reaction swaps. For each of the random networks,

a genotype vector was obtained, which denotes the presence/absence

of reactions from the universe. Each of our random networks

includes all 553 exchange reactions from the universe, resulting in

metabolic networks each having 2536 reactions.

2.4 Growth in different environments
We analysed synthetic lethals and the growth capabilities of the

metabolic networks in a set of ten environments, a subset of the fifty

environments reported earlier (Barve and Wagner, 2013). These are

minimal growth environments that contain oxygen, ammonium, in-

organic phosphate, sulphate, sodium, potassium, cobalt, iron, pro-

tons, water, molybdate, copper, calcium, chloride, magnesium,

manganese and zinc along with a sole carbon source that differs for

each environment considered. We considered the 10 different car-

bon sources based on their biochemical diversity; these included

pyruvate (Pyr), D-glucose (Glu), acetate (Ace), D-fructose (Fru),

D-galactose (Gal), D-xylose (Xyl), lactose (Lac), inosine (Ino),

D-sorbitol (Sor), trehalose (Tre). The random networks generated

were analysed for growth in each of the above ten environments

using FBA, and a phenotype vector (of length 10) was formed for

each of the random networks. The phenotype vector is a bit vector

indicating the growth (‘1’)/no growth (‘0’) phenotype of each of the

random networks in the ten different environments considered.
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2.5 Identification of synthetic lethals
Synthetic lethals in the metabolic networks were identified using

Fast-SL (Pratapa et al., 2015). Fast-SL rapidly and efficiently identi-

fies synthetic lethals by pruning the search space followed by a sub-

sequent exhaustive enumeration of all possible combinations in the

pruned space. This enables us to perform synthetic lethality studies

at a scale not possible before. Overall, we studied synthetic

lethals by efficiently evaluating all possible double deletion pheno-

types for 2000 metabolic networks in ten different environments�
1983

2

� �
� 2000� 10 � 39 billion double deletions

�
using Fast-

SL, identifying hundreds of thousands of synthetic lethals. For the

purposes of simulation, we defined lethality as the inability to pro-

duce 1% of wild-type growth rate (biomass flux).

3 Results

We evolved metabolic networks starting from E.coli iAF1260 and

performed exhaustive analyses of the single and DLs in the evolved

networks. We analysed how the redundancies are comparable with

the E.coli network and how they differ in various environmental

conditions. Further, we study how different reactions can form func-

tional redundancies. We also compare the lethals in the universe set

of reactions with those in the random networks.

3.1 E.coli harbours a higher level of redundancy

compared with random networks
Identification of lethals in random networks establishes the essenti-

ality of reactions for the growth of organisms in particular growth

conditions. Identification of reactions that can form DL sets in ran-

dom networks helps to identify the different possible compensation

mechanisms that can occur. In order to figure out the possible single

lethals and DL pairs that could exist in metabolic networks, we

generated 2000 random networks with a constraint for growth on

glucose. For each of the 2000 random networks, single lethals and

DLs were identified using Fast-SL (as described in Section 2).

Single and synthetic DL reactions were identified in all 10 envi-

ronments (Fig. 1). In glucose, the essential reactions in random net-

works varied from 229 to 319. The mean number of single lethals

that existed in random networks was 262, as against 266 lethals in

E.coli iAF1260. Around 20% of the random networks had single

lethals between 260 and 265. The E.coli iAF1260 model contains es-

sential reactions significantly higher than the mean (and median) of

the essential reactions that existed in random networks. Figure 1A

also shows the distribution of single lethals for all the environments

in random networks.

We also analysed the synthetic DLs in random networks and

E.coli (Fig. 1B). As an illustration, in glucose environment, observa-

tions of DLs in random networks showed that there exist networks

which have as low as 48 synthetic DLs. Also, the maximum number

of DLs that we observed in a random network was 294 (in glucose

environment). The mean number of DLs that were identified in the

2000 random networks was 108. Around 17% of the networks had

DLs between 90 and 100. However, the real network, E.coli

iAF1260, contains 126 DLs, higher than the average number of DLs

in random networks. Figure 1B shows the distribution of the DLs

found in all the environments compared with those in E.coli.

Also, the fraction of networks that have single lethals and DLs

less than the real network was computed as in Table 1. The results

show that, in almost all environments, the fraction is greater than

0.5. This suggests that real networks possess a significantly higher

fraction of essential reactions and compensation mechanisms than

random networks.

To find if the real networks had a higher level of redundancy

when compared with random networks, we performed the sign test

to compare the number of lethals in E.coli with those that are pre-

sent in random networks. We found that in the case of single lethals,

eight environments had a P-value < 0.05 (Supplementary Table S1),

indicating that the number of essential reactions in E.coli is signifi-

cantly higher than that in random networks, with exceptions in the

environments acetate and inosine. As in the case of DLs, the sign test

resulted in a P-value < 0.01 (Supplementary Table S1) for nine envi-

ronments, signifying that the real network has more number of re-

dundant reactions when compared with random networks with the

exception being that of lethals in acetate environment. Acetate is an

outlier since we could identify only four networks that could show

growth out of the 2000 random networks generated on glucose

environment.

We further went ahead to identify how many of the DLs in

E.coli exist in random networks. Multiple scenarios are possible:

first, the DL may exist as is in the random network. In this case,
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Fig. 1. Violin plots showing the distribution of (A) single lethals and (B) double lethals, in random networks across 10 different environments. The ‘violins’ illus-

trate the distribution of the lethals in each of the environments. The black band denotes the mean number of lethals in random networks, and the red band

denotes the median. The number of lethals in the E.coli model iAF1260 is indicated by a blue band
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there is no different compensation mechanism that is present (add-

itionally). Second, one of the reactions in the DL may now be singly

lethal, owing to the loss of the partner that could compensate.

Third, the DL may not show up at all, since there is probably a

higher level of redundancy (e.g. a third compensating reaction) that

is now present in the network. Here, we investigated for each of the

DLs in E.coli, in which networks are the lethals present together in

random networks and if present, are they are found as synthetic

lethals. Of the lethals that were present together in random net-

works, 68% of the lethals existed in random networks. The remain-

ing 32% of the DLs were not found as DLs in the random networks,

thus could have been compensated by another reaction forming a

higher order lethal.

Thus, real networks harbour higher redundancies in comparison

with random networks, demonstrating the fact that the real net-

works are not minimal networks, but evolved to be robust, preserv-

ing redundant functions.

3.2 Reactions possess very different functional

redundancies
An interesting aspect of identifying synthetic lethals in random net-

works is that we can find (nearly) all possible functionally redundant

reactions that could exist in metabolic networks. Understanding the

functional redundancies gives insight into the multiple ways organ-

isms exhibit robustness against perturbations. Thus, we aimed to il-

lustrate the existence of multiple synthetic lethal interactions other

than those that are known to exist in nature till date. Through our

extensive analysis of DLs in random networks, we are able to illus-

trate a gamut of possible compensations that can potentially occur

in metabolic networks. We show how a single reaction can ‘partner’

with a very large number of different reactions, compensating for

single reaction deletions.

We analysed the DLs of the networks that were evolved on glu-

cose, for such partners. Of the 4609 reactions in the universe

(excluding the exchange reactions), only 2306 reactions had poten-

tial pairs with other reactions. We define a metric for the number of

partners that exist for a given reaction as ‘Reaction Compensation

Index’ (RCI). Thus, the RCI for a reaction is the number of partners

that this reaction can form a synthetic DL. For instance, an RCI of

200 indicates that the reaction has 200 different partners in DLs,

across the 2000 random networks that we sampled. We identified

the RCI for all the 2306 reactions; Figure 2 shows the histogram of

RCI for all reactions. We find that 82 reactions have an RCI � 100,

12 of which have an RCI exceeding 200. We also observed that

there are 1032 reactions with RCI � 10. The reaction with the

maximum RCI was found to be the formation of ATP from ADP as

below:

ADPc þ Phosphatec þ 4Hþp () ATPc þH2Oc þ 3Hþc

ðc� cytosol; p� periplasmÞ

The above reaction for the formation of ATP, the key energy cur-

rency of the cell, from ADP is a reaction that is absolutely necessary

for the organism. This reaction is catalysed by ATP synthase, a key

enzyme necessary for organisms to synthesize the energy storage

molecule of cells.

Further, we analysed the reactions that compensated for ATP

synthase. Of the 266 reactions, 35 reactions involved ATP

(Supplementary Table S2B), remaining does not involve

ATP (Supplementary Table S2A). When identifying the pathways

these compensatory reactions were present in, we found that most

of the reactions that compensate for ATP synthase belong to the

alternate carbon metabolism, glycolysis/gluconeogenesis, and

nucleotide salvage pathway. The reactions that compensated pre-

dominantly involve pathways whose end products can in a way be

converted to ATP.

Further, we analysed the reactions which had RCI of greater

than 200 (Supplementary Table S3). Of these reactions, most of

them belonged to the central carbon metabolism, and few to the

folate metabolism, methylglyoxal metabolism, and anaplerotic

reactions. A closer study of these reactions revealed that

glyceraldehyde-3-phosphate production produced in two different

reactions one from fructose-6-phosphate and the other from

fructose-1, 6-bisphosphate were among the twelve reactions with

top RCI. The isomerization of glucose-6-phosphate to fructose-6-

phosphate was one among the twelve reactions that had higher com-

pensation mechanisms. Also, the reaction from the citric acid cycle

that involves the inter-conversion of fumarate to malate was among

the top reactions that had maximum RCI. We also found the

reaction involving the conversion of ribulose-5-phosphate to

xylulose-5-phosphate belonging to the pentose phosphate pathway

was one among the reactions with the top RCI.

The above findings suggest that compensation occurs in a range

of ways, thus enabling the network to sustain growth. There exists a

high level of redundancy which further enhances the organisms’ ro-

bustness to perturbations. It has also been established that compen-

sation can occur in different ways and across different reaction

pairs, thus enabling the organism to survive single mutations. Also,

a key interesting finding is that most of the reactions that have very

Table 1. Fraction of random networks with lesser lethals than E.coli in 10 different environments

Growth environments Pyr Glu Ace Fru Gal Xyl Lac Ino Sor Tre

Fraction of random networks having fewer single lethals than E.coli 0.676 0.619 1.000 0.632 0.633 0.627 0.558 0.495 0.635 0.602

Fraction of random networks having fewer double lethals than E.coli 0.985 0.775 1.000 0.879 0.915 0.779 0.817 0.684 0.867 0.832
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Fig. 2. Reaction compensation index of all reactions in glucose environment.

The histogram denotes the distribution of the RCI values of reactions in the

random networks
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high RCI values are absolutely necessary for growth in glucose me-

dium and metabolic networks tend to evolve in a way that has max-

imum compensation for such reactions.

3.3 How do synthetic lethals vary across environments?
Synthetic lethals across environments has been studied previously in

the yeast metabolic network (Harrison et al., 2007). However, a

study of synthetic lethals across random networks in different envi-

ronments helps us to better understand the space of synthetic lethals

and how reactions can compensate for one another. We identified

DLs in all the 2000 random networks that were evolved on glucose

on all 10 different environments under consideration (as described

in Section 2).

Figure 3 shows the distribution of DLs in a given number of envi-

ronments; the DLs are dependent on environments in which the net-

work grows on. There were 163 DLs which were identified in all

environments thus, establishing the fact that there are some synthet-

ic lethals which occur irrespective of the environments the networks

thrive on. A closer look at the DLs in different environments sug-

gests that there exists DLs which are constrained by the environ-

ments the networks grow on. Of the unique DLs that were identified

on the networks evolved on glucose, 8043 DLs were unique to envi-

ronments. This implies that these reaction pairs are present only in

one environment and absent in the other nine environments.

The environmentally independent DLs can be regarded as ‘core’

synthetic lethals which tend to compensate for each other under all

environmental conditions. On the other hand, there exist lethals that

are unique to environments or occur in a few environments that

compensate for each other in only a specific growth medium. This is

in agreement with the published work on synthetic lethals of yeast

on varied environments (Harrison et al., 2007) that establishes two

types of synthetic lethals: environmentally independent and environ-

mentally dependent.

On analysis of the 163 DLs present in all environments, seven of

these reaction lethals were found as lethals in E.coli in all environ-

ments. A surprising finding is that the 163 lethals had reactions non-

native to E.coli acquired from the universe as the networks evolved

and still are also common in all environments. Thus, it illustrates

that metabolic networks could evolve to acquire reactions that can

compensate for the existing reactions in the network under multiple

environmental conditions.

The number of environmentally dependent DLs was identified as

in Table 2. We could observe that inosine medium has the maximum

fraction of DLs specific to its environment. The fraction of lethals

that are environmentally dependent in acetate environment is the

least in comparison to all other environments. This could potentially

be since reactions that involve in the growth on inosine environment

are different from those networks that assimilate the other carbon

sources.

The distribution of synthetic DLs across different environments

begs an interesting question: suppose we were to consider the entire

universe of reactions as a giant metabolic network, how do the char-

acteristics of the lethals change? Thus, we went ahead to analyse the

lethals in the universe of reactions.

3.4 Identification of higher order lethals in the universe
An analysis of essential reactions in a universe of reactions has been

carried out previously (Barve et al., 2012), which illustrates that sin-

gle lethals in the universe are also essential in any (random) network

they are present in. Such reactions were termed superessential,

as they are absolutely required for growth on a particular medium.

We here extended this idea for synthetic lethals to understand if all

the synthetic DLs present in the universe occur in random networks.

We thus identified the DLs in the universe for glucose environment.

We identified 102 lethal pairs in the universe of reactions, on a

glucose environment. These 102 pairs are constituted by 135 reac-

tions. We analysed the number of times each lethal pair in the uni-

verse appears in our random networks. We found that 12 lethal

pairs were present in more than 400 random networks. Around 14

DLs were present in less than 10 networks. The 102 lethal pairs can

be termed ‘universal double lethals’ since they exist as DLs in the

universe, and thus cannot possess further reactions that can compen-

sate for the above reactions.

We then compared the DLs in the universe with those in E.coli.

We envisioned three scenarios: first, if both the reactions that form a

DL in the universe are present together in E.coli, they would remain

a DL. Second, if one of the reactions is blocked, owing to non-

availability of reactants, the other would be a single lethal. Third, if

only one of them is present in E.coli, the reaction would end up as a

single lethal. Of the 102 DLs in the universe, 16 lethals had both

reactions present in E.coli. Of these 16, 12 lethal pairs remained as

lethals in E.coli, while in four of them, one of the reactions in the

pair was singly lethal. In case of the remaining 86 of the DLs from

the universe, only one of the reactions in a lethal pair was present in

E.coli, and the reaction was single lethal in each of the 86 cases. It

would be very interesting to further extend these analyses to all the

random networks studied herein, which might point to other inter-

esting compensatory mechanisms.

We further went ahead to analyse the other DLs that were pre-

sent in the random networks, beyond these 102 DLs, and if it is pos-

sible to use the information on higher order lethals that exist in the

universe to identify some of these DLs. To this end, we enumerated

the triple lethals (TL) in the universe on glucose environment using

Fast-SL, which identified 122 TLs. Given any TL set, the loss of one

of the reactions would make it a DL set. Thus, there are a potential

3

2

� �
� 122 ¼ 366 DL sets that could exist across the random net-

works. Dropping repetitions, we identify that there are 240/366

unique possible DLs. We analysed the overlap of these enumerated

lethals with the DLs in each of the random networks and found that
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Fig. 3. Distribution of DLs across environments. The histogram shows the

number of DLs that are present in a given number of environments. For in-

stance, the first bar shows that a large number of lethals (8043) were unique

to only one environment, while the last bar shows that a small number of

lethals (163) were found in each of the ten environments studied here
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only a fraction of the DLs found in random networks could be found

using the TLs in the universe. This could possibly illustrate that the

additional DLs that exist in random networks are a subset of further

higher order lethals present in the universe.

In summary, the universe tends to have varied compensations,

which may exist as such in random networks or predominantly re-

sult in lower order lethals. The analyses also reveal the layered com-

pensatory mechanisms that exist in different metabolic networks

owing to the different set of reactions present in them. We could

find many DLs in random networks that neither exist as DLs in the

universe nor are a subset of TLs in the universe, thus pointing to-

wards the existence of higher order redundancies in metabolism.

3.5 Random networks illustrate how very diverse

reactions can compensate for one another
Compensatory mechanisms are sometimes very straightforward,

such as producing the same key metabolite. However, there are

instances where the synthetic lethals occur in different pathways,

and their compensatory functions are less understood until explored

thoroughly. To identify such lethals from the random networks that

perform varied functions, we studied some of the lethals identified

(in random networks) for their biological significance.

We observed that some widely different reactions, which belong

to different pathways, exist as synthetic lethal pairs. For example,

the reaction below forms a synthetic lethal pair in random networks

while they are absent in E.coli and the universe of reactions. The

conversion of chorismate to pyruvate and 4-Hydroxybenzoate,

which forms a part of the ubiquinone biosynthesis forms a synthetic

lethal pair with the production of 4-Hydroxymandelate from

p-hydroxyphenylpyruvate, which is involved in the biosynthesis of

antibiotics. When we analysed the enzymes which catalyse these

reactions, we found that the former reaction is catalysed by a lyase

(EC 4.1.3.40) and the latter by oxidoreductase (EC 1.13.11.46).

Another example of a non-intuitive lethal is the conversion of

L-Glutamyl-tRNA from L-Glutamate (ModelSEED: rxn06436) and

the reaction which involves in the inter-conversion of succinyl-CoA

and glycine to aminolevulinate involved in glycine, serine and

threonine metabolism (ModelSEED: rxn00599). The two reactions

are catalysed by different types of enzymes, one by a ligase

(EC 6.1.1.24) and the other by a transferase (EC 2.3.1.37). A few

other examples of such non-intuitive lethals are listed in the

Supplementary Table S4.

Thus, we could identify lethals which are absent in E.coli and

universe set of reactions but constitute a synthetic lethal pair in ran-

dom networks. These included many reactions that perform very di-

verse functions, yet could form a synthetic lethal pair. Our results

pave the way to understand how diverse reactions (or pathways) can

form functionally redundant pairs.

4 Discussion

Redundancy is a common mechanism employed in cells to achieve

robustness. In the context of metabolism, it is interesting to identify

how, under different environmental contexts, very different reac-

tions (or, enzymes) within a cell can compensate for one another.

In this study, we carry out an extensive analysis of metabolic net-

works, to understand how redundancy can exist and evolve in me-

tabolism. Beginning with the metabolic network of E.coli, we

construct 2000 ‘random’ metabolic networks using a previously

established approach (Barve and Wagner, 2013). Each of these

metabolic networks has the same size as E.coli and exhibits growth

on a minimal glucose medium. These random networks essentially

mimic the evolution of E.coli on such an environment. Through a

comprehensive study of synthetic lethals across these 2000 random

networks in 10 different environments, we shed light on how very

diverse reactions (or enzymes) can compensate for one another in

metabolic networks. Our results also point towards deep redun-

dancy in the organization of cellular metabolism.

Firstly, we see that E.coli harbours a significantly higher number

of single lethals and DLs in nearly all of the environments we consid-

ered here. Real networks, thus, are not minimal networks, which

merely comprise the least number of reactions necessary for survival

in the growth medium but have a high level of redundancy. In other

words, the real network tends to retain a larger number of function-

ally redundant reactions in comparison to random networks. This

finding demonstrates that nature preserves redundant functions,

enabling survival even when they are subjected to single mutations.

Next, we studied the number of possible different compensations

that a single reaction can have. We found that around 12 reactions

had an RCI of > 200, showing how a very large number of reactions

can form a synthetic lethal pair with a given reaction. Our results

show that very important essential reactions necessary for growth

on a particular growth medium tend to evolve more functional

redundancies. We also noticed that the key enzyme ATP synthase

exhibited a higher number of lethal pairs (266) indicating the signifi-

cance of the reaction for the survival of organisms. Here, it must be

noted that while the reactions may not necessarily exactly compen-

sate for one another, in all cases, the cell cannot survive unless at

least one of the reactions in the pair is active. These reactions may

act as important links in their respective pathways, which compen-

sate for one another in the metabolic network.

Another interesting finding is that synthetic lethals do vary

across environments, although there are certain reaction redundan-

cies that tend to exist in all environments. This was in accordance

with earlier published work of synthetic lethals in the metabolic net-

work of yeast under different environmental conditions (Güell et al.,

2014), but we additionally observe how the synthetic lethals are

shaped, across thousands of random networks that show growth in

a given environment.

Our analyses of lethal pairs in the universe of reactions give in-

sight into the layered compensations that occur in different metabol-

ic networks. Also, the enumeration of higher order lethals sheds

important light on the different compensatory mechanisms that

could exist in any metabolic network. Further, we were able to iden-

tify lethal pairs which perform very different distinct functions, yet

compensate one another to resist perturbations. These reactions, al-

though they do not have any metabolites in common and involve in

very different pathways, form a lethal pair, indicating the essential-

ity of either of the reactions for survival of the organism.

Although we focus primarily on reactions, the ‘unit of deletion’

in the model, it is easy to extend this approach to study genes and

Table 2. Fraction of environmentally dependent lethals present in each environment

Growth environments Pyr Glu Ace Fru Gal Xyl Lac Ino Sor Tre

Fraction of lethals that are environmentally dependent 0.04 0.09 0.007 0.03 0.02 0.15 0.06 0.19 0.02 0.06
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construct corresponding genetic interaction networks. Our study

generally points towards how genes with very different functions

(for example, EC 4.1.3.40 and EC 1.13.11.46) can compensate for

one another in an organism’ s metabolism. The reaction universe is

also not necessarily complete; but as and when new reactions are

discovered, it will enable us to identify even more novel compensa-

tion mechanisms. Although we have listed the possible reaction

lethals, a closer look into the pathways would enable us to under-

stand the mechanisms involved in the formation of the lethal pairs.

Overall, our work emphasises the adaptive functional redundan-

cies that are acquired, as microbes evolve on a particular environ-

ment. We could thus identify novel synthetic lethals and throw light

on the wide repertoire of possible functional redundancies, that en-

hance robustness in metabolic networks.
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