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Abstract: The aim of this paper is to compare the results of kinematic viscosity of lubricating oils
measurements at 40 ◦C, obtained with three different rapid evaluation devices, and the standardized
method using an Ubbelohde Capillary viscometer. The following instruments were selected to
measure: a mid-FTIR spectrophotometer, a microchannel viscometer, and a Stabinger viscometer.
The study material comprised 42 fresh engine oils, all of which are commercially available. The main
data analysis tools used in the study were multiple regression, Mahala Nobis distance, post-hoc
analysis, and the Wilcoxon signed-rank test with the Bonferroni correction. Consistent outcomes
were obtained for the Stabinger viscometer only, whereas the microchannel viscometer and the
mid-FTIR spectrophotometer were not as precise as the reference method. It was also found that the
results obtained with the use of the mid-FTIR spectrophotometer were burdened with a very large
measurement error. Therefore, a very careful approach is suggested when choosing these instruments.
The study fills an important gap in empirical research in the context of the reliability of measurement
results obtained using various research techniques.

Keywords: lubricant properties; degradation; engine oil; viscosity; mid-FTIR; Stabinger viscometer;
microchannel viscometer; Ubbelohde Capillary viscometer; reliability of results

1. Introduction

Engine oil ensures smooth engine operation through its lubricating and cooling effects;
yet, with time and use, it becomes subject to degradation processes. High temperature;
solid impurities (such as soot, coke, products of tribological wear of the engine, corrosion
products, etc.); and the external ones (moisture, air dust, air, and other gases), as well as
shear, oxidation, and nitration processes are some of the key factors contributing to the
degradation of engine oil [1]. It is then particularly important to monitor the properties
of oil; especially, as its degradation can eventually lead to engine damage or failure [2].
In fact, in the automotive industry, monitoring the viscosity of lubricants is considered a
principal indicator of oil quality [3,4]. Viscosity values may increase or decrease during
operation [5]. An increase in kinematic viscosity is associated with oxidation processes at
elevated temperatures and a decrease with oil shear or dilution with unburnt fuel. There-
fore, a regular replacement of oil forms an essential part of a car maintenance program [1,6].
The assessment of oil viscosity makes it possible to select an appropriate interval between
subsequent oil changes, which has a significant impact on the operating and maintenance
costs (operation and maintenance) [1].

In recent years, the demand for online oil measurement and data management has
been increasing [7]. The sensors are directly installed in the vehicle to constantly monitor the
condition of oil. They use different measurement principles depending on the parameter to
be monitored, e.g., optical properties (light scattering) or electrical properties (transmittance
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and conductivity) [8,9]. In terms of viscosity measurements, the following methods are
also used: sensing body displacement, acoustic, and vibrational methods [8,10].

Kinematic viscosity is a measure of the resistance to flow of a fluid under the influence
of gravity. Determining the kinematic viscosity is based on measuring the flow of the
tested liquid through a channel with a given geometry using a device called a capillary
viscometer. Determination of viscosity by capillary method is based on Poiseuille’s law
and expressed as

Q =
π∆pR4

8ηL

where ∆p—directly proportional to the pressure difference between the ends of the tube,
R—radius of the tube, L—length of the tube, and η—inversely proportional to the viscosity
of the fluid.

It consists in measuring the flow time of a given volume of liquid through a calibrated
glass capillary with a circular cross-section at a given pressure drop. The kinematic viscosity
(ν) is calculated from the formula

ν = Ct

where C is the viscometer calibration constant, mm2/s, and t is the arithmetic mean of the
outflow time, s.

Viscosity measurements are important in many industries, as they are a very fast,
accurate, and very reliable way to analyze important factors affecting the machine perfor-
mance [11,12].

The monitoring of oil viscosity consists in determining the changes in viscosity during
the operation compared to the viscosity of fresh oil, i.e., the starting value corresponds to the
viscosity of the fresh oil, while the critical values for the decrease and increase in viscosity
are established [13]. It is, however, worth noting that the viscosity of fresh oil, as given in
the standards, may differ from its nominal value by up to 20%, while a change in viscosity of
10% during the operation may often be considered critical [13]. Therefore, fresh oil control
is important to obtain a reference value for proper viscosity monitoring [14]. A viscosity
assessment usually involves conducting tests in specialized research laboratories that
have appropriate equipment. Yet, it is an expensive and logistically complex undertaking,
requiring a relatively large sample size and a team of qualified analysts. It also generates
large delays between the sampling procedure and the analysis results [15–17].

The standard method of measuring the kinematic viscosity (ASTM D445), with the use
of different types of capillaries, provides reliable and very precise viscosity results [13]. Yet,
thanks to the automation of the measurement processes, the precision of the obtained values
may increase further. However, its application requires appropriate laboratory conditions
to carry out measurements and time-consuming thermostating, which makes this method
unsuitable for determining the viscosity on-site [8,18]. On the other hand, the developed
method of the simultaneous determination of dynamic viscosity and density—Stabinger
viscometer—can boast many advantages. With this device, quick measurements in a wide
temperature range become possible [11]. Unlike the capillary method, the measurement
results are obtained in a short time; however, the device is not suitable for field use.

When the machine is in use, decisions often need to be taken based on a quick mea-
surement made on-site without having to face complicated configuration and employing
qualified analysts [19]. Of course, enormous efforts have been made to obtain the possibility
of making laboratory measurements directly on-site of the machine operation [20]; hence,
the further development and growing popularity of devices enabling such practices [8,21].
A good example of devices combining fast measurements, low costs, and high efficiency
of the tests on a relatively small sample are the ones that use the FTIR (Fourier-transform
infrared spectroscopy) method [22] or micro-channeling. Their compact design makes it
possible to actually conduct “field” tests. What is more, such devices usually use databases
located in the measuring instrument, created on the basis of known properties of fresh oil
samples and permanently serving as a reference point for the analyzed oils of the same
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type [23–27]. All of these instruments do not require any cumbersome sample preparations
and make it possible to obtain the measurement results within a few minutes. Conse-
quently, there is no need to wait for the results of the laboratory analyses, which directly
translates into making quick diagnostic decisions related to extending or shortening the
time between oil changes. Thus, the costs of operating and using devices can be reduced,
and some serious failures may even be prevented [28,29]. However, in order to achieve this,
the results obtained using mobile devices (mid-FTIR spectrophotometer and microchannel
viscometer) must be comparable with the results obtained using laboratory equipment
(capillary and Stabinger viscometer). Hence, the main aim of this paper is to compare the
results of kinematic viscosity measurements (obtained with the use of devices enabling a
quick viscosity assessment of lubricating oils), with the standardized method requiring
the use of Ubbelohde capillaries. Thus, the formulated aim also takes into account the
differences between these methods, as described in detail in the methodological section
of this paper. To maintain the practical dimension of the study, commercial oils (instead
of the reference ones) were used in the tests. The research was carried out on fresh oils
only, because used oils contain impurities that could pose additional difficulty for the
devices. Notably, used oil samples/or the samples of used oil usually contain significant
amounts of soot coming from combustion products. The soot presents some problems on
capillaries, because it leads to the formation of deposits on the tube, thus interfering with
the fluid flow. This could potentially pose a problem for the microchannel viscometer (in
terms of the adequacy of the measurement). Moreover, when it comes to the practicality
of such measurements, testing the fresh oil eventually allows to determine changes in
the selected parameters of oils during the operation—such samples serve as a reference
point, providing the initial viscosity values (in fresh oil). This, in turn, makes it possible to
calculate changes in different parameters without seeking references to absolute values.

The correlations of the following methods were analyzed in pairs: Stabinger viscometer–
capillary viscometer, mid-FTIR spectrophotometer–capillary viscometer, and microchannel
viscometer–capillary viscometer. The outcomes of the comparisons made it possible to
assess whether the measurement values obtained with these devices were consistent. Mul-
tiple regression was used to assess the consistency of the results. The outcomes may prove
to be helpful when making decisions related to the use of a proper measuring instrument.

2. Materials and Methods
2.1. Materials

The research materials comprised 42 engine oils from various producers. All of the
samples tested were synthetic oils of 5W-30 viscosity grade, recommended for passenger
cars. The oils were numbered from 1 to 42. The brand names of the engine oils and their
quality specifications were not disclosed, as the purpose of the study was to compare the
test methods and not to provide a qualitative analysis of the samples tested. The trade
names of the devices used in the research were not given either, as the aim was to compare
the methods and not the instruments.

In order to compare the selected methods, it was decided to rely solely on fresh
oils. Used oils would have to constitute a separate study, since they contain degradation
products that may pose additional difficulties in obtaining correct results, especially using
the FTIR method. All of the measurements were made in three-fold repetition with each
device, and the differences between results (repeatability) could not differ by more than
+/−0.5%.

The relative uncertainty value of each oil viscosity was calculated according to ref-
erences [11,30–32]. The expanded uncertainty was calculated by multiplying the relative
uncertainty by the coverage factor k = 2 to derive the 95% confidence interval. The prepara-
tion of the devices and the samples, as well as the measurements, were all carried out in
accordance with the instructions found in the user manuals. The kinematic viscosity test
methods are presented in Table 1.
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All the samples were tested sequentially on the apparatus. During the measurements,
the same environmental conditions were maintained, and the samples were thermostatted
at 20 ◦C and mixed before the measurement.

2.2. Data Analysis

The obtained results were statistically analyzed using Statistica 13. Multiple regression
(MR) was used to assess the compatibility between the measurements obtained with the
two methods. It is generally used to analyze the variability of a dependent or criterion
variable using information provided by independent or predictor variables [33]. Multiple
regression is an important component of the general linear model [34–36]. It is also used to
compare a given method with another recognized as a standard or to compare the precision
of two methods treated equally. In the latter case, it is verified whether both methods are
equally accurate. None of them are assumed to be a standard one. By marking the results of
the first method as x and the second one as y, the estimators of linear regression y = b0 + b1x
were calculated. Two methods were considered equally accurate if the regression equation
took the form of y = b0 + x.

Mahalanobis distances (MD) were used to identify the samples for which it was
difficult to obtain convergent results. The following formula was used:

MD(x) =
√
(x − µ)TS−1(x − µ), (1)

where x is a point, for which the MD was counted from the center of the dataset, µ is the
middle value of the dataset, and S is the covariance matrix of the entire dataset (results
obtained with four different methods). To statistically confirm whether one of the devices
does not underestimate and the other one does not overestimate the measurement values,
a post-hoc signed-rank test with the Bonferroni correction was conducted. The analysis
was performed with the use of R software, version 3.6.1. [37].

2.3. Test Method

A detailed description of the four methods used in the study is provided below. Some
of the basic features of the devices are presented in Tables 1 and 2.

Table 1. Basic features of the devices used in the study.

Capillary Viscometer Stabinger Viscometer Mid-FTIR Microchannel Viscometer

Sample Volume 18 mL min 3 mL 1 approx. 7 mL 0.06 mL

Measurement range Standard
Analytical Range @ 40 ◦C

20–100 mm2/s (capillary
tube size 2) 0.2–30,000 mm2/s 50–100 mm2/s 1–700 mm2/s

Sample introduction manually manual filling with the use of a
syringe

automatic, by integrated
sample pump manually

Cleaning manually cleaning with the use of a syringe
(petrochemical gasoline) automatic rinsing manually

Reference measurement no data adjusted with 4 standard fluids (oil:
L, M, C, H)

automatic, with heptane
as reference fluid no data

Measurement time min. 240 s 360 s 2 60 s 120 s

Calibration carried out using certified standards
factory calibrated with a
matrix of international

lubricants

Available Test Methods ASTM D445 (EN ISO
3104) ASTM D7042 and D4052 e.g., ASTM D445 (MLR

calculations) ASTM D 8092

Weight approx. 28 kg 18 kg approx. 10 kg 1.8 kg

Power supply mains power supply mains power supply mains power supply built-in rechargeable lithium
ion battery

1—measurements with supported filling, single measurement with premixing. 2—Stabinger Viscometer standard, “precise” class, repeated.
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Table 2. Measurement repeatability and reproducibility—declared by manufacturers.

Capillary Viscometer Stabinger Viscometer Mid-FTIR Microchannel
Viscometer

Viscosity repeatability 0.26% 0.1% 2
≤±3% RSD of value,
typical, over range

1–350 mm2/s
Repeatability and

reproducibility depend
on the library used for
the MLR calculationsViscosity

reproducibility 1 0.76% 0.35% 2
≤±3% of measured

value over range 1–350
mm2/s

1—the difference between two single, independent results, obtained by different analysts working in different laboratories on identical test
materials while maintaining the determination procedure described. 2—certified for adjustment work by using petroleum-based viscosity
standards (does not contain pattern uncertainty).

Method 1. The Capillary Tube Viscometer Test Method (serving as a reference, offi-
cially approved)

Kinematic viscosity was determined in accordance with ASTM D445, using the Ubbe-
lohd capillaries (size 2; measurement range 20–100 mm2/s and temp. 40 ◦C).

Method 2. Determination of kinematic viscosity with Stabinger Viscometer
Stabinger viscometer meets ASTM D7042 and D4052 standards. It is intended for

measuring the dynamic viscosity and density of liquids, mainly oils, and for converting
the obtained results into kinematic viscosity. An innovative solution is an oscillating
U-tube measuring the density of the tested sample in the direct vicinity of the viscosity
measurement cell. Closing both measuring elements in a well-thermostated chamber, where
the temperature is maintained by a cascade Peltier element, and ensuring temperature
measurement with a resolution of up to thousandths of a degree Celsius, made it possible to
obtain the simultaneous measurements of three parameters: dynamic viscosity, kinematic
viscosity, and density at the test temperature.

Method 3. Determination of kinematic viscosity with Microchannel Viscometer
The device is a portable, solvent-free, temperature-controlled kinematic viscometer. It

was designed to determine kinematic viscosity at 40 ◦C in the field for applications where
immediate results are essential for assessing the condition of equipment. The Microchannel
viscometer has a split cell design that enables the measurement of kinematic viscosity
using a 60 µL of oil. When closed, the center pieces of the split cell form a funnel with a
100-micron gap, allowing the oil to flow down by gravity. Sensors along the funnel are
triggered when the oil flows by and the flow time between two sensors is measured. The
kinematic viscosity is then calculated.

Method 4. Determination of kinematic viscosity with Mid-FTIR Spectrophotometer
This device is a mobile FTIR spectrophotometer. It does not require sample prepa-

ration and calibration. The device is preconfigured with preloaded databases containing
calibration samples. As a result, the parameters tested can be determined with repeatability
and reproducibility in accordance with the requirements of standard ASTM methods. The
device has a pump that sucks the sample and introduces it to the measuring system. The
Mid-FTIR spectrophotometer uses interferometers, which are the manufacturer’s patented
solutions. The device also contains preloaded databases and a multilinear regression to
determine the viscosity.

3. Results and Discussion

The results of the kinematic viscosity measurements at 40 ◦C for the oil samples tested
are shown in Table 3, where the results, taking into account the expanded uncertainty
and the basic descriptive statistics, are presented. Based on the obtained data, it can be
concluded that the test results are characterized by a level of variation from several to
several dozen percent (coefficient of variation), depending on the device used.
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Table 3. Kinematic viscosity measured at 40 ◦C with the use of four different devices, and the basic descriptive statistics.
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x ± U(ν) (mm2/s) [%]

#1 68.77 ± 0.08 68.33 ± 0.12 64.0 ± 1.9 69.8 ± 0.2 67.7 2.6 6.5 3.8

#2 69.87 ± 0.05 69.55 ± 0.12 64.8 ± 2.2 75.3 ± 0.8 69.9 4.3 18.6 6.2

#3 61.60 ± 0.08 61.06 ± 0.11 54.7 ± 1.9 88.4± 0.2 66.4 14.9 223.4 22.5

#4 55.96 ± 0.10 55.95 ± 0.10 50.4 ± 2.2 75.3 ± 1.2 59.4 10.9 119.6 18.4

#5 53.67 ± 0.10 54.18 ± 0.10 50.8 ± 0.6 82.2 ± 2.4 60.2 14.7 217.0 24.5

#6 64.42 ± 0.13 64.24 ± 0.11 60.1 ± 0.8 68.7 ± 1.2 64.4 3.5 12.1 5.4

#7 73.90 ± 0.03 71.40 ± 0.13 65.9 ± 0.8 68.8 ± 2.2 70.0 3.5 11.9 4.9

#8 52.13 ± 0.05 52.06 ± 0.09 50.0 ± 2.5 75.7 ± 1.8 57.5 12.2 149.3 21.3

#9 67.74 ± 0.08 66.31 ± 0.12 62.6 ± 1.9 68.4 ± 2.4 66.3 2.6 6.9 4.0

#10 65.69 ± 0.08 66.91 ± 0.12 60.5 ± 1.4 69.4 ± 2.0 65.6 3.8 14.1 5.7

#11 61.41 ± 0.10 62.2 ± 0.11 54.8 ± 2.5 63.2 ± 2.2 60.4 3.8 14.4 6.3

#12 54.97 ± 0.03 54.60 ± 0.10 47.0 ± 1.7 67.2 ± 2.6 55.9 8.4 70.3 15.0

#13 54.48 ± 0.03 52.87 ± 0.09 47.8 ± 1.9 74.4 ± 2.4 57.4 11.7 137.3 20.4

#14 64.95 ± 0.13 65.18 ± 0.11 55.9 ± 2.5 74.4 ± 2.0 65.1 7.6 57.1 11.6

#15 66.78 ± 0.13 65.87 ± 0.12 62.4 ± 2.5 62.0 ± 1.6 64.3 2.4 5.9 3.8

#16 68.85 ± 0.08 70.60 ± 0.12 68.0 ± 5.0 70.8 ± 3.2 69.6 1.4 1.8 2.0

#17 72.95 ± 0.13 72.38 ± 0.13 66.7 ± 1.1 70.0 ± 3.0 70.5 2.8 8.0 4.0

#18 53.87 ± 0.13 53.81 ± 0.09 48.4 ± 1.9 62.9 ± 0.2 54.7 6.0 36.0 11.0

#19 69.01 ± 0.10 66.73 ± 0.12 61.0 ± 2.2 69.0 ± 1.4 66.4 3.8 14.3 5.7

#20 73.22 ± 0.13 73.61 ± 0.13 65.7 ± 2.2 23.8 ± 1.6 59.1 23.8 565.9 40.3

#21 53.4 ± 0.15 54.39 ± 0.10 48.1 ± 3.3 62.4 ± 1.0 54.6 5.9 34.8 10.8

#22 69.37 ± 0.13 69.86 ± 0.12 63.0 ± 2.5 61.8 ± 1.2 66.0 4.2 17.7 6.4

#23 65.72 ± 0.13 66.91 ± 0.12 63.0 ± 2.2 62.9± 1.8 64.6 2.0 4.1 3.1

#24 66.1 ± 0.13 64.94 ± 0.11 58.6 ± 0.6 84.2 ± 1.6 68.5 11.0 120.8 16.1

#25 68.02 ± 0.05 64.94 ± 0.11 58.0 ± 1.9 70.9 ± 2.4 65.5 5.5 30.4 8.4

#26 71.81 ± 0.08 70.92 ± 0.12 64.8 ± 2.5 59.5 ± 0.8 66.7 5.8 33.2 8.6

#27 71.34 ± 0.10 70.50 ± 0.12 65.5 ± 2.8 67.8 ± 0.6 68.8 2.7 7.0 3.9

#28 71.96 ± 0.13 70.17 ± 0.12 63.1 ± 0.6 75.4 ± 1.6 70.2 5.2 26.8 7.4

#29 68.77 ± 0.10 69.65 ± 0.12 62.3 ± 1.7 76.1 ± 1.8 69.2 5.6 31.8 8.1

#30 68.43 ± 0.03 68.79 ± 0.12 61.1 ± 2.2 62.0 ± 3.0 65.1 4.1 16.7 6.3

#31 70.55 ± 0.08 70.17 ± 0.12 62.1 ± 1.9 70.9 ± 0.2 68.4 4.2 17.8 6.2

#32 67.70 ± 0.10 69.29 ± 0.12 65.2 ± 6.1 63.7 ± 1.4 66.4 2.5 6.4 3.8

#33 68.96 ± 0.13 68.89 ± 0.12 62.2 ± 2.8 61.5 ± 0.4 65.4 4.1 16.8 6.3

#34 65.47 ± 0.05 63.42 ± 0.11 56.3 ± 2.5 82.9 ± 1.2 67.0 11.3 127.8 16.9

#35 67.08 ± 0.05 67.65 ± 0.12 60.9 ± 2.2 72.0 ± 0.8 66.9 4.5 20.6 6.8

#36 75.20 ± 0.08 75.25 ± 0.13 69.5 ± 0.8 92.6 ± 1.0 78.1 10.0 99.7 12.8

#37 67.47 ± 0.08 67.34 ± 0.12 60.2 ± 2.8 62.5 ± 2.2 64.4 3.6 13.2 5.6

#38 69.18 ± 0.08 69.52 ± 0.12 62.4 ± 1.9 67.3 ± 0.8 67.1 3.3 10.8 4.9

#39 71.40 ± 0.08 71.53 ± 0.13 64.4 ± 3.3 83.9 ± 1.8 72.8 8.1 66.1 11.2

#40 65.64 ± 0.05 64.80 ± 0.11 58.6 ± 1.9 80.5 ± 0.6 67.4 9.3 86.3 13.8

#41 65.87 ± 0.03 62.89 ± 0.11 57.2 ± 2.2 74.1 ± 0.8 65.0 7.1 49.8 10.9

#42 67.21 ± 0.08 70.20 ± 0.12 61.1 ± 2.5 67.8 ± 0.2 66.6 3.9 14.9 5.8
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The following oil samples showed the greatest variations in the results: #3, #4, #5,
#8, #13, #20, #24, #34, and #36—the standard deviation above 10 mm2/s. This is mainly
due to the measurement errors; the values obtained with the Mid-FTIR spectrophotometer
were generally higher than the “true” ones (except for the sample #20, for which the
obtained value was lower). The coefficient of variation for these samples reached the level
of 12.8–40.3% (the standard deviation from 10 to 23.8 mm2/s).

In the next step, a scatter chart was elaborated for the compared methods (Figure 1).
It has been confirmed that the linear function well-describes the relationship between the
results obtained with a Capillary viscometer and Stabinger viscometer.
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Figure 1. Scatter plots with regression lines for kinematic viscosity—Capillary viscometer and
Stabinger viscometer.

Then, a linear model was sought. For this purpose, a multiple regression was used. A
summary of the regressions is provided below.

The following form of the regression function was obtained:

y = 0.9754x + 1.3610

It was then checked whether Method 2 (Stabinger viscometer) is as precise as Method
1 (Capillary viscometer) (Table 4). The two sub-hypotheses of the null hypothesis H0: b1 = 1
and b0 = 0 were tested simultaneously. Since no grounds for rejecting the null hypothesis
were found, this indicates the equivalence of both methods. The hypothesis was verified
using the F test defined as follows:

F =
nb2

0 + 2nxb0(b1 − 1) + (b1 − 1)2x2

2σ2
e

where n—group size, b0 and b1—regression coefficients, σ2
e —residual variance, x—mean of

independent variables xi, and x2—expression given by the formula

n

∑
i=1

x2
i

The obtained value was F = 1.1780. Consequently, the value of the test probability
(p = 0.3207) meant that there were no grounds to reject the null hypothesis. In other words,
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because the null hypothesis was not rejected, statistical confirmation of the similarity of the
two methods was obtained, i.e., the following statement was confirmed: The measurements
carried out using a Stabinger viscometer are as precise as the measurements conducted
using a Capillary viscometer.

Table 4. The estimation results for the measurements carried out with a Stabinger viscometer and Capillary viscometer.

b’ the Standard Error (b’) b the Standard Error (b) t(40) p

An intercept
parameter 1.36 2.15 0.63 0.53

Capillary
Viscometer 0.98 0.03 0.98 0.03 30.11 0.00

b’—the coefficient of determination, b—the coefficients of linear regression.

Similar steps were taken to analyze the second pair compared (Capillary viscome-
ter and Microchannel viscometer). Firstly, the scatter charts were prepared (Figure 2).
Then, the analysis was performed, and it has been confirmed that the linear function de-
scribes the relationship between the variables fairly well (yet worse than in the previously
discussed pair).
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As a result of the estimation, the following form of the regression function was ob-
tained:

y = 0.913442x − 0.525197

In this case, it was also checked if Method 3 (Microchannel viscometer) is as precise
as Method 1 (Capillary viscometer) (Table 5). Again, the two sub-hypotheses of the null
hypothesis H0: b1 = 1 and b0 = 0 were tested simultaneously, and the hypothesis was
verified using the F test. This time, the value F = 215.164 was obtained. The test probability
value (p < 0.000001) resulted in the rejection of the null hypothesis. Since the null hypothesis
was rejected, it was then checked which of the conditions (sub-hypotheses) was not met.
To this end, each sub-hypothesis was verified separately: H0: b1 = 1 and then Ho: b0 = 0.
For the H0 hypothesis b1 = 1, the value t = 1.73999 was obtained, which meant that there
were no grounds for rejecting it (p = 0.0896). In turn, for the H0 hypothesis b0 = 0, the
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value t = 0.159354 was obtained, and thus, also, in this case, there were no grounds to
reject it (p = 0.8742). Overall, the null hypothesis was rejected, even though each of the
sub-hypotheses could be accepted separately, which means that Method 3 (Microchannel
viscometer) is not as precise as Method 1 (Capillary viscometer) and that the results
obtained using it will be subject to the measurement error.

Table 5. The estimation results for the measurements carried out with the Microchannel viscometer and Capillary viscometer.

b’ The Standard Error (b’) b The Standard Error (b) t(40) p

An intercept
parameter −0.53 3.30 −0.16 0.87

Capillary
Viscometer 0.95 0.05 0.91 0.05 18.36 0.00

b’—the coefficient of determination, b—the coefficients of linear regression.

The third pair of methods (Capillary Viscometer and Mid-FTIR Spectrophotometer)
was supposed to be analyzed in a similar way. First, the scatter chart of the compared meth-
ods was made. It was then noted that the linear function did not describe the relationship
between the variables (Figure 3). When the outlying results were excluded (Figure 4), the
situation improved only slightly.
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Mid-FTIR spectrophotometer.

The analysis of the scatter plots of variables for the compared methods showed no
linear relationship, which is why there were no grounds to state that both methods could be
used interchangeably, giving equally accurate results. The results obtained using Method 4
(Mid-FTIR spectrophotometer) are thus subject to a very large measurement error.
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In the next step, an attempt was made to select outliers to indicate the samples for
which the greatest discrepancies in the results obtained using different devices were found.
For this purpose, the Mahalanobis distance (MD) was used. A particular advantage of the
Mahalanobis distance is that it has a known distribution: it is a chi-square distribution,
with the number of degrees of freedom equal to the dimension of the dataset (i.e., the
number of features with which the observations are described). Hence, it is assumed that
the distances above the 97.5% quantile are outliers. After applying this assumption to the
variables studied, one outlier was obtained—the oil sample #20—whereas four other oil
samples were close to the “outlying” limit (#8, #36, #6, and #42). Nevertheless, for the
statistical method chosen, the assumption that the MD has a chi-square distribution is true
only when the data has a multidimensional normal distribution. The collected data did
not have a normal distribution. The aim was to search for the outliers, so the distribution,
almost by assumption, could not be normal. To solve this problem, the so-called robust
covariance matrix estimators were applied. Probably, the most commonly used one is the
MCD (Minimum Covariance Determinant). This estimator gave nine outlying oil samples.
These were (from the highest to the lowest MD) #20, #8, #5, #13, #21, #18, #12, #36, and #4.
The detailed results of the analysis are shown in Figure 5.
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The “normal” MD was placed on the horizontal axis. The vertical line around 3.5
is a 97.5% quantile from the chi-square distribution with five degrees of freedom. To the
right of it are the outliers mentioned earlier. The robust MD was placed on the vertical
axis. The horizontal line is the same quantile (97.5% from the chi-square distribution with
five degrees of freedom). It is worth noting that, for example, oil samples #3 and #4 with
ordinary MD are placed on the chart around 1.7 and, with robust MD, above 3. In other
words, when considering the MD alone, these two samples were very far from outlying,
but the robust MD made them either outliers or close to outlying. This means that the
transition to robust estimators (i.e., removing the normality assumption) “changed” them
into outliers. Therefore, their “outlying” results from the fact that there are connections
between the characteristics of oils other than those described by the normal distribution.

The statistical tool used confirmed the observations that were presented in the previous
paragraphs. One oil (#20) absolutely stood out from the other oils tested (regardless of the
type of MD used). It is an oil for which additional measurements were made using the
Mid-FTIR method to confirm the surprisingly low value of kinematic viscosity (24 mm2/s),
which was obtained in the test. Each subsequent result oscillated around the one obtained
earlier. This was most probably due to the limitations of the databases and the method
used to estimate the viscosity in the Mid-FTIR spectrophotometer—such a “gap” may
apply to this particular oil sample, which as one of very few oils belonging to the three
ACEA classes (A3, B3/B4, and C2/C3). According to the API classification, it meets
the quality corresponding to the SM/SL and CF classes. The other samples that were
classified as outliers (#8, #5, #13, #21, #18, #12, #36, and #4) showed a min. of a 20% higher
viscosity (according to the Mid-FTIR spectrophotometer) than the average for the other
three methods. The largest difference (after oil sample #20) was found for the samples #8
(47%) and #5 (39%).

Based on previous analyses, it has been noticed that the microchannel viscometer
underestimates the results, and the Mid-FTIR spectrophotometer overestimates them
compared to the two methods that can be considered homogeneous. To confirm these
observations in a statistical manner, a post-hoc analysis was performed (Table 6 and
Figure 6). It was found that the results obtained from the microchannel viscometer were
significantly lower than the other results (p < 0.05). However, no statistical confirmation
was obtained for the hypothesis according to which the Mid-FTIR spectrophotometer
overestimates the results, because no significant differences were obtained for this method.
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Table 6. The mean values (x), standard deviations (SD), and p *-values.

Microchannel
Viscometer
(N = 42)—A

Capillary
Viscometer
(N = 42)—B

Stabinger
Viscometer
(N = 42)—C

Mid-FTIR
(N = 42)—D p *

x ± SD 59.74 ± 5.93 65.97 ± 6.14 65.71 ± 6.12 70.06 ± 10.74 p < 0.001

median 61.13 67.59 67.12 69.62

quartiles 56.54–63.8 65.08–69.32 63.62–70.09 63.29–75.34 D, B, C > A
* If, for at least one measurement, the distribution is not normal, the Friedman test + post-hoc analysis results
(Wilcoxon Signed-Rank test with the Bonferroni correction).
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The above-made observations can be also confirmed by another type of chart (Figure 7).
Each line/track in this graph represents one oil sample. For all individual results (42 sam-
ples), the microchannel viscometer can be found below the reference methods (Stabinger
viscometer and Capillary viscometer). In contrast, for a significant part of the results
(15 samples) obtained with the use of the Mid-FTIR spectrophotometer, the lines are at a
lower level than for the results obtained using the Capillary viscometer and/or Stabinger
viscometer.
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4. Conclusions

There are many different devices on the market that make it possible to assess the
viscosity of a lubricant, and they use various methods of measurement. It is recommended
that the selection of such devices is carried out carefully. Some of them facilitate the
measurements conducted directly on site, where the machine is operating; yet, the results
obtained with them can lead to wrong conclusions, especially when the first measurement
is made using the reference method and the subsequent measurements use other methods.

The research experiment carried out showed that the results of the measurements
are influenced by the type of research method chosen. Only one of the three analyzed
methods (Stabinger viscometer) has a very high compliance with the standardized method
and provides as precise results as the reference method. No such confirmation was found
for the other two methods. A post-hoc analysis confirmed that the values obtained using
the SpectroVisc apparatus are significantly lower than those obtained using the Capillary
viscometer and Stabinger viscometer (p < 0.05). However, no significant differences were
found that could confirm the overestimation of the measurement results obtained with the
use of the Mid-FTIR spectrophotometer, which, for a large part of the results (15 samples),
showed a great similarity (in terms of accuracy) to the reference methods. Yet, for a vast
majority of the results, it failed to provide a correct measurement result. The Mahalanobis
distances made it possible to indicate the samples for which the greatest discrepancies were
found in the results obtained with the use of different devices. Only nie out of 42 samples
showed a min. of a 20% higher viscosity (Mid-FTIR spectrophotometer) than the average
for the other three methods. The largest difference (apart from the oil sample #20) was
shown for the samples #8 (47%) and #5 (39%).

For as many as nine samples, the standard deviation exceeded 10 mm2/s, which
should be considered a high value. The coefficient of variation reached 12.8–40.3% for
these samples.

Just like with any research studies, especially those empirical in nature, the analysis
presented in this article has its limitations. These are mainly conditioned by the method of
the sample selection and the sample size. Moreover, in the present study, only fresh oils
and only one viscosity grade were examined. Used engine oils would make a separate case
of study, because they contain degradation products that may pose additional difficulties
in obtaining the correct results, especially when using the FTIR method. It should be noted
that three of the examined methods are based on direct measurements, while the mid-FTIR
technique is an indirect method for which the viscosity parameters were calculated using
MRL (Multiple linear regression) based on the spectra of the oils of known viscosity. The
authors deliberately relied on the factory libraries without changing their settings.

An interesting direction of future research may be to focus more attention on creating
a separate library for the mid-FTIR spectrophotometer; based on which, the viscosity could
be calculated. This could lead to achieving more reliable measurement results. Another
possible research direction would be to increase the number of devices tested and to include
oils in other viscosity classes. It could also be interesting to verify the reproducibility of the
viscosity measurement results for the used oils.
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