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Interrelated successive transformation steps of nitrification are performed by distinct
microbial groups – the ammonia-oxidizers, comprising ammonia-oxidizing archaea
(AOA) and bacteria (AOB), and nitrite-oxidizers such as Nitrobacter and Nitrospira, which
are the dominant genera in the investigated soils. Hence, not only their presence and
activity in the investigated habitat is required for nitrification, but also their temporal
and spatial interactions. To demonstrate the interdependence of both groups and to
address factors promoting putative niche differentiation within each group, temporal and
spatial changes in nitrifying organisms were monitored in an unfertilized grassland site
over an entire vegetation period at the plot scale of 10 m2. Nitrifying organisms were
assessed by measuring the abundance of marker genes (amoA for AOA and AOB,
nxrA for Nitrobacter, 16S rRNA gene for Nitrospira) selected for the respective sub-
processes. A positive correlation between numerically dominant AOA and Nitrospira,
and their co-occurrence at the same spatial scale in August and October, suggests that
the nitrification process is predominantly performed by these groups and is restricted
to a limited timeframe. Amongst nitrite-oxidizers, niche differentiation was evident in
observed seasonally varying patterns of co-occurrence and spatial separation. While
their distributions were most likely driven by substrate concentrations, oxygen availability
may also have played a role under substrate-limited conditions. Phylogenetic analysis
revealed temporal shifts in Nitrospira community composition with an increasing relative
abundance of OTU03 assigned to sublineage V from August onward, indicating its
important role in nitrite oxidation.

Keywords: nitrification, ammonia oxidation, nitrite oxidation, niche separation, spatial analysis, grassland

INTRODUCTION

Nitrification has been the focus of many studies over decades due to the ecological importance
of this process, especially for agricultural ecosystems. Nitrification determines, to a great extent,
whether applied fertilizers will function either as plant growth supporting components or as
environmental pollutants. Nitrate leaching into water causes eutrophication, and the emission of
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N2O, a highly potent greenhouse gas, contributes to climate
change (Ollivier et al., 2011). However, results of the relative
contributions of key players have been contradictory – supportive
either of archaeal (Leininger et al., 2006; Adair and Schwartz,
2008; Zhang et al., 2012) or bacterial ammonia-oxidizer (Di et al.,
2009; Jia and Conrad, 2009) dominance – or have suffered from
missing links between abundances of nitrifiers and nitrification
activities (Di et al., 2009). These discrepancies can be explained
in part by the designs of those studies, which have focused mainly
on detailed analyses of key players involved in one or another
sub-process, thereby neglecting to account for the fact that
nitrification requires a strong interaction among phylogenetically
differing microbes with different ecophysiologies.

The first steps, the oxidation of ammonia to hydroxylamine
and nitrite, can be catalyzed by ammonia-oxidizers. The last step
of the transformation process, the oxidation of nitrite to nitrate, is
performed by a distinct group of organisms, the nitrite-oxidizers
(Konneke et al., 2005).

Ammonia-oxidizers comprise both ammonia-oxidizing
bacteria (AOB) and archaea (AOA) (Kowalchuk and Stephen,
2001; Treusch et al., 2005). Their abundances have been
monitored in a wide range of ecosystems (Ochsenreiter et al.,
2003; Francis et al., 2005; Treusch et al., 2005; Stahl and de
la Torre, 2012). The discovery of archaeal involvement in
ammonia-oxidation (AO), the frequent numerical dominance of
AOA over AOB, and their active participation in AO (Leininger
et al., 2006; De La Torre et al., 2008; Hatzenpichler et al., 2008;
Offre et al., 2009; Schauss et al., 2009), have thrust the relative
contributions of AOA and AOB into the research spotlight.
Several studies have indicated that AOA and AOB colonize
different niches in soil (Keil et al., 2011; Ollivier et al., 2013;
Regan et al., 2014; Stempfhuber et al., 2014) and differ in their
ecophysiologies (Hatzenpichler, 2012); however, their putative
interaction partners have remained largely unaddressed (Prosser
and Nicol, 2008).

The ability to oxidize nitrite is found in only six bacterial
genera:Nitrobacter,Nitrotoga,Nitrococcus,Nitrospina,Nitrospira,
and Nitrolancetus; affiliated to the alpha-, beta-, gamma-, and
delta-classes of Proteobacteria and the phyla Nitrospirae and
Chloroflexi, respectively (Daims et al., 2001; Bock and Wagner,
2006; Alawi et al., 2009; Attard et al., 2010; Sorokin et al.,
2012). Nitrite-oxidizing bacteria (NOB) can be found in a variety
of habitats (Abeliovich, 2006), from marine and freshwater
aquatic systems (Watson et al., 1986; Stein et al., 2001), to
wastewater treatment plants (WWTPs) (Juretschko et al., 1998;
Daims et al., 2001; Gieseke et al., 2003; Spieck et al., 2006) and
terrestrial ecosystems (Bartosch et al., 2002; Wertz et al., 2012).
In terrestrial environments Nitrobacter (NB) and Nitrospira (NS)
have been identified as the dominant genera (Bartosch et al.,
2002; Cébron and Garnier, 2005; Kim and Kim, 2006; Ke et al.,
2013). Niche differentiation amongst NOB has been proposed in
several studies in both aquatic and terrestrial habitats (Schramm
et al., 1999; Cébron and Garnier, 2005; Ke et al., 2013; Ollivier
et al., 2013; Placella and Firestone, 2013). Shifts between NB
and NS have been shown to be a consequence of different
strategies related to substrate affinity (Attard et al., 2010). It
has been suggested that NB are r-strategists, favored under high

substrate concentrations owing to lower substrate affinity of their
respective catalyzing enzyme. NS, however, as K-strategists, are
capable of tolerating lower nitrite and oxygen concentrations
(Schramm et al., 1999; Daims et al., 2001; Kim and Kim, 2006).

It is commonly assumed that the two transformation steps for
complete nitrification are dependent on the interaction of two
distinct microbial guilds in terrestrial ecosystems (Kowalchuk
and Stephen, 2001). As autotrophic ammonia-oxidizers gain their
energy from the conversion of ammonia to nitrite, AOB and
NOB are thought to be dependent on each other in a mutualistic
relationship. Nitrite, the product of ammonia-oxidation (AO) is
available for nitrite-oxidizers as substrate, which, under aerobic
conditions, in turn assures the consumption and the removal
of the toxic nitrite in the environment by nitrite oxidation
(Juretschko et al., 1998; Maixner et al., 2006). Thus, the processes
of ammonia- and nitrite-oxidation are considered to be spatially
dependent (Grundmann et al., 2001). Studies on the interactions
and spatial structure of AOB and NOB have been performed
mainly in aquatic systems or biofilm- and activated sludge-
based WWTPs (Gieseke et al., 2003; Ke et al., 2013). In soils,
the number of studies on interactions between ammonia- and
nitrite-oxidizers is limited, suggesting an interaction of AOBwith
both NS- and NB-like NOB, and co-occurrence of AOA with
NS (Xia et al., 2011; Wertz et al., 2012; Ke et al., 2013; Ollivier
et al., 2013; Daebeler et al., 2014). Studies which take spatial and
temporal dynamics of these nitrification networks into account,
are, however, missing.

Hence, the focus of this study was to investigate the formation
of networks of ammonia- and nitrite-oxidizers as influenced by
season in a grassland soil. We postulated that the dominant
forms of nitrifying networks are AOB – NB under high substrate
concentrations in spring and summer and AOA – NS under
lower substrate concentrations in autumn. As AOA (Jia and
Conrad, 2009; Tourna et al., 2011; Daebeler et al., 2014) and
NS (Daims et al., 2001; Lücker et al., 2010; Lebedeva et al.,
2013) are considered to be mixotrophs, both groups may act also
independently, mainly at locations with high carbon availability.
To test our hypotheses, we followed the seasonal dynamics and
spatial distribution patterns of AOA, AOB, NB, and NS using
qPCR-based approaches to assess the abundance of marker genes
for each group.We then linked these data to ammonia and nitrate
availability. The dynamics of metabolically active NOB were
further analyzed by screening the 16S rRNA inventory (obtained
by barcoded Ilumina sequencing) both to gain a deeper insight
into the active community structure of NOB as affected by time
and space, and to link these to the presence of AOA and AOB.

MATERIALS AND METHODS

Study Site Description and Sampling
Design
The experiment was performed in the frame of the ‘German
Biodiversity Exploratories’1 (Fischer et al., 2010), a large
interdisciplinary study aimed at improving our understanding

1http://www.biodiversity-exploratories.de/startseite/
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of the effects of land use intensity on diversity at different
scales. A low land-use intensity grassland site (48◦25′0.01′′ N,
9◦30′0.00′′ E), which did not receive additional fertilizer input
and was subjected only to short-term grazing in the Biosphere
Reserve Schwäbische Alb in the South-west of Germany, was
selected for this study (Regan et al., 2014). Mean annual
temperature in the year of sampling was 8.1◦C; mean annual
precipitation was 810 mm. The experimental site (plot ID:
AEG31) was classified as Rendzic Leptosol (according to the FAO
classification system). Abiotic soil parameters such as pH, carbon
and nitrogen content, bulk density and soil texture were stable
during the season.

In an unfertilized grassland site, a 10 m × 10 m plot was
divided into 30 subplots (each 2 m × 1.67 m). Six pairs of
sampling locations were randomly assigned within each subplot,
each pair separated by 50 cm to provide appropriate lag distances
for later geostatistical analyses. One pair from each subplot was
sampled at each of six dates over one growing season. In total,
360 samples were collected in April, May, June, August, October,
and November 2011 (60 per date × 6 dates). Dates were chosen
to correspond to stages of plant growth on the plot. Per date,
two samples were collected from the upper 10 cm soil horizon
from each of the 30 subplots within the 10 m × 10 m plot
(i.e., 60 samples per date in total). Soil samples were collected
with a soil auger (58 mm diameter) to 10 cm depth. Soil was
sieved (5 mm) and homogenized in the field. Samples for DNA
extraction were frozen in liquid nitrogen in the field, and stored
at −20◦C. Detailed information on soil properties and sampling
details can be found in the supplemental material or obtained
from Regan et al. (2014).

Extraction of Nucleic Acids
A total of 360 samples were collected at six sampling dates,
60 samples per date, over one growing season, from April to
November 2011. All samples were extracted in duplicate from
homogenized soil subsamples (0.3 g) using the FastDNAR© SPIN
Kit for Soil (MP Biomedicals, Solon, OH, USA). Concentrations
of the extracts from both sample replicates were measured
independently on a NanoDrop R© ND-1000 spectrophotometer
(Thermo Scientific, Wilmington, DE, USA), then pooled and re-
measured to confirm the final DNA concentration. For qPCR
measurements, samples were diluted to a target concentration of
5 ng DNA µl−1 with ultra-pure water. This concentration has
been determined as not inhibiting PCR in pre-experiments (data
not shown). Extractions of rRNA from homogenized soil samples
were conducted following a protocol modified after Lueders et al.
(2004), in which the centrifugation step after addition of PEG
was extended to 90 min. The nucleic acids were resuspended in
30 µl EB buffer, and the precipitation of the RNA after DNA
digestion was carried out with isopropanol in the presence of
sodium acetate.

Quantification of Marker Genes
Real-time quantitative PCR was performed on a 7300 Real-Time
PCR System (Applied Biosystems, Germany) using SyBr Green
as fluorescent dye. To quantify abundances of AOA and AOB

the respective amoA genes were used as target. NS-like and NB-
like NOBs were targeted by primer sets for 16S rRNA genes
for NS and nxrA genes specific for NB. As primers for NS-
like nxrA genes have been tested and shown to be non-specific
(Ke et al., 2013), we chose specific 16S rRNA gene primers to
target NS-like NOB. PCRs were performed according to Ollivier
et al. (2013), major PCR parameters are listed in Supplementary
Table S1. Serial dilutions of the plasmids containing fragments
of the marker genes (Supplementary Table S1) were used for
standard curve calculations. To determine the specificity and
correct fragment size of the amplified qPCR products, a melting
curve analysis was conducted after qPCR for each sample,
followed by gel electrophoresis on a 2% agarose gel for randomly
selected samples. Efficiencies obtained were above 80% and R2
was determined to be above 0.99 for each qPCR assay.

Sequencing of 16S rRNA and
Phylogenetic Analysis
We used universal primers targeting the 16S rRNA gene, and
conducted paired end Illumina sequencing on a HiSeq 2500
(Illumina, San Diego, CA, USA). Besides the specific binding
site 341f (Muyzer et al., 1993) and 515R (Lane, 1991), the
primers contained the Illumina adapter sequence as well as the
binding site for sequencing primers. Additionally, the reverse
primer included a barcode region of six nucleotides. Briefly,
RNA extracts from soils were reversely transcribed with GoScript
(Promega, Madison, WI, USA), and PCR amplification was
carried out targeting the V3 region, using primers containing
Illumina adapters and a barcode (reverse primer only) (Bartram
et al., 2011). Amplicons were purified from agarose gels and
cleaned with NucleoSpin Extract II columns (Macherey & Nagel,
Düren, Germany) prior to sequencing at the Helmholtz Center
for Infectious Diseases, Braunschweig, Germany. Two samples
(one in April, one in June) were lost during the process.
Sequence raw data were analyzed using a bioinformatic pipeline:
downstream processing included the trimming to 100 base pairs
for each direction, the removal of contaminating primer dimers,
and the joining of the remaining reads. Joined reads were checked
for chimeric sequences with UCHIME (Edgar et al., 2011), and
then clustered with CD-HIT-OTU for Illumina (Li and Godzik,
2006; Fu et al., 2012). Obtained representative sequences were
finally annotated with the RDP-Classifier (Wang et al., 2007),
with a similarity threshold of 97% for OTU clustering and
a confidence cutoff of 0.5. After the removal of single- and
doubletons, the final dataset was created.

For the identification of NOB in the dataset, suitable genera
covered by the respective qPCR primer pairs for NS and NB were
identified with the Genomatix software suite using the FastM and
ModelInspector tool (Klingenhoff et al., 1999). OTUs affiliated
exclusively with those genera were then extracted from the
16S rRNA dataset. For reference sequences, the RDP-Classifier
(with 16S rRNA training set 10), BLAST (vs. the Nucleotide
collection (nr/nt)) (Altschul et al., 1990), and ARB (with the
SILVA 119 SSU REF NR database) (Ludwig et al., 2004; Quast
et al., 2013) were used to extract type strain sequences and close
relatives for phylogenetic analysis. Nitrospina gracilis, a marine
NOB, was chosen as an outgroup (Luecker et al., 2013). The
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obtained set of sequences was aligned with JalView (Waterhouse
et al., 2009) and the implemented MAFFT algorithm (preset
G-INS-i, for maximum accuracy) (Katoh et al., 2005). We first
checked the alignment for the best fitting evolutionary model
with MEGA 6 (Tamura et al., 2013). The model with the
least Bayesian Information Criterion was considered to best
describe the substitution pattern, and was subsequently used for
tree construction, in this case the Kimura-2 parameter model
with gamma distribution (K2+G). Tree topologies were then
calculated with the Maximum Likelihood and Neighbor Joining
algorithms as implemented in MEGA 6.

The sequence reads analyzed for this manuscript have been
uploaded to the Short Read Archive under the project ID
“PRJEB10957.” The full study can be accessed under the following
link: http://www.ebi.ac.uk/ena/data/view/PRJEB10957.

Statistics
Statistical analyses were performed using the R environment2.
To prepare data for statistical analyses, qPCR abundance data
were log (x+1) transformed. We conducted pairwise Pearson
and Spearman rank correlation analyses between all variables
and observations for initial data screening. Selected highly
correlated pairs were corrected for autocorrelation by using
functions available in the nlme package. First we formulated
a null model between two variables with function lme(), then
updated this model by using one of five correction procedures for
spatial autocorrelation (exponential, spherical, linear, Gaussian,
rational quadratic). The best fitting corrections according to the
Akaike Information Criterion (AIC) were chosen for the final
regression model. For pairwise comparisons of group means
between the six sampling dates, we used the function glht()
of the package multcomp with method “Tukey” on generalized
linear models with the appropriate distribution families for

2http://www.R-project.org

each group of variables (Hothorn et al., 2008; Herberich et al.,
2010). Non-random spatial dependence, i.e., the relation of data
points in dependency of their distance, was analyzed using the
geostatistical approach published by Steffens et al. (2009). A
semi-variogram describes the degree of variability as a function of
spatial separation of samples (Grundmann and Debouzie, 2000).
Spherical models were fitted to each experimental semivariogram
using the gstat fitting routine of R. Furthermore, exponential
models were tested if no spherical model could be fitted. For
underlying equations, see e.g., Steffens et al. (2009). In case no
model could be fitted, either the parameter under investigation
was homogeneously distributed or the spatial distribution was
independent of the scale chosen (see Supplementary Table S3)
and thus could not be visualized by kriged maps. More detailed
information on our geostatistical approach is provided in the
supplemental material. The variogram model was used in order
to interpolate the measured data to non-sampled sites within
the investigated plot (Steffens et al., 2011) and kriged maps were
constructed to visualize the spatial structure of gene abundances
at the plot scale. Maps were constructed by ordinary kriging
taking advantage of the ArcGIS Software (ArcMap 10.0, ESRI R©

2010, Germany) wherever a model could be fitted to the dataset.

RESULTS

Temporal Dynamics of Ammonia- and
Nitrite-Oxidizers
To assess putative temporal changes in the abundances of
ammonia- and nitrite-oxidizers, we determined the gene copy
numbers of the 16S rRNA gene (NS), nxrA (NB) and amoA
(AOA and AOB) (Supplementary Table S2; Figure 1). Numbers
of 16S rRNA genes for NS were in the range of 107 to 108 gene
copies per g soil dry weight, whereas NBwere lower in abundance
with 105 to 106 nxrA gene copy numbers. Exceptions were a

FIGURE 1 | Boxplots for seasonal dynamics of ammonia- and nitrite-oxidizers. Depicted are gene copy numbers. AOA, ammonia-oxidizing archaea; AOB,
ammonia-oxidizing bacteria; NB, Nitrobacter-like; NS, Nitrospira-like.
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few sampling sites with very high gene copy numbers exceeding
107. Gene copy numbers indicative for NS increased from April
to May, and declined slightly in June and August/October
when lowest values were detected. In November the abundance
of NS-like NOB increased to its maximum. Interestingly, the
seasonal dynamics of AOA abundance closely resembled the
trend of the NS gene abundance pattern with a decline in August
and October and highest values in May and November. AOB
abundance, in contrast, exhibited highest gene copy numbers in
August and October, coinciding with the lowest gene abundances
for AOA and NS; lowest gene copy numbers were detected in
May/June and November. Throughout the entire season, AOB
copy numbers (in the range of 106) were generally lower than
AOA (in the range of 108). In terms of statistical significance,
changes in abundance for NS were not significant after the tested
model was corrected for spatial autocorrelation. For AOA, AOB,
and NB, however, significant changes were found for the June–
August transition (p < 0.01), as well as for the decrease in AOA
(p < 0.001) and NB (p < 0.05) between October and November,
and for NB in early spring (p > 0.01).

Spatial Analysis of Gene Abundances of
Ammonia- and Nitrite-Oxidizers
In order to detect spatial structures of the investigated groups
at the plot scale of 10 m2, geostatistical semivariogram analyses
were conducted. Supplementary Table S3 shows semivariogram
parameters of gene abundance data for the respective sampling
dates. Spherical models could be fitted for all sampling dates for
NS-like NOB, whereas spatial dependence was found at only few
dates for the other genes.

Range, nugget and sill were determined to assess the spatial
behavior of variables (Supplementary Table S3). For most gene
abundance data, spatial dependence was captured within the
sampling area with seasonally varying ranges of autocorrelations
(4.9–12.8 m for AOA, 2.3–9.1 m for AOB, 1.2–21.2 m for NS,
4.5–12.3 m for NB). For some parameters, a far-reaching spatial
autocorrelation would be expected when the determined range
exceeds the boundaries of the plot as, e.g., for NS-like NOBwith a
range of 21m inOctober, which did not represent a reliable range,
because it exceeded the maximum distance between sampling
points. Gene abundances of NB in November and NS in April
and October exhibited an extremely high spatial dependency
(above 87%). For NB, the degree of spatial dependence increased
during the year. However, the seasonal dynamics of NS-like
NOB first revealed a decline in spatial dependence visible until
June, followed by an increase in August and again in November.
In October, the highest spatial dependency of about 93% was
reached for NS-like NOB. The degree of spatial dependence was
rather low for AOA and AOB (between 2.4 and 36.5%) and the
data sometimes exhibited a large nugget effect, implying high
non-measured small-scale variability.

Kriged maps, used to visualize the spatial distribution
of the investigated variables, revealed highly variable spatial
distributions over the sampling period for both NB and NS-
like NOB (Figure 2). In case no map could be constructed,
the spatial distribution of the parameter of interest was too

homogeneously distributed to be visualized by a spherical model
or could not be resolved at our sampling scale. On the sampling
dates for which kriged maps could be generated for NB, varying
distribution patterns were detected, ranging from medium-sized
patches inNovember (Figure 2A6), to large patches with hotspots
in April (Figure 2A1), and finally more homogeneous structures
in August (Figure 2A4) with higher abundances in the upper
part of the plot interspersed by a few smaller nested patches.
Spatial autocorrelation patterns of NS, observed at each sampling
date, varied extensively with the season (Figures 2B1–6). NS
abundance was spatially structured in larger patches with rather
smooth transitions from areas of low to high abundance in
April and May, the latter even harboring a pronounced hot
spot of high abundance. This rather homogeneous distribution
changed to more small-scale patchiness with a heterogeneous
structure in June. In August, a continuous decline in abundances
located at the upper border of the plot was evident, again
becoming more homogeneous, with larger patches in October
and lowest values in the right half of the plot. Pronounced
small-scale heterogeneity with a relatively high number of small
sharply zoned patches could be demonstrated for NS-like NOB
in November; AOA distributions could be displayed in August
and October (Figures 2C4,5) revealing larger homogeneous
patchiness with gradient-like structures of gene abundances.
AOB gene abundance was more heterogeneously distributed
in May than in the other months with smaller patches and
a more pronounced gradient-like structure in the upper right
corner of the plot (Figures 2D2,3). Spatial variability was
more homogeneous in November. Figure 2E5 shows the spatial
distribution of NH4

+ with a pronounced large patch of high
concentration on the right side of the plot, corresponding to
the lowest abundances for AOA and NS gene copy numbers
measured at this sampling date.

Phylogenetic Analysis of Active
Nitrite-Oxidizing Bacterial Community
Composition
To further differentiate the various groups of active NOB, a
16S rRNA based barcoding approach was performed and OTUs
affiliated with selected NOB groups (NS and NB) were further
analyzed. In the 16S rRNA dataset, we detected 40 OTUs assigned
to genus Nitrobacter based on 97% sequence similarity of the
variable region 3, but a single OTU accounted for more than 99%
of reads associated with this genus. This particular OTU also was
the second most abundant signal in the entire dataset and was
represented by 5.4 million reads (∼1.1% of the entire bacterial
dataset). For the phylum Nitrospira, 285,000 reads (0.063% of
all bacterial reads) could be assigned to 36 OTUs. However, 33
of these OTUs were found to be spurious, hence, we focused
on the remaining three generalist OTUs in this phylum, which
accounted 99.3% of all NS assigned reads and appeared in all
samples. The three representative sequences for these OTUs
exhibited sequence similarities between 92% (01 vs. 03), 93% (02
vs. 03), and 97% (01 vs. 02), respectively.

The relative abundance of the NB OTU strongly increased
from April to May (p < 0.001) and from August to October
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FIGURE 2 | Spatial distribution of selected variables. Kriged maps were constructed for gene abundances of (A) nxrA gene (NB), (B) 16S rRNA genes (NS),
(C) amoA gene (AOA), (D) amoA gene (AOB), and for soil ammonium content (E) at different sampling dates (1–6). Gene abundances are given in gene copy
numbers per g soil (dry weight), ammonium concentration is given in µg N per g soil (dry weight). AOA, ammonia-oxidizing archaea; AOB, ammonia-oxidizing
bacteria; NB, Nitrobacter-like nitrite-oxidizing bacteria; NS, Nitrospira-like nitrite-oxidizing bacteria.

(p < 0.01), when this OTU reached its annual maximum,
decreasing significantly again between October and November
(p < 0.05), maintaining relatively constant levels between May
and August (Supplementary Figure S1). This NB-OTU at some
dates exhibited very high correlation to the NS-OTUs (especially
in April and August). Relative abundances of the three NS-
OTUs were stable during the first three sampling dates of the
year. For all three OTUs, the abundances increased from June
to August (p < 0.05), except OTU01, which was not significant
(p = 0.06). Interestingly, the activities of OTUs 01 and 02 both
declined during the late season sampling dates, whereas OTU03
remained stable, thus increasing its abundance compared to the
other Nitrospira OTUs (Supplementary Figure S1).

Nitrospira OTUs showed overall positive correlations with
each other (OTU01-02: r = 0.683, OTU01-03: r = 0.530,
OTU02-03: r = 0.512), with varying strengths of correlations
if the sampling dates were analyzed separately (Supplementary
Figure S2). In accordance with their sequence-based similarity
of 97%, OTU01 and 02 were highly correlated at most of the
sampling dates (r > 0.650). Correlations with NS OTU03 were
generally weaker, but still significant. NS OTUs did not show
any correlation to ammonium (Supplementary Figure S2). At the
beginning and toward the end of the year, significant correlations
of NS OTUs with nitrate content were found, especially for OTU

02 (up to r = 0.42 in November). A weak correlation between
nitrate and the Nitrobacter-OTU was also found in October.

A phylogenetic tree was constructed based on the Neighbor
Joining algorithm (Figure 3) and detailed examinations were
performed on the affiliation of the NS OTU-sequences to
sublineages of NS-like NOB, as designated in Daims et al.
(2001) and Lebedeva et al. (2011) (Supplementary Table S4).
The topology of the neighbor joining tree was further confirmed
by the maximum likelihood method (data not shown). NS
OTU01 and OTU02 were located in proximity to sublineages
I, II and VI. It is of note that for some taxa, the variable
region 3 of the 16S rRNA cannot clearly resolve the sequence
affiliation beyond the genus level, which seemed to happen
in the case of some of the sublineages. Both conducted
methods, however, place NS OTU03 with a similarity level
of 94% in the sublineage V of Nitrospira with Ca. Nitrospira
bockiana as cultured representative. To determine whether only
gene abundances or also the composition of the contributing
NS sublineages exhibited seasonal dynamics, we followed the
changes in one selected subplot over time. We chose one of
the 30 available subplots (see sampling scheme in Regan et al.,
2014) that exhibited the most pronounced dynamics in 16S
rRNA gene abundances for NS-like NOB (Figure 4C). We
compared shifts in the relative activity of OTUs by plotting
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FIGURE 3 | Phylogenetic tree. The evolutionary history was inferred using the Neighbor-Joining method. The optimal tree with the sum of branch
length = 0.39985022 is shown. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (100 replicates) and are
shown next to the branches. The evolutionary distances were computed using the Kimura 2-parameter method with gamma distribution (K2+G) and are in the units
of the number of base substitutions per site. The analysis involved 10 nucleotide sequences. All positions with less than 10% site coverage were eliminated. That is,
fewer than 90% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 182 positions in the final dataset.
Evolutionary analyses were conducted in MEGA6. Sequences contain sublineage designations as given in Daims et al. (2001).

their relative abundances against each other, setting the total
abundance to 1 (Figure 4A). The proportions of the NS
OTU abundances did not change during the first half of the
year. From August on, the relative abundance of OTU03 in
particular increased at each subsequent sampling date until
the end of the year. While this effect was observed for
the whole dataset (Figure 4B), it was especially pronounced
in this location, suggesting spatial heterogeneity of species
distribution.

DISCUSSION

Temporal Dynamics and Metabolic
Activity of NOB
To provide insight into the temporal dynamics of active
organisms and to help identify different sublineages of dominant
NS-like NOB, the abundance of 16S rRNA as a proxy for
metabolic activity was assessed by an Illumina sequencing
approach. Discrepancies in the direct comparison of gene
abundances on a DNA level to metabolic activity at an rRNA
level are attributable to the fact that gene abundances do not
necessarily indicate growth or reflect activity at the RNA level
(Chen et al., 2008; Offre et al., 2009; Blazewicz et al., 2013; Placella
and Firestone, 2013; Daebeler et al., 2014). Marginally higher
abundances of NS-assigned 16S rRNA sequences on the RNA

level (Supplementary Figure S1), compared with lower Nitrospira
rRNA 16S gene abundances on the DNA level during autumn
(Supplementary Table S2) may be explained by high activity
of a few organisms in cell-maintenance or in the investigated
processes (Blazewicz et al., 2013). In the first half of the year, the
reverse was observed. This may indicate that large numbers of
NS-like NOB were inactive under suboptimal growth conditions,
in a state of starvation and dormancy (Ettema and Wardle,
2002). Enzyme stability (Chen et al., 2007; Ke et al., 2013) or
the constitutive expression of multiple gene copies (Poly et al.,
2008; Lücker et al., 2010) could be important prerequisites for
an immediate reaction to changing environmental conditions
such as the sporadic availability of substrate (Blazewicz et al.,
2013).

Temporal analysis demonstrated pronounced seasonal
dynamics of AO and NO both with respect to their abundances
and to the numerical dominance of AOA within the AOs
and NS within the NOs at all measured dates (Supplementary
Table S2), corresponding to previous studies (Leininger
et al., 2006; Adair and Schwartz, 2008; Meyer et al., 2013;
Ollivier et al., 2013; Stempfhuber et al., 2014). The higher
abundance of genes involved in particular transformation
processes may result not only from ammonia- or nitrite-
oxidation, but also from potential mixotrophic growth, as
proposed for NS and AOA (Prosser and Nicol, 2008; Jia
and Conrad, 2009). The high standard deviations in gene
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FIGURE 4 | Relative abundances of NS-assigned OTUs. Columns display the relative abundances of Nitrospira-like NOB OTUs 01-03 over the season. The
total abundance of NS-assigned OTUs was set to 100%. NS = Nitrospira-like nitrite-oxidizing bacteria. Barcharts depict either relative abundances within one
selected subplot (A) or represent the complete dataset (B). The location of the selected subplot is indicated by the red square (C).

copy numbers at one sampling date therefore highlight the
importance of supplementing temporal analysis with spatial
structure analysis in the field by the identification of local
hotspots.

Temporal Dynamics of Spatial Niche
Differentiation Amongst NOB
Functionally complementary microbial groups often differ in
their responses to environmental changes, shaping functional
niches (Maixner et al., 2006). Studies have addressed spatial niche
differentiation patterns of functionally redundant organisms
often co-existing at the same spatial scale (Schauss et al.,
2009; Schleper, 2010; Wertz et al., 2012; Ollivier et al.,
2013) or differing in their spatial distribution (Krause et al.,
2010, 2013). Our data showed seasonally varying patterns
of niche differentiation: spatial niche separation between NS
and NB was most evident at our study site in April, as
large patches of high gene abundance were clearly spatially
discriminated (Figures 2A1,B1), whereas homogeneous and
congruent abundance patterns for both NS and NB were
found in August, indicating co-occurrence at the same spatial
scale (Figures 2A4,B4). We attribute these co-occurrence
patterns to different adaptations to substrate concentrations,
making possible the co-existence of NB and NS by reduced
“interspecific” competition (Hibbing et al., 2010): it has been
suggested that NB as r-strategists exhibit high growth rates
and activity and may therefore out-compete NS under high
nitrite levels (Schramm et al., 1999; Maixner et al., 2006),
while NS may have a competitive advantage over NB under
nitrite-limitation (Lücker et al., 2010). In November, rather

undifferentiated and very patchy patterns were detected for NS
and NB, without areas of clear spatial separation or congruence
(Figures 2A6,B6).

Nitrite concentration is usually below the detection limit in
natural terrestrial systems, transformed rapidly to prevent its
toxic accumulation (Burns et al., 1995; Attard et al., 2010; Xia
et al., 2011; Ke et al., 2013). One can infer, however, from
the absence or presence of AO spatial distribution patterns
at the same investigated scale, information about the nitrite
content in soil, assuming that substrate availability shapes
the niche differentiation patterns of NOB. Unfortunately, we
could not visualize environmental variables for April and
November that could explain the spatial distribution of NOB
phyla. Nevertheless, we may speculate that the absence of
ammonia-oxidizers at the observed spatial scale in April
(Figure 2) suggests that nitrite formation derived from AO
was low. Under such nitrite substrate-limited conditions, other
niche determining factors operating at the investigated scale
may have been more important. For example, the measured
high soil moisture content in April (Regan et al., 2014)
suggests that oxygen status could have influenced spatial
niche separation. NB are presumed to prefer high oxygen
conditions and thus compete with heterotrophic organisms
or AO for oxygen (Kim and Kim, 2006), while NS could
occupy spatial niches with extremely low oxygen content
(Gieseke et al., 2003; Lücker et al., 2010). However, especially
under low nitrite/nitrate conditions, NOB can switch to
nitrite reduction, i.e., the reduction of nitrate to nitrite,
which can be catalyzed by NXR (Sundermeyer-Klinger et al.,
1984; Bock et al., 1988; Bock and Wagner, 2006). Under
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anoxic conditions, some NB may also perform the complete
denitrification process (Freitag et al., 1987). The ability of NB
to also exhibit heterotrophic growth could then provide a
competitive advantage over NS (Freitag et al., 1987; Lücker et al.,
2010).

Temporal Dynamics of Spatial Niche
Differentiation Amongst Sublineages of
NOB
Niche differentiation has been demonstrated within genera
and species of NOB. Putative shifts within NB-like NOBs,
however, would not have been captured by our approach,
since the V3 region of the 16S rRNA gene might not be
sufficient to distinguish between the phylogenetically highly
similar NB species (Freitag et al., 2005; Alawi et al., 2009), closely
related to Bradyrhizobia (Orso et al., 1994). Thus we restricted
our subsequent phylogenetic analyses to Nitrospira community
composition for which the co-existence of up to three distinct
sublineages has been reported (Freitag et al., 2005; Maixner
et al., 2006; Lebedeva et al., 2008), in line with our results.
NS OTU01 and OTU02 were phylogenetically placed in close
proximity to cultured or enriched representatives of different
sublineages (Figure 3, see Supplementary Table S4 for details):
sublineage VI (Lebedeva et al., 2011), sublineage II (Ehrich et al.,
1995; Daims et al., 2001) and sublineage I (Lücker et al., 2010).
Sublineages I (Spieck et al., 2006) and II, correlated to the
presence of AOA in volcanic grassland soils (Daebeler et al.,
2014), are adapted to low substrate and oxygen concentrations
(Maixner et al., 2006; Wertz et al., 2012; Ke et al., 2013). OTU03
of NS was affiliated toCa. Nitrospira bockianawith 94% similarity
(Figure 3), and similar substrate preferences that hold true for
Ca. Nitrospira bockiana as cultured representative may also apply
to other members of sublineage V (Lebedeva et al., 2008), such
as the inability to be stimulated by organic substrates or to
take up pyruvate. NS OTU03 may exhibit similar characteristics.
However, transferring knowledge on habitat preferences attained
from cultivated species or enrichment studies to pathways and
metabolism of microorganisms in their natural habitats has to
be handled with care (Regan et al., 2003; Prosser and Nicol,
2012).

We therefore addressed the question of whether or not the
microbial structure at sampling sites with high gene abundances
is fundamentally different from that at sites of low abundance
with regard to their NS OTU composition (Figure 4). We
selected the subplot with the most pronounced changes in NS
abundance. Despite varying gene abundances, the community
composition and its relative metabolic activity did not change
during the first half of the year, implying the co-existence
of sublineages under substrate-limitation. In the second half
of the year, the relative proportion of OTU03 in particular,
affiliated with sublineage V (Lebedeva et al., 2008), increased.
We speculate that nitrite operates as a niche determining factor
in “intraspecific” competition and may have caused shifts in
the relative abundances of OTUs and affiliated sublineages from
August on (Maixner et al., 2006), as even sublineages of the genus
NS have been proposed to exhibit different preferences for nitrite

FIGURE 5 | Network analysis of interactions between NS-assigned
OTUs, gene abundances and nitrification-associated nitrogen-pools in
October. Depicted are Pearson correlations between three parameter groups
for sampling date October: gene abundances (light blue circles), Nitrospira
OTUs 01-03 (dark blue circles) and nitrate and ammonium concentrations
(yellow circles), respectively. Edges between the nodes are weighted
according to the correlation strength. Positive coefficients are colored in
green, negatives are displayed in red. AOA, Ammonia-oxidizing archaea; NS,
Nitrospira-like nitrite-oxidizing bacteria (NOB).

concentrations (Grundmann and Debouzie, 2000; Maixner et al.,
2006).

Spatial Interactions of Nitrifying
Organisms
Studies on nitrifiers at spatial ranges from µm (Maixner et al.,
2006) to the landscape scale (Grundmann and Debouzie, 2000;
Bru et al., 2011) have demonstrated that the factors influencing
spatial dependency operate at different scales: soil texture or
land management practices operate at larger spatial scales while,
for example, vegetation, can operate at smaller scales (Ettema
and Wardle, 2002; Ritz et al., 2004). Nitrification at some
sampling datesmay have occurred at nested scales which were not
characterized. High nugget effects for AOA and AOB abundances
at some dates imply the presence of unmeasured variance at
smaller scales (Supplementary Table S3) (Steffens et al., 2009).
The ranges of spatial dependence of the abundance data in this
study (Supplementary Table S3) were, however, similar to spatial
autocorrelations ranging from 1.4 to 7.6 m for AOA and AOB
in a previous study in the same region (Keil et al., 2011), and
corresponded also to those found in studies at mm to m scales
(Nunan et al., 2003; Franklin and Mills, 2009).

Surprisingly, our spatial analysis at the plot scale did not
confirm the hypothesis that nitrification could be attributed
mainly to a close functional interaction reflected by the spatial
dependence of AOB and NOB, although many studies have
reported their functional interaction (Mobarry et al., 1996;
Schramm et al., 1999; Abeliovich, 2006; Xia et al., 2011; Wertz
et al., 2012). AOB and NB have been shown to dominate
nitrification under high substrate-conditions (Shen et al., 2008;
Jia and Conrad, 2009; Di et al., 2010; Wertz et al., 2012; Ke
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FIGURE 6 | Univariate linear models between pairs of variables in October. Pairs of variables were selected from the network analysis (Figure 4) to show
additional support for our conclusions after accounting for spatial autocorrelation. Red lines indicate the uncorrected, Gaussian regression models, whereas yellow,
dashed lines represent the same models after correction for spatial autocorrelation. Blue lines are derived from Loess fits. All models are significant at p < 0.05,
except for AOA/Ammonium (p > 0.1) and NS_OTU02/NS (p = 0.0565), which, however, show significant spearman rank correlations, possibly pointing at
significant, non-parametric models. Although the model improvements for all variables were very small according to AIC shifts, NS and the NS OTUs 01 and 02 were
best described with exponential variograms and NS OTU03 with the spherical variogram. For nitrate and AOA, no spatial model led to model improvements.

et al., 2013). In contrast, the congruent spatial distributions
of AOA and NS and their positively correlated abundances in
autumn (r = 0.574 for Oct.; Figure 2; Supplementary Table S5),
strongly suggest an interaction of AOA andNS in performing the
sequential transformation steps of nitrification. This is further
supported by reports on the co-occurrence of AOA and NS in
the same soil compartments (Lebedeva et al., 2011; Ke et al.,
2013; Daebeler et al., 2014). Since a sensitivity of AOA to
nitrite accumulation was demonstrated recently for Nitrosotalea
isolates, a close mutualistic relationship between AOA and NOB
seems reasonable (Lehtovirta-Morley et al., 2014). Although
the exact mechanisms are still under investigation, it has been
demonstrated that both AOB and AOA are able to catalyze the
transformation of ammonia to nitrite (e.g. Tourna et al., 2011).
Efficiency and kinetics of ammonia-oxidation and consequently
the release of nitrite might, however, vary between distinct phyla
and environmental conditions (Ward, 2011). Thus it can be
speculated that NOB respond to different levels of nitrite that
are either determined by kinetics of ammonia-oxidation or by

the relative distance of NOB to the source of their substrate
(Maixner et al., 2006), according to their distinct preferences
for nitrite concentrations. The temporal and spatial interaction
of AOA and NS and their linkage to ammonium- and nitrate-
pools were further supported by a Pearson-coefficient-based
network analysis for October (Figure 5), when congruent spatial
patterns of AOA and NS were most pronounced (Figures 2
and 6; Supplementary Table S5) and all investigated molecular
markers were highly correlated with each other, which was
observed only in October (Supplementary Figure S3). Several
significant, positive pairwise correlations were detected in
October. Correlations between nitrate and NS OTU03, AOA
and NS, as well as NS and NS OTUs 01 and 02, respectively,
were all found to be significant at padjusted < 0.05, and
remained significant after correction for spatial autocorrelation.
Furthermore, strongly positive correlations of AOA and NB were
observed as well (April: r = 0.576, October: r = 0.561), but their
interaction at the spatial scale could not be identified by our
geostatistical analyses (Supplementary Table S5).
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Nitrate concentration was positively connected most clearly
with OTU03 in October (r = 0.42; Supplementary Figure
S2), which hints at the active participation of sublineage V
(Figure 3) in the production of nitrate and for subsequent
nitrite oxidation from August on (Figure 4). The ability of most
NOB to simultaneously convert nitrate to nitrite implies that
their performance can influence the nitrate pool in different
directions, impeding determination of clear positive or negative
correlations (Supplementary Figure S2). The positive correlation
of AOA and nitrate (Figure 5) was likely due to the direct
connection of AO and NO processes, the former delivering
the product for the latter transformation step. AOA abundance
was strongly negatively correlated to ammonium content, which
corresponds to their spatial distribution patterns, which varied
inversely (Figures 2C5,E5), indicating consumption of ammonia
as substrate by AOA (Schleper and Nicol, 2010; Ke et al., 2013).
The negative correlation of nitrate and ammonium (r = 0.233;
Figure 5; Supplementary Figure S2) could be due to a decline
in the ammonia pool by AO, resulting in an increase in nitrate
content due to NO. This confirms that the complete nitrification
process based on interactions between ammonia- and nitrite-
oxidizers can be followed at the investigated scale only at very
limited periods during the year. It must be considered, however,
that nitrification at other dates may be performed by organisms
that catalyze complete nitrification (commamox) that have not
been assessed by our study of spatial interaction patterns (Daims
et al., 2015; van Kessel et al., 2015).

Different growth strategies such as potential mixotrophy or
heterotrophy may obscure the interactions betweenAOAandNS.
Consequently, the utilization of alternative substrates (Prosser
and Nicol, 2008, 2012; Tourna et al., 2011) for energy production
and assimilation of different carbon sources (Lehtovirta-Morley
et al., 2013) must also be taken into account. The potential
for mixotrophic growth (Rogers and Casciotti, 2010; Lehtovirta-
Morley et al., 2014) could increase the competitiveness of
AOA and NS over their counterparts by providing a growth
advantage and assuring their greater flexibility in reacting to
suboptimal substrate-limited conditions. An increase of organic
material, as observed in autumn due to plant litter, may further
support the growth of mixotrophic organisms (Brown et al.,
2013). Differences in preferences for, e.g., organic compounds or
other characteristics have been reported even within particular
AOA species in soils (Offre et al., 2009; Hatzenpichler, 2012;
Lehtovirta-Morley et al., 2014) and for ecotypes of Nitrospira
(Maixner et al., 2006). This heterogeneity could affect patterns
of spatial distribution and inhibit correlation of abundances
to environmental parameters. Given this, it becomes necessary
to identify drivers which may influence nitrifiers directly or
indirectly via changing substrate availability or ammonia sources
(Prosser and Nicol, 2012). AOA, for example, prefer mineralized
nitrogen, derived from decaying plant material, which is the
main source of inorganic nitrogen at the end and before the
start of the vegetation period, rather than ammonium directly
applied by fertilization (Offre et al., 2009; Levičnik-Höfferle et al.,
2012).

Even occasional mowing or grazing may influence nitrogen
availability and consequently the microbes performing

nitrification (Patra et al., 2005, 2006). We assumed, therefore,
that the a mowing event in August (2 weeks before sampling)
affected the observed nitrification activity in autumn (Both
et al., 1992), uncoupling the plants’ competition for substrate,
thereby enabling AO to better access the ammonium pools
in soil (Wolters et al., 2000; Hamilton and Frank, 2001; Patra
et al., 2006; Le Roux et al., 2008; Kuzyakov and Xu, 2013). The
heterogeneous ammonium distribution may also be linked to
plant diversity, as a strong spatial distribution pattern of legumes
was observed mainly in October at the site (Regan et al., 2014).

This study presents evidence for both temporal and spatial
correlation of AOA and Nitrospira in an unfertilized grassland
site, indicating their interrelationship in performing the
nitrification process over one growing season. The obtained
results, however, are based on a 1-year study. Thus, it would be
important to assess spatial interaction patterns at larger temporal
scales to confirm stability of the observed patterns. However,
Nitrobacter and ammonia-oxidizers might interact at scales not
covered by our study, below the m2 range, and may require
subsequent studies using microscopic techniques.

We demonstrated an interaction of AOA and NS under
unfertilized conditions, and it would be interesting to extend this
approach to sites under high land-use intensity with different
fertilization practices to compare both the major actors and their
interactions (Keil et al., 2011). Recently, alternative possibilities
have been described for nitrifiers to gain ammonia using
cyanate as substrate (Stein, 2015). It has been demonstrated
that ammonium derived from cyanate transformation by NS
can be used by ammonia-oxidizing microbes (Palatinszky et al.,
2015); such alternative feedback processes may exist between
functional guilds of nitrification and play an important role for
the stabilization of nitrifier networks mainly in fertilized soils.
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